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Abstract: We introduce inte�er composition si�natures (ic): a hash-based family of one-time
si�natures. The family shows improvements over previous schemes like Winternitz: less
costly/shorter si�natures, verification in constant time, and tweakable parameters allowin�
optimization for either si�nin�/verifyin�. 
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In this paper we will introduce ic, a family of one-time, hash-based, di�ital si�natures.

The family shows improvements over previous hash-based schemes like wots (Winternitz one-
time si�natures). Some of the advanta�es are:

A more efficient size/cost trade-off, allowin� for si�natures of the same size with less
computational cost (fewer hash functions evaluations) or a similar cost with a si�nature of
smaller size.

Verification in constant time and si�nin� in nearly constant time.

Resistance a�ainst for�ery without the need for checksums.

Tweakable parameters, that make the si�nature tunable to a lar�e ran�e of uses:

Unlike wots, whose w parameter only leads to si�natures of various (but limited)
si�nature len�ths, the size of the si�natures can by adjusted to an arbitrary number of
output hashes L (len�th).

In addition to compression, the ic family allows for expansion to reduce the cost of si�nin�
and verifyin�.

The si�nature can be tuned for fast verification, fast si�nin�, and values in between.

1. Introduction

http://twitter.com/jotasapiens
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Winternitz One-Time Si�natures (wots)

In a wots scheme, the si�ner picks n numbers uniformly at random to create the private key v (at
the bottom of the �raph).

ma
Then, a (keyed) one-way function is iterated over each of the numbers at the bottom to compute
the public key p at the top. The one-wayness of the function ensures the values at a lower level
cannot be computed from hi�her ones.

In order to si�n, the hash of a messa�e is encoded as a list fm w-bit numbers. The parameter w
determines the compression level of the si�nature. The one-way function is iterated over the first
numbers in the private key v, a number ot times determined by fm.

Once the si�nature is published, all values at hi�her levels (those between fm and the public key)
become known. To avoid an attacker from for�in� a si�nature, a checksum of the si�nature is
needed. The checksum is computed in a similar way as the main part of the si�nature.

To verify, the iterations remainin� to reach the hi�her level are applied to the main part and the
checksum. The result is compared a�ainst the public key p.

Inte�er Composition Si�natures (ic)

An ic si�nature represents each messa�e as an inte�er composition of an inte�er N. That is, one
of the many ways an inte�er N can be written as a sum of parts, takin� into account the orderin�
of the parts. For example, the tuples (2, 2, 2, 2), (4, 2, 1, 1), (1, 2, 2, 3) and (3, 2, 1, 2) are distinct
compositions of the inte�er 8.

Similarly to wots, the parts in the composition are used to determine the number of iterations of
the one-way functions. But a difference arises: since the composition requires that their parts add
up to N (as seen in the �raph), a hi�her level in any of the parts results in a lower level in at least
another.

1.1 Concepts



An attacker can no lon�er for�e a si�nature from the values of a known messa�e without
breakin� the one-way function. This eliminates the need for a checksum, leadin� to a smaller,
faster si�nature.

The ic family of si�natures uses compositions that are len�th-restricted (with a fixed number of
parts), and alphabet-restricted, with parts takin� values from an alphabet=0, 1, 2, ..., zeta.

In the different sections of this paper, we will:

describe a method to transform the hash of a messa�e into a restricted composition, which is
equivalent to pickin� a composition uniformly at random from the set of all possible
compositions (2.3, 2.4, 2.5)..

describe the si�nature scheme based on restricted inte�er compositions. (2.2, 2.3, 2.4).

describe methods for findin� optimal constants, that minimize the number of hash
evaluations for diferrent uses (2.1).

compare various types of ic si�natures, showin� that the family can be tweaked to
outperform wots verification or si�nin� (4.).

The ic si�nature takes 3 main parameters: bits, len�th and type.

An ic si�nature with parameters (bits, len�th) is a one-time si�nature of size=len�th, capable of
si�nin� at least 2bits distinct messa�es.

Let the auxiliary function R (N, L) be the amount of all possible compositions of the inte�er N with
len�th L. (2.5)

Let the auxiliary function R (N, L, z) be the amount of all possible compositions of the inte�er N
with len�th L and a restricted alphabet=0, 1, 2, ..., z. (2.5)

2. Description of the al�orithm

2.1 Parameters and constants



Type 'v' constants

(Optimal for fast verification)

Given the parameters bits and len�th:

1. Usin� the auxiliary function R, find the smallest inte�er N that satisfies: 
R (N, len�th) >= 2bits

2. Find the smallest inte�er zeta that satisfies: 
R (N, len�th, zeta) >= 2bits

3. Return the constants (N, zeta) as the result.

Type 'a' constants

(Approximately optimal for verifyin�, while bein� faster at keys creation and si�nin�)

Given the parameters bits and len�th, and a tolerance value:

