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Abstract:  We  introduce  integer  compositions  signatures  (ic):  a  post-quantum,
hash-based family of one-time signatures. The proposed scheme explores a connec-
tion  between  hash-based  signatures  and  combinatorics:  the  authentication  path
taken from the signature to the public key is determined by a restricted composition
of an 9. The family shows improvements over previous schemes like Winternitz: re-
duced cost, verification in constant time, and the possibility to tweak the signature
for either faster signing or faster verification.

Keywords:  one-time  signatures,  ots,  hash,  authentication,  post-quantum  cryptography,
composition, combinatorics.

In  this  paper we will  introduce ic,  a  family  of one-time
[1], hash-based digital signatures.

The  family  shows  improvements  over  previous
hash-based schemes like wots (Winternitz one-time sig-
natures). Some of the advantages are:

A more efficient size/cost trade-off, allowing for sig-
natures  of  the  same  size  with  less  computational
cost (fewer hash functions evaluations) or a similar
cost and a smaller size.
Verification  in  constant  time  and  signing  in  nearly
constant time.
Resistance  against  forgery  without  the  need  for
checksums.
Tweakable  parameters,  that  make  the  signature
tunable to a large range of uses:

Unlike  wots,  whose  w  parameter  only  leads  to
signatures with different (but limited) signature
lengths,  the  size  of  the  signatures  can  by  ad-
justed to an arbitrary number of output hashes
L (length).
In  addition  to  compression,  the  ic  family  allows
for expansion  to reduce the cost of signing and
verifying.
The signature  can be tweaked for  fast  verifica-
tion, fast signing, and values in between.

Winternitz One-Time Signatures (wots)

In  a  Winternitz  (wots)  scheme [2][3],  the  signer  picks  n
random numbers to create the private key v (at the bot-
tom of the graph), each number with size bits.

Then, a keyed hash function is iterated over each num-
ber  at  the  bottom  to  compute  the  public  key  p  at  the
top. The one-wayness of the hash function ensures the
values at a lower level cannot be computed from higher
one.

In order to sign, the hash of a message is encoded as a
list  fm  of  w-bit  numbers.  The  parameter  w  determines

the  level  of  compression  of  the  signature.  The  hash
function is iterated over the first numbers in the private
key v, a number ot times determined by fm.

Once the signature is published, all values at higher lev-
els (those between fm and the public key) become pub-

lic.  To  avoid  an  attacker  from  forging  a  signature,  a
checksum of the signature is needed. The checksum is
computed in a similar way as the main part of the signa-
ture.

To  verify,  the  iterations  remaining  to  reach  the  higher
level are applied to the main part of the signature and
to  the  checksum.  The  signature  is  valid  if  the  result
matches the public key p.

1. Introduction

1.1 Concepts
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Integer Compositions (ic)

An ic signature represents each message as an integer
composition  of  an  integer N. That is,  one of  the  many
ways an integer N  can be written as a  sum  of positive
parts, taking into account the ordering of the parts.
For example, the tuples (2, 2, 2, 2), (4, 2, 1, 1), (1, 2, 2, 3)
and (3, 2, 1, 2) are different compositions of the integer
8.

Similarly to wots, each parts in the composition is used
to determine the number of iterations of the hash func-
tion. But a  difference arises:  since  the  composition  re-
quires  that  their  parts  add  up  to  N  (as  seen  in  the
graph), a higher number of iterations in any of the parts
results  in  a  lower  number  of  iterations  in  at  least  an-
other.

An  attacker  can  no  longer  forge  a  signature  from  the
values  of  a  known  message  without  breaking  the
one-wayness  of  the  hash  function.  This  eliminates  the
need for a checksum, leading to a smaller, faster signa-
ture.

The  ic  family  of  signatures  uses  compositions  that  are
length-restricted (with a fixed number of parts), and al-
phabet-restricted, with each part taking values from an
alphabet 0, 1, ..., zeta.

