
Integer Compositions Signatures
Santi J. Vives Maccallini

jotasapiens.com/research/

Abstract: We introduce integer compositions signatures (ic): a post-quantum,
hash-based family of one-time signatures. The proposed scheme explores a connec-
tion between hash-based signatures and combinatorics: the authentication path
taken from the signature to the public key is determined by a restricted composition
of an 9. The family shows improvements over previous schemes like Winternitz: re-
duced cost, verification in constant time, and the possibility to tweak the signature
for either faster signing or faster verification.

Keywords: one-time signatures, ots, hash, authentication, post-quantum cryptography,
composition, combinatorics.

In this paper we will introduce ic, a family of one-time
[1], hash-based digital signatures.

The family shows improvements over previous
hash-based schemes like wots (Winternitz one-time sig-
natures). Some of the advantages are:

A more efficient size/cost trade-off, allowing for sig-
natures of the same size with less computational
cost (fewer hash functions evaluations) or a similar
cost and a smaller size.
Verification in constant time and signing in nearly
constant time.
Resistance against forgery without the need for
checksums.
Tweakable parameters, that make the signature
tunable to a large range of uses:

Unlike wots, whose w parameter only leads to
signatures with different (but limited) signature
lengths, the size of the signatures can by ad-
justed to an arbitrary number of output hashes
L (length).
In addition to compression, the ic family allows
for expansion to reduce the cost of signing and
verifying.
The signature can be tweaked for fast verifica-
tion, fast signing, and values in between.

Winternitz One-Time Signatures (wots)

In a Winternitz (wots) scheme [2][3], the signer picks n
random numbers to create the private key v (at the bot-
tom of the graph), each number with size bits.

Then, a keyed hash function is iterated over each num-
ber at the bottom to compute the public key p at the
top. The one-wayness of the hash function ensures the
values at a lower level cannot be computed from higher
one.

In order to sign, the hash of a message is encoded as a
list fm of w-bit numbers. The parameter w determines

the level of compression of the signature. The hash
function is iterated over the first numbers in the private
key v, a number ot times determined by fm.

Once the signature is published, all values at higher lev-
els (those between fm and the public key) become pub-

lic. To avoid an attacker from forging a signature, a
checksum of the signature is needed. The checksum is
computed in a similar way as the main part of the signa-
ture.

To verify, the iterations remaining to reach the higher
level are applied to the main part of the signature and
to the checksum. The signature is valid if the result
matches the public key p.

1. Introduction

1.1 Concepts

1

Integer Compositions (ic)

An ic signature represents each message as an integer
composition of an integer N. That is, one of the many
ways an integer N can be written as a sum of positive
parts, taking into account the ordering of the parts.
For example, the tuples (2, 2, 2, 2), (4, 2, 1, 1), (1, 2, 2, 3)
and (3, 2, 1, 2) are different compositions of the integer
8.

Similarly to wots, each parts in the composition is used
to determine the number of iterations of the hash func-
tion. But a difference arises: since the composition re-
quires that their parts add up to N (as seen in the
graph), a higher number of iterations in any of the parts
results in a lower number of iterations in at least an-
other.

An attacker can no longer forge a signature from the
values of a known message without breaking the
one-wayness of the hash function. This eliminates the
need for a checksum, leading to a smaller, faster signa-
ture.

The ic family of signatures uses compositions that are
length-restricted (with a fixed number of parts), and al-
phabet-restricted, with each part taking values from an
alphabet 0, 1, ..., zeta.

The (N, zeta) pair of constants allows to tweak how the
cost is distributed between the signer and the verifier.
As N becomes smaller (and zeta higher) the cost of veri-
fying decreases. As zeta becomes smaller (and N higher)
the cost of signing and keys creation decreases.

In the different sections of this paper, we will:

describe a method to transform the hash of a mes-
sage into a restricted composition, equivalent to
picking a composition uniformly at random from
the set of all possible compositions (2.3, 2.4, 2.5)..
describe the signature scheme based on restricted
integer compositions. (2.2, 2.3, 2.4).
describe methods for finding optimal (N, zeta) con-
stants, that minimize the number of hash evalua-
tions for different uses (2.1).
compare different types of ic signatures, showing
that the family can be tweaked to outperform wots
verification or signing (4.).

The ic signature takes 3 main parameters: bits, length
and type.

An ic signature with parameters (bits, length) is a
one-time signature of size=length, capable of signing at
least 2bits distinct messages.

Let the auxiliary function R (N, L) be the amount of all
possible compositions of the integer N with length L.
(2.5)

Let the auxiliary function R (N, L, z) be the number of all
possible compositions of the integer N with length L and
each part taking values from the range 0...z. (2.5)

Type 'v'

(Optimal for fast verification)

Given the parameters bits and length:

Find the smallest positive integer N that
satisfies:
R(N, length) ≥ 2bits

1.

Find the smallest positive integer zeta that
satisfies:
R(N, length, zeta) ≥ 2bits

2.

Return the constants (N, zeta) as the re-
sult.

3.

