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Abstract. In this paper we study Clifford Fourier transforms (CFT)
of multivector functions taking values in Clifford’s geometric algebra,
hereby using techniques coming from Clifford analysis (the multivariate
function theory for the Dirac operator). In these CFTs on multivector
signals, the complex unit i ∈ C is replaced by a multivector square
root of −1, which may be a pseudoscalar in the simplest case. For these
integral transforms we derive an operator representation expressed as
the Hamilton operator of a harmonic oscillator.
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1. Introduction

The Clifford Fourier transform (CFT) referred to in the above abstract was
originally introduced by B. Jancewicz [24] for electro-magnetic field com-
putations in Clifford’s geometric algebra G3 = Cl(3, 0) of R3, replacing the
imaginary complex unit i ∈ C by the central unit pseudoscalar i3 ∈ G3, which
squares to minus one. This type of CFT was subsequently expanded to G2,
instead using i2 ∈ G2, and applied to image structure computations by M.
Felsberg, see e.g. [15]. Subsequently J. Ebling and G. Scheuermann [13, 14]
applied both CFTs to the study of vector fields, as they occur in physical flows
in dimensions 2 and 3. E. Hitzer and B. Mawardi [20] extended these CFTs
to general higher dimensions n = 2, 3(mod 4) and studied their properties,
including the physically uncertainty principle for multivector fields.

Independently De Bie et al [6] showed how Fourier transforms can be
generalised to Clifford algebras in arbitrary dimensions, by introducing an
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operator form for the complex Fourier transform and generalising it in the
framework of Clifford analysis. This approach relies on a particular realisation
for the Lie algebra sl(2), closely connected to the Hamilton operator of a
harmonic oscillator, which makes it possible to introduce a fractional Clifford
Fourier transform (see [4]) and to study radial deformations (see [5, 3]).

In the present paper we show how the CFT of [20] on multivector fields
in S(Rn,Gn) can be written in the form of an exponential of the Hamilton
operator of the harmonic oscillator in n dimensions and a constant phase
factor depending on the underlying dimension. The proof of this result relies
on the properties of monogenic functions of degree k and (in particular) of
Clifford-Hermite functions. The computation of an integral transformation is
thus replaced by the application of a differential operator, which has profound
physical meaning. We therefore expect our result to be valuable not only as
another way to represent and compute the CFT, but beyond its mathematical
aspect to shed new light on the closely related roles of the harmonic oscillator
and the CFT in nature, in particular in physics, and in its wide field of
technical applications.

Note that in quantum physics the Fourier transform of a wave function
is called the momentum representation, and that the multiplication of the
wave function with the exponential of the Hamilton operator multiplied with
time represents the transition between the Schrödinger- and the Heisenberg
representations [25]. The fact that the exponential of the Hamilton operator
can also produce the change from position to momentum representation in
quantum mechanics adds a very interesting facet to the picture of quantum
mechanics.

The paper is structured as follows. Section 2 introduces in a self-contained
way the notion of Clifford’s geometric algebras and the basic methods of com-
putation with vectors, multivectors (general elements of a geometric algebra)
and functions mapping vectors to multivectors. Section 3 introduces the field
of Clifford analysis (a function theory for the Dirac operator). Section 4 fi-
nally reviews the notion of CFT and derives the operator representation of
the CFTs we are looking for by exponentiating the Hamiltonian of a har-
monic oscillator, hereby using a multivector function representation in terms
of monogenic polynomials.

2. Clifford’s Geometric Algebra Gn
Let {e1, e2, . . . , en}, e2k = +1, 1 ≤ k ≤ n, denote an orthonormal basis for
the real n-dimensional Euclidean vector space Rn with n = 2, 3 (mod 4). The
geometric algebra over Rn, denoted by means of Gn= Cl(n, 0), then has the
graded 2n-dimensional basis

{1, e1, e2, . . . , en, e12, e31, e23, . . . , in = e1e2 . . . en}. (1)

The element in, i2n = −1 for n = 2, 3 (mod 4), has a special meaning, as it is
the so-called pseudo-scalar. This element of the algebra Gn will play a crucial
role in this paper (see below).
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Remark 1. The fact that we begin by introducing orthonormal bases for both
the vector space Rn and for its associated geometric algebra Gn is only be-
cause we assume readers to be familiar with these concepts. As is well-known,
the definitions of vector spaces and geometric algebras are generically basis
independent [23]. The definition of the vector derivative of section 2.1 is basis
independent, too. Only when we introduce the infinitesimal scalar volume el-
ement for integration over Rn in section 4 we do express it with the help of a
basis for the sake of computation. All results derived in this paper are there-
fore manifestly invariant (independent of the choice of coordinate systems).