The (N, zeta)  pair of constants allows to tweak how the
cost is  distributed between the signer and the verifier.
As N becomes smaller (and zeta higher) the cost of veri-
fying decreases. As zeta becomes smaller (and N higher)
the cost of signing and keys creation decreases.

In the different sections of this paper, we will:

describe a method to transform the hash of a mes-
sage  into  a  restricted  composition,  equivalent  to
picking  a  composition  uniformly  at  random  from
the set of all possible compositions (2.3, 2.4, 2.5)..
describe the signature scheme based on restricted
integer compositions. (2.2, 2.3, 2.4).
describe methods for finding optimal (N, zeta)  con-
stants,  that  minimize  the  number  of  hash  evalua-
tions for different uses (2.1).
compare  different  types  of  ic  signatures,  showing
that the family can be tweaked to outperform wots
verification or signing (4.).

The  ic  signature  takes  3  main  parameters:  bits,  length
and type.

An  ic  signature  with  parameters  (bits,  length)  is  a
one-time signature of size=length,  capable of signing at
least 2bits distinct messages.

Let the auxiliary  function R (N, L)  be  the  amount of  all
possible  compositions  of  the  integer  N  with  length  L.
(2.5)

Let the auxiliary function R (N, L, z) be the number of all
possible compositions of the integer N with length L and
each part taking values from the range 0...z. (2.5)

Type 'v'

(Optimal for fast verification)

Given the parameters bits and length:

Find  the  smallest  positive  integer  N  that
satisfies:
R(N, length) ≥ 2bits

1. 

Find the smallest positive integer zeta that
satisfies:
R(N, length, zeta) ≥ 2bits

2. 

Return  the  constants  (N,  zeta)  as  the  re-
sult.

3. 

Type 'a'

(Approximately  optimal for  verifying,  while  being  faster  at
keys creation and signing)

Given  the  parameters  bits  and  length,  and  a  tolerance
value:

Find  the  smallest  positive  integer  N'  that
satisfies:
R(N', length) ≥ 2bits

1. 

Compute N:
N = N' ⋅ (1 + tolerance / 100)

2. 

Find the smallest positive integer zeta that
satisfies:
R(N, length, zeta) ≥ 2bits

3. 

Return  the  constants  (N,  zeta)  as  the  re-
sult.

4. 

2. Description of the algorithm

2.1 Parameters and constants
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Type 's'

(Optimized for faster keys creation and signing)

Given the parameters bits and length:

Find the smallest positive integer zeta that
satisfies:
W(zeta,  Nzeta,  rzeta)  <  W(zeta+1,  Nzeta+1,

rzeta+1)

1. 

Define N:
N = Nzeta

2. 

Return  the  constants  (N,  zeta)  as  the  re-
sult.

3. 

Where:

The cost function W is given by:
W(z, n, r) := wkey + wsig + wcomp

And,
wkey = z ⋅ length

wsig = z ⋅ length − n

wcomp = R(n, length) / r

Nz is  the  smallest  positive  integer  n  that

satisfies the following condition, if such in-
teger exists for a given z:
R(n, length, z) ≥ 2bits

And rz is given by:

rz := R(Nz, length, z)

Type '1/s'

(Optimal for fast keys creation and signing. Inverse mode)

The constants (N, zeta)  are  computed in  the same way
as in type 's'. But the cost function W  is defined as fol-
lows:

W(z, n, r) := wkey + wsig + wcomp

Where,
wkey = z ⋅ length

wsig = n

wcomp = R(n, length) / r

M and mbits constants

Given the parameter length and the constant N:

Compute the constant M:

M = ∏ length
n = 1  (N + n)

Compute  the  constant  mbits,  given  by  the  amount  of
bits needed to encode the integer M − 1:

mbits = len (binary (M − 1))

hashA, hashUp

Choose  a  keyed  hash  function  hashA  with  output  size
mbits,  and  a  keyed  hash  function  hashUp  with  output
size bits.

Generate the private key by picking a list
of  random  numbers,  each  number  with
size bits:
priv := priv0, priv1, priv2,..., privlength-1

privn = urandom (bits)

1. 