1. Find the smallest inte�er N' that satisfies: 
R (N', len�th) >= 2bits

2. Compute N: 
N = N' * (1 + tolerance / 100)

3. Find the smallest inte�er zeta that satisfies: 
R (N, len�th, zeta) >= 2bits

4. Return the constants (N, zeta) as the result.

Type 'zmin' constants

(Minimal keys creation time, at the expense of �reater si�nin� time)

Given the parameters bits and len�th:

1. Define the function n (z) as the smallest inte�er n satisfyin�: 
R (n, len�th, z) >= 2bits

2. Find the smallest inte�er zeta that satisfies: 
R (n(zeta), len�th, zeta) >= 2bits

3. Define N: 
N = n(zeta)

4. Return the constants (N, zeta) as the result.

Type 's' constants

(Optimized for fast keys creation and si�nin�)

Given the parameters bits and len�th:



1. Define the cost function W (nz, nn, nr): 
wkeys = nz * len�th 
wsi�n = nz * len�th - nn 
wcomp = R (nn, len�th) / nr 
W (nz, nn, nr) = wkeys + wsi�n + wcost

2. Define the function n (z) as the smallest inte�er n satisfyin�: 
R (n, len�th, z) >= 2bits

3. Define the function r (z) as: 
r (z) = R (n(z), len�th, z)

4. Find the smallest inte�er zeta that satisfies: 
W (zeta, n(zeta), r(zeta)) < W (zeta+1, n(zeta+1), r(zeta+1))

5. Define N: 
N = n(zeta)

6. Return the constants (N, zeta) as the result.

Type '1/s' constants

(Optimal for fast keys creation and si�nin�. Inverse mode)

Given the parameters bits and len�th:

1. Define the cost function W (nz, nn, nr): 
wkeys = nz * len�th 
w1/si�n = nn 
wcomp = R (nn, len�th) / nr 
W (nz, nn, nr) = wkeys + w1/si�n + wcomp

2. Define the function n (z) as the smallest inte�er n satisfyin�: 
R (n, len�th, z) >= 2bits

3. Define the function r (z) as: 
r (z) = R (n(z), len�th, z)

4. Find the smallest inte�er zeta that satisfies: 
W (zeta, n(zeta), r(zeta)) < W (zeta+1, n(zeta+1), r(zeta+1))

5. Define N: 
N = n(zeta)

6. Return the constants (N, zeta) as the result.

M and mbits constants

Given the parameter len�th and the constant N:

1. Set the variable r: 
r = 1

2. For n = 1, 2, .., len�th:
r *= N + n

3. Return M = r as the result.



Given M:

1. Define the output size mbits of two one-way functions hashA, hashB: 
mbits = len (binary (M - 1))

Given a one-way function hashUp with output size bits:

1. Generate the private key by pickin� numbers (with size=bits) uniformly at random: 
priv = priv0, priv1, priv2,..., privlen�th - 1  
privn = urandom (bits)

2. For each privn, apply zeta iterations of the one-way function hashUp: 
pub = pub0, pub1, pub2,..., publen�th - 1  
pubn = hashUp (privn, iterations=zeta)

3. Publish the list pub as the public key.

1. Compute the hash value h of the messa�e: 
h = hashA (messa�e)

2. Given a counter n = 0, 1, ...

Compute: 
m = hashB (n || h)
Compute the #m restricted composition of N, usin� the auxiliary function compR: 
c = compR (N, len�th, i=m)
Stop the counter when a pair (m, c) is found that satisfies: 
m < M 
max (c) <= zeta

3. Compute the list ups, as needed for si�nin�: 
ups = ups0, ups1, ..., upslen�th-1  
Where each upsn is �iven by:

If mode == normal (type='v', 'a','s' or 'zmin'): 
upsn = zeta - cn

Else, mode == inverse (type='1/s'): 
upsn = cn

4. Apply upsn iterations of the one-way function hashUp to each privn in priv: 
f = f0, f1, ..., flen�th - 1  
fn = hashUp (privn, iterations=upsn)

2.2 Keys creation

2.3 Si�nin�



5. Publish (f, n) as the si�nature.

Given a messa�e, a si�nature (f, n) and a public key pub:

1. Compute the hash value h of the messa�e: 
h = hashA (messa�e)

2. Compute the hash value m of the messa�e 
m = hashB (n || h)

3. Check that m < M.

4. Compute the #m restricted composition of N, usin� the auxiliary function compR: 
c = compR (N, len�th, i=m)

5. Check that no part in c is bi��er than zeta: 
max (c) <= zeta

6. Compute the list ups (for verification): 
ups = ups0, ups1, ..., upslen�th-1  
Where each upsn is �iven by:

If mode == normal (type='v', 'a', or 's'): 
upsn = cn

If mode == inverse (type='1/s'): 
upsn = zeta - cn

7. Apply upsn iterations of the one-way function hashUp to each fn: 
t = t0, t1, ..., tlen�th - 1  
tn = hashUp (fn, iterations=upsn)