The squares of vectors are positive definite scalars (Euclidean metric) and so
are all even powers of vectors:

x2 ≥ 0 ⇒ xm ≥ 0 for m = 2m′ (m′ ∈ N) .

Therefore, given a multivector M ∈ Gn one has:

xmM = M xm for m = 2m′ (m′ ∈ N) . (2)

Note that for n = 2, 3 (mod 4) one has that

i2n = −1, i−1n = −in, imn = (−1)
m
2 for m = 2m′ (m′ ∈ Z) . (3)

similar to the complex imaginary unit. The grade selector (essentially a pro-
jection operator on a subspace of the geometric algebra) is defined as 〈M〉k
for the k-vector part of M ∈ Gn, especially 〈M〉 = 〈M〉0. This means that
each M can be expressed as the sum of all its grade parts:

M = 〈M〉+ 〈M〉1 + 〈M〉2 + . . .+ 〈M〉n. (4)

The reverse of M ∈ Gn is defined by the anti-automorphism

M̃ =

n∑
k=0

(−1)
k(k−1)

2 〈M〉k. (5)

The square norm of M is defined by

‖M‖2 = 〈MM̃〉 , (6)

which can also be expressed as M ∗ M̃ , in terms of the real-valued (scalar)
inner product

M ∗ Ñ := 〈MÑ〉 . (7)

Remark 2. For vectors a, b ∈ Rn ⊂ Gn the inner product is identical with the
scalar product (7),

a · b = a ∗ b̃ = a ∗ b .

As a consequence we obtain the multivector Cauchy-Schwarz inequality

|〈MÑ〉|2 ≤ ‖M‖2 ‖N‖2 ∀ M,N ∈ Gn. (8)
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2.1. Multivector Functions and Vector Derivatives

Let f = f(x) be a multivector-valued function of a vector variable x in Rn.
For an arbitrary vector a ∈ Rn we then define1 the vector differential in the
a direction as

a · ∇f(x) = lim
ε→0

f(x + εa)− f(x)

ε
provided this limit exists and is well defined.

Remark 3. For all a ∈ Rn, the operator a · ∇ is a scalar operator, which
means that the left and right vector differentials2 coincide, i.e.

a · ∇̇ḟ(x) = ḟ(x) a · ∇̇. (9)

The basis independent vector derivative ∇ is defined in [18, 19, 23] to have
the algebraic properties3 of a grade one vector in Rn and to obey equation
(2.1) for all vectors a ∈ Rn. This allows the following explicit representation.

Remark 4. The vector derivative ∇ can be expanded in a basis of Rn as

∇ =

n∑
k=1

ek∂k with ∂k =
∂

∂xk
, 1 ≤ k ≤ n. (10)

We then list a few basic properties:

Proposition 2.1 (Left and right linearity).

∇(f + g) = ∇f +∇g , (f + g)∇ = f∇+ g∇ . (11)

Proposition 2.2. For f(x) = g(λ(x)), λ(x) ∈ R,

a · ∇f = f a · ∇ = {a · ∇λ(x)}∂g
∂λ

. (12)

Proposition 2.3 (Left and right derivative from differential).

∇f = ∇a (a · ∇f), ḟ∇̇ = (ȧ · ∇f)∇̇a . (13)

Remark 5. Whenever there is not danger of ambiguity, the overdots in (13)
may also be omitted.

1Bracket convention: A ·BC = (A ·B)C 6= A ·(BC) and A∧BC = (A∧B)C 6= A∧(BC) for
multivectors A,B,C ∈ Gn. The vector variable index x of the vector derivative is dropped:

∇x = ∇ and a · ∇x = a · ∇, but not when differentiating with respect to a different
vector variable (compare e.g. proposition 2.3).
2The point symbols specify on which function the vector derivative is supposed to act.

In this way the algebraic non-commutativity of Clifford algebra element multiplication is
properly taken into account even for operators expressed in this algebra. Conventionally

an operator applies to everything on its right, but the overdot notation can also show
application to functions on the left side of an operator. Since algebraically scalars commute
with all multivectors, the scalar character of the operator a ·∇ then ensures that the right

side of (9) is identical to the left side.
3In particular see e.g. Proposition 18 of [18]. Based on these properties the full meaning
of Propositions 2.3 and 2.4 in the current paper can be understood.
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Proposition 2.4 (Left and right product rules).