Generate a salt by picking a random num-
ber with size ≥ bits:
sal = urandom (bits)

2. 

Iterate the hash function over each value
in  the  private  key.  The  number  of  itera-
tions is given by zeta.  Each hash function
is  keyed  with  a  unique  number,  created
from the salt, a column index, and a row
index:
f := f0, f1, ..., flength−1

For n = 0, 1, ..., length − 1:

fn = privn

For i = 0, 1, ..., zeta:

s = sal || n || i
fn = hashUps (fn)

3. 

Compress fn:

pubcheck  =  hashUpsal  (f0 || f1 || ...  ||

flength−1)

4. 

Publish  pubcheck  as  the  public  key.  Keep
priv and sal secret.

5. 

Given a message, a private key, and a salt:

Compute  the  hash  value  h  of  the  mes-
sage: h = hashAsal (message)

1. 

Given a counter n = 0, 1, ...

Compute:
m = hashAsal (n || h)

Compute  the  m-th  restricted  com-
position  of  N,  using  the  auxiliary
function:
c = composition (N, length, index=m)
Stop the counter when a pair (m, c)
is found that satisfies:
m < M
max (c) ≤ zeta

2. 

2.2 Keys creation

2.3 Signing
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Compute the tuples upsVer and upsSig:
upsVer = c0, c1, ..., clength−1

upsSig = zeta−c0, zeta−c1, ..., zeta−clength−1

3. 

When  using  the  inverse  mode,  swap  the
tuples:

If type == '1/s':

upsVer, upsSig = upsSig, upsVer

4. 

Iterate the hash function over each value
in  the  private  key.  The  number  of  itera-
tions  is  given  by  upsSig.  Each  hash  func-
tion is  keyed with  a  unique number, cre-
ated from the salt, a column index, and a
row index:
f := f0, f1, ..., flength−1

For n = 0, 1, ..., length − 1:

fn = privn

For i = 0, 1, ..., upsSign − 1:

s = sal || n || i
fn = hashUps (fn)

5. 

Publish (f, n, sal) as the signature.6. 

Given a message, a signature (f, n, sal) and a hashed pub-
lic key pubcheck:

Compute  the  hash  value  h  of  the  mes-
sage:
h = hashAsal (message)

1. 

Compute  the  hash  value  m  of  the  mes-
sage h and the counter n:
m = hashAsal (n || h)

2. 

Check that m < M.3. 
Compute the m-th restricted composition
of N, using the auxiliary function:
c = composition (N, length, index=m)

4. 

Check  that  no  part  in  the  composition  is
bigger than zeta:
max (c) ≤ zeta

5. 

Compute the tuples upsVer and upsSig:
upsVer = c0, c1, ..., clength−1

upsSig = zeta−c0, zeta−c1, ..., zeta−clength−1

6. 

When  using  the  inverse  mode,  swap  the
tuples:

If type == '1/s':

upsVer, upsSig = upsSig, upsVer

7. 

Iterate the hash function over each value
fn  in  the  signature.  The  number of  itera-

tions  is  given  by  upsVer.  Each  hash  func-
tion is  keyed with  a  unique number, cre-

8. 

ated from the salt, a column index, and a
row index:

For n = 0, 1, ..., length − 1:

For i = 0, 1, ..., upsVern − 1:

s = sal || n || upsSign + i

fn = hashUps (fn)

Compress fn:

t = hashUpsal (f0 || f1 || ... || flength−1)

9. 

Verify that t == pubcheck.10. 
The signature is valid if all tests (3, 5 and
10) evaluate to True, invalid otherwise.

11. 

composition

Transforms  and  integer  m  in  the  range  0...M−1  into  a
length-restricted composition of N. The constant M is:
M = N · (length − 1)!

Where ! is the factorial function.

Given the constants N, length and an index m:

Represent the integer m  as a mixed-radix
number with bases b:
b = N+length−1, N+length−2, ..., N−1
d = mixradix (m, bases=b)

1. 

Create the tuple p:
p = (p0)

p0 = N + length − 1

2. 