Type 'a'

(Approximately optimal for verifying, while being faster at
keys creation and signing)

Given the parameters bits and length, and a tolerance
value:

Find the smallest positive integer N' that
satisfies:
R(N', length) ≥ 2bits

1.

Compute N:
N = N' ⋅ (1 + tolerance / 100)

2.

Find the smallest positive integer zeta that
satisfies:
R(N, length, zeta) ≥ 2bits

3.

Return the constants (N, zeta) as the re-
sult.

4.

2. Description of the algorithm

2.1 Parameters and constants

2

Type 's'

(Optimized for faster keys creation and signing)

Given the parameters bits and length:

Find the smallest positive integer zeta that
satisfies:
W(zeta, Nzeta, rzeta) < W(zeta+1, Nzeta+1,

rzeta+1)

1.

Define N:
N = Nzeta

2.

Return the constants (N, zeta) as the re-
sult.

3.

Where:

The cost function W is given by:
W(z, n, r) := wkey + wsig + wcomp

And,
wkey = z ⋅ length

wsig = z ⋅ length − n

wcomp = R(n, length) / r

Nz is the smallest positive integer n that

satisfies the following condition, if such in-
teger exists for a given z:
R(n, length, z) ≥ 2bits

And rz is given by:

rz := R(Nz, length, z)

Type '1/s'

(Optimal for fast keys creation and signing. Inverse mode)

The constants (N, zeta) are computed in the same way
as in type 's'. But the cost function W is defined as fol-
lows:

W(z, n, r) := wkey + wsig + wcomp

Where,
wkey = z ⋅ length

wsig = n

wcomp = R(n, length) / r

M and mbits constants

Given the parameter length and the constant N:

Compute the constant M:

M = ∏ length
n = 1 (N + n)

Compute the constant mbits, given by the amount of
bits needed to encode the integer M − 1:

mbits = len (binary (M − 1))

hashA, hashUp

Choose a keyed hash function hashA with output size
mbits, and a keyed hash function hashUp with output
size bits.

Generate the private key by picking a list
of random numbers, each number with
size bits:
priv := priv0, priv1, priv2,..., privlength-1

privn = urandom (bits)

1.

Generate a salt by picking a random num-
ber with size ≥ bits:
sal = urandom (bits)

2.

Iterate the hash function over each value
in the private key. The number of itera-
tions is given by zeta. Each hash function
is keyed with a unique number, created
from the salt, a column index, and a row
index:
f := f0, f1, ..., flength−1

For n = 0, 1, ..., length − 1:

fn = privn

For i = 0, 1, ..., zeta:

s = sal || n || i
fn = hashUps (fn)

3.

Compress fn:

pubcheck = hashUpsal (f0 || f1 || ... ||

flength−1)

4.

Publish pubcheck as the public key. Keep
priv and sal secret.

5.

Given a message, a private key, and a salt:

Compute the hash value h of the mes-
sage: h = hashAsal (message)

1.

Given a counter n = 0, 1, ...

Compute:
m = hashAsal (n || h)

Compute the m-th restricted com-
position of N, using the auxiliary
function:
c = composition (N, length, index=m)
Stop the counter when a pair (m, c)
is found that satisfies:
m < M
max (c) ≤ zeta

2.

2.2 Keys creation

2.3 Signing

3

Compute the tuples upsVer and upsSig:
upsVer = c0, c1, ..., clength−1

upsSig = zeta−c0, zeta−c1, ..., zeta−clength−1

3.

When using the inverse mode, swap the
tuples:

If type == '1/s':

upsVer, upsSig = upsSig, upsVer

4.

Iterate the hash function over each value
in the private key. The number of itera-
tions is given by upsSig. Each hash func-
tion is keyed with a unique number, cre-
ated from the salt, a column index, and a
row index:
f := f0, f1, ..., flength−1

For n = 0, 1, ..., length − 1:

fn = privn

For i = 0, 1, ..., upsSign − 1:

s = sal || n || i
fn = hashUps (fn)

5.

Publish (f, n, sal) as the signature.6.

Given a message, a signature (f, n, sal) and a hashed pub-
lic key pubcheck:

Compute the hash value h of the mes-
sage:
h = hashAsal (message)

1.

Compute the hash value m of the mes-
sage h and the counter n:
m = hashAsal (n || h)

2.

Check that m < M.3.
Compute the m-th restricted composition
of N, using the auxiliary function:
c = composition (N, length, index=m)

4.

Check that no part in the composition is
bigger than zeta:
max (c) ≤ zeta

5.

Compute the tuples upsVer and upsSig:
upsVer = c0, c1, ..., clength−1

upsSig = zeta−c0, zeta−c1, ..., zeta−clength−1

6.

When using the inverse mode, swap the
tuples:

If type == '1/s':

upsVer, upsSig = upsSig, upsVer

7.