8. Check that t == pub.

9. The si�nature is valid if all test 
(steps 3, 5 and 8) evaluate to true, invalid otherwise.

compR

(Transforms and inte�er m in the ran�e [0, M) into a len�th-restricted composition of N)

Given the constants N, len�th and an inte�er m:

2.4 Verification

2.5 Auxiliary functions



1. Represent the inte�er m as a mix-radix number with bases b: 
b = N+len�th-1, N+len�th-2, ..., N-1 
d = mixradix (m, bases=b)

2. Create the tuple p: 
p = (p0) 
p0 = N + len�th (d)

3. For each dn in d:
Define r: 
r = d + 1
Given a counter n = 0, 1, ...

If r - pn <= 0, stop the counter. Let ñ be the last value of the counter.
Else, subtract pn from r: 
r -= pn

Append (pñ - r) to p: 
p = p || (pñ - r)
Assi�n (r - 1) at index ñ of p: 
pñ = r - 1

4. Return the tuple p as the result.

mixradix

Given a number and a list of bases b:

1. Set the variable n: 
n = number

2. Create the empty tuple r: 
r = ()

3. For each blast, .., b1, b0:
Compute 
e = n mod bn 
n = floor (n / bn)
Append e to the tuple r: 
r = r || e

4. Return r as the result.

R (N, L)

R (N, L) is the number of inte�er comps of N, with len�th L and alphabet 0, 1, 2, ..., N

Given the parameter L and N:

1. Set the variable r: 
r = 1



2. For n = 1, 2, .., L:
r *= N + n

3. Compute: 
r /= factorial (L - 1)

4. Return r as the result.

R (N, L, z)

R (N, L, z) is the number of inte�er comps of N, with len�th L and alphabet 0, 1, 2, ..., z

For a �iven z, the inte�er R (N, L, z) can be computed iteratively. To do so, we will define the special
cases L=1, N=0, and a method to compute R for each L = 2, 3, ... from its previous value L-1:

R (N, 1, z) = 1 
for any value of N, z.

R (0, L, z) = 1 
for any value of L, z.

R (N, L, z) = sum R (n, L-1, z), for n = s0 ... s1 
where: 
p0 = max (0, N - z * (L- 1)) 
p1 = min (z, N) 
s0 = N - p1 
s1 = N - p0

For a �iven L, z pair, N can take values in the ran�e [0, z*L+1).

The table shows computed N, zeta values for parameter bits=256, with various len�ths and types.

3. Table of N, zeta constants



len�th type 'v' type 'a' type 's' type '1/s'

20
N=90189 
zeta=41972

N=91541 
zeta=18786

N=120841 
zeta=12105

N=109440 
zeta=12348

24
N=21126 
zeta=7730

N=21442 
zeta=3707

N=28017 
zeta=2369

N=25613 
zeta=2419

28
N=7796 
zeta=2316

N=7912 
zeta=1183

N=9903 
zeta=755

N=9316 
zeta=773

32
N=3786 
zeta=962

N=3842 
zeta=507

N=4613 
zeta=326

N=4432 
zeta=334

40
N=1437 
zeta=318

N=1458 
zeta=157

N=1665 
zeta=103

N=1621 
zeta=106

48
N=778 
zeta=112

N=789 
zeta=72

N=868 
zeta=49

N=857 
zeta=50

56
N=510 
zeta=67

N=517 
zeta=42

N=557 
zeta=29

N=549 
zeta=30

64
N=375 
zeta=45

N=380 
zeta=28

N=409 
zeta=19

N=401 
zeta=20

(bits=256)

To evaluate the scheme we will take into account the cost of si�nin� and verifyin�, �iven by the
number of hash evaluations. The cost of verification is �iven by Wver, and the cost of si�nin�
corresponds to the added costs Wcomp and Wsi�n (the cost of findin� a valid composition, and the
cost of computin� the si�nature from the private key):

Wver = N 
Wsi�n = zeta * len�th - N 
Wccomp = R (N, len�th) / R (N, len�th, zeta)

The followin� table compares the cost of keys creation for 256-bit ic si�natures with len�th=28
and various types. Costs of wots+ are shown for comparison.

4. Evaluation



len�th (bits) si�nin� verifyin�

ic (type='v') 7424 bits 57.1 msh 7.8 msh

ic (type='a') 7424 bits 25.2 msh 7.9 msh

ic (type='s') 7424 bits 10.5 msh 9.9 msh

wots+ 7424 bits 14.3 msh 14.3 msh

(bits=256)

For reference, a msh equals 1 ms, assumin� a computer performin� 1 million hash iterations per
second. The len�th in bits includes the size of a salt (or seed), used to randomize the hash
functions.

A python implementation is provided to further illustrate the ic family of si�natures. The code can
be found at:

[1] http://jotasapiens.com/

5. Source code
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