For each dn in d:

Define r:
r = d + 1
Given a counter n = 0, 1, ...

If r − pn ≤ 0, stop the counter.

Let ñ  be the last value of the
counter.
Else, subtract pn from r:

r −= pn

Append (pñ − r) to p:

p = p || (pñ − r)

Assign (r − 1) at index ñ of p:
pñ = r − 1

3. 

Return the tuple p as the result.4. 

2.4 Verification

2.5 Auxiliary functions
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mixradix

Given a number and a list of bases b:

Set the variable n:
n = number

1. 

Create the empty tuple r:
r = ( )

2. 

For each blast, .., b1, b0:

Compute
e = n mod bn

n = floor (n / bn)

Append e to the tuple r:
r = r || e

3. 

Return r as the result.4. 

R (N, L)

The number of restricted integer compositions of N with
exactly L parts, and each part taking values in the range
0...N:

R (N, L) = ( N+L−1
L−1 )

Where ( b
c ) is the binomial coefficient.

Given the parameter L and N:

Set the variable r:
r = 1

1. 

For n = 1, 2, .., L:

r = r · (N + n)

2. 

Compute:
r = r / (L − 1)!

3. 

Return r as the result.4. 

Where ! is the factorial function.

R (N, L, z)

The number of restricted integer compositions of N with
exactly L parts, and each part taking values in the range
0...z. Given by [4]:

R (N, L, z) = ∑ L
n = 0 (-1)n · ( L

n ) · ( N+L−1−n·(z+1)
L−1 )

Where ( b
c ) is a non standard binomial coefficient, de-

fined as 0 (zero) for any b < 0 and b < c.

The table shows computed N, zeta values for parameter
bits=256, with different lengths and types.

length type 'v' type 'a' type 's'

20
N=90189
zeta=41972

N=91541
zeta=18786

N=120841
zeta=12105

24
N=21126
zeta=7730

N=21442
zeta=3707

N=28017
zeta=2369

28
N=7796
zeta=2316

N=7912
zeta=1183

N=9903
zeta=755

32
N=3786
zeta=962

N=3842
zeta=507

N=4613
zeta=326

40
N=1437
zeta=318

N=1458
zeta=157

N=1665
zeta=103

48
N=778
zeta=112

N=789
zeta=72

N=868
zeta=49

56
N=510
zeta=67

N=517
zeta=42

N=557
zeta=29

64
N=375
zeta=45

N=380
zeta=28

N=409
zeta=19

To  evaluate  the  scheme, we  will  take  into  account  the
cost of signing and verifying, defined as the number of
hash  evaluations.  The  cost  of  verification  is  given  by
Wver, and the cost of signing corresponds to the added

costs Wcomp and Wsig (the cost of finding a valid compo-

sition, and the cost of computing the signature from the
private key):

Wver = N

Wsig = N ⋅ (zeta − 1)

Wcomp = R(N, length) / R(N, length, zeta)

The  table  compares  the  cost  of  256-bit  ic  signatures
with length=28 and different types.

size (bits) signing verification

ic 256 - type 'v' 7424 bits 57.1 msh 7.8 msh

ic 256 - type 'a' 7424 bits 25.2 msh 7.9 msh

ic 256 - type 's' 7424 bits 10.5 msh 9.9 msh

ic 256 - type '1/s' 7424 bits 9.4 msh 12.3 msh

wots+ 256 7424 bits 14.3 msh 14.3 msh

For reference, a msh equals 1 ms, assuming a computer

performing 1 million hash iterations per second.
The length  in  bits  includes the  size  of  the  salt  used to
randomize the hash functions.

3. Table of N, zeta constants

4. Evaluation
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A pure python implementation of the signature scheme
is provided. The work can be found at:

http://jotasapiens.com/research1. 

Current version: Hash-based signatures (ic, icvar, uwots)
version 4 (2016 Oct 24).

sha256:
754a600b4cef06d5c773440eb9ed1bc0e3ce2088273997
03ededd833a141a0fc
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