Iterate the hash function over each value
fn in the signature. The number of itera-

tions is given by upsVer. Each hash func-
tion is keyed with a unique number, cre-

8.

ated from the salt, a column index, and a
row index:

For n = 0, 1, ..., length − 1:

For i = 0, 1, ..., upsVern − 1:

s = sal || n || upsSign + i

fn = hashUps (fn)

Compress fn:

t = hashUpsal (f0 || f1 || ... || flength−1)

9.

Verify that t == pubcheck.10.
The signature is valid if all tests (3, 5 and
10) evaluate to True, invalid otherwise.

11.

composition

Transforms and integer m in the range 0...M−1 into a
length-restricted composition of N. The constant M is:
M = N · (length − 1)!

Where ! is the factorial function.

Given the constants N, length and an index m:

Represent the integer m as a mixed-radix
number with bases b:
b = N+length−1, N+length−2, ..., N−1
d = mixradix (m, bases=b)

1.

Create the tuple p:
p = (p0)

p0 = N + length − 1

2.

For each dn in d:

Define r:
r = d + 1
Given a counter n = 0, 1, ...

If r − pn ≤ 0, stop the counter.

Let ñ be the last value of the
counter.
Else, subtract pn from r:

r −= pn

Append (pñ − r) to p:

p = p || (pñ − r)

Assign (r − 1) at index ñ of p:
pñ = r − 1

3.

Return the tuple p as the result.4.

2.4 Verification

2.5 Auxiliary functions

4

mixradix

Given a number and a list of bases b:

Set the variable n:
n = number

1.

Create the empty tuple r:
r = ()

2.

For each blast, .., b1, b0:

Compute
e = n mod bn

n = floor (n / bn)

Append e to the tuple r:
r = r || e

3.

Return r as the result.4.

R (N, L)

The number of restricted integer compositions of N with
exactly L parts, and each part taking values in the range
0...N:

R (N, L) = (N+L−1
L−1)

Where (b
c) is the binomial coefficient.

Given the parameter L and N:

Set the variable r:
r = 1

1.

For n = 1, 2, .., L:

r = r · (N + n)

2.

Compute:
r = r / (L − 1)!

3.

Return r as the result.4.

Where ! is the factorial function.

R (N, L, z)

The number of restricted integer compositions of N with
exactly L parts, and each part taking values in the range
0...z. Given by [4]:

R (N, L, z) = ∑ L
n = 0 (-1)n · (L

n) · (N+L−1−n·(z+1)
L−1)

Where (b
c) is a non standard binomial coefficient, de-

fined as 0 (zero) for any b < 0 and b < c.

The table shows computed N, zeta values for parameter
bits=256, with different lengths and types.

length type 'v' type 'a' type 's'

20
N=90189
zeta=41972

N=91541
zeta=18786

N=120841
zeta=12105

24
N=21126
zeta=7730

N=21442
zeta=3707

N=28017
zeta=2369

28
N=7796
zeta=2316

N=7912
zeta=1183

N=9903
zeta=755

32
N=3786
zeta=962

N=3842
zeta=507

N=4613
zeta=326

40
N=1437
zeta=318

N=1458
zeta=157

N=1665
zeta=103

48
N=778
zeta=112

N=789
zeta=72

N=868
zeta=49

56
N=510
zeta=67

N=517
zeta=42

N=557
zeta=29

64
N=375
zeta=45

N=380
zeta=28

N=409
zeta=19

To evaluate the scheme, we will take into account the
cost of signing and verifying, defined as the number of
hash evaluations. The cost of verification is given by
Wver, and the cost of signing corresponds to the added

costs Wcomp and Wsig (the cost of finding a valid compo-

sition, and the cost of computing the signature from the
private key):

Wver = N

Wsig = N ⋅ (zeta − 1)

Wcomp = R(N, length) / R(N, length, zeta)

The table compares the cost of 256-bit ic signatures
with length=28 and different types.

size (bits) signing verification

ic 256 - type 'v' 7424 bits 57.1 msh 7.8 msh

ic 256 - type 'a' 7424 bits 25.2 msh 7.9 msh

ic 256 - type 's' 7424 bits 10.5 msh 9.9 msh

ic 256 - type '1/s' 7424 bits 9.4 msh 12.3 msh

wots+ 256 7424 bits 14.3 msh 14.3 msh

For reference, a msh equals 1 ms, assuming a computer

performing 1 million hash iterations per second.
The length in bits includes the size of the salt used to
randomize the hash functions.

3. Table of N, zeta constants

4. Evaluation

5

A pure python implementation of the signature scheme
is provided. The work can be found at:

http://jotasapiens.com/research1.

Current version: Hash-based signatures (ic, icvar, uwots)
version 4 (2016 Oct 24).

sha256:
754a600b4cef06d5c773440eb9ed1bc0e3ce2088273997
03ededd833a141a0fc

Leslie Lamport - Constructing Digital Signatures from
a One Way Function (1979).

1.

Ralph C. Merkle - Secrecy, Authentication, and Public
Key Systems (1979).

2.

Andreas Hülsing - On the Security of the Winternitz
One-Time Signature Scheme (2013).

3.

Morton Abramson - Restricted Combinations and
Compositions (1976).

4.

5. Source code References

6