∇(fg) = (∇̇ḟ)g + ∇̇fġ = (∇̇ḟ)g +∇a f(a · ∇g) . (14)

(fg)∇ = f(ġ∇̇) + ḟg∇̇ = f(ġ∇̇) + (ȧ · ∇f) g ∇̇a . (15)

Note that the multivector functions f and g in equations (14) and (15) do
not necessarily commute.

Differentiating twice with the vector derivative, we get the differential Laplace
operator ∇2. We can always write ∇2 = ∇ · ∇ + ∇ ∧ ∇, but for integrable
functions one has that ∇∧∇ = 0, which then leads to ∇2 = ∇·∇. As ∇2 is a
scalar operator, the left and right Laplace derivatives agree, i.e. ∇2f = f ∇2.
More generally, all even powers of the left and right vector derivative agree:
∇mf = f ∇m for m = 2m′ (m′ ∈ N).

3. Clifford analysis

The function theory for the operator ∇, often denoted by means of ∂x in
the literature (and referred to as the Dirac operator), is known as Clifford
analysis. This is a multivariate function theory, which can be described as a
higher-dimensional version of complex analysis or a refinement of harmonic
analysis on Rn. The latter is a simple consequence of the fact that ∇2 yields
the Laplace operator, the former refers to the fact that the functions on which
∇ acts take their values in the geometric algebra Gn, which then generalises
the algebra C of complex numbers.

Remark 6. Note that in classical Clifford analysis, for which we refer to e.g.
[7, 12, 16, 17], one usually works with the geometric algebra (also known as
a Clifford algebra) of signature (0, n), which obviously lies closer to the idea
of having complex units (n non-commuting complex units e2j = −1, to be
precise). However, in this paper we have chosen to work with the geometric
algebra Gn associated to the Euclidean signature (n, 0) to stay closer to the
situation as it is used in physics. It is important to add that this has little
influence on the final conclusions, as most of the results in Clifford analysis
(in particular the ones we need in this paper) can be formulated independent
of the signature.

Clifford analysis can then essentially be described as the function theory for
the Dirac operator, in which properties of functions f(x) ∈ ker∇ are studied.
In this section, we will list a few properties. For the main part, we refer to the
aforementioned references, or the excellent overview paper [11]. An important
definition, in which the analogues of holomorphic powers zk are introduced,
is the following:

Definition 3.1. For all integers k ≥ 0, the vector spaceMk(Rn,Gn) is defined
by means of

Mk(Rn,Gn) := Polk(Rn,Gn) ∩ ker∇ .

This is the vector space of k-homogeneous monogenics on Rn, containing
polynomial null solutions for the Dirac operator.
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As the Dirac operator ∇ is surjective on polynomials, see e.g. [12], one easily
finds for all k ≥ 1 that

dk := dimMk(Rn,Gn) = 2n
(
n+ k − 2

k

)
.

It is trivial to see that d0 = dimGn. In view of the fact that the operator ∇
factorises the Laplace operator, null solutions of which are called harmonics, it
is obvious that each monogenic polynomial is also harmonic. Indeed, denoting
the space of k-homogeneous (Gn-valued) harmonic polynomials by means of
Hk(Rn,Gn), one has for all k ∈ N that

Mk(Rn,Gn) ⊂ Hk(Rn,Gn) .

As ∇2 is a scalar operator, one can even decompose monogenic polynomials
into harmonic ones (using the basis for Gn):

Mk(x) =
∑
A

eAM
(A)
k (x) ⇒ ∇2M

(A)
k (x) = 0 . (16)

This will turn out to be an important property, since we will use a crucial
algebraic characterisation of the space of real-valued harmonic polynomials
in the next section. Another crucial decomposition, which will then be used
in the next section, is the so-called Fischer decomposition for Gn-valued poly-
nomials on Rn (see e.g. [12] for a proof):

Theorem 3.2. For any k ∈ N, the space Pk(Rn,Gn) decomposes into a direct
sum of monogenic polynomials:

Pk(Rn,Gn) =

k⊕
j=0

xjMk−j(Rn,Gn) . (17)

We will often rely on the fact that the operator ∇ and the one-vector x ∈ Gn
(considered as a multiplication operator, acting on Gn-valued functions) span
the Lie superalgebra osp(1, 2), which appears as a Howe dual partner for the
spin group (see [8] for more details). This translates itself into a collection
of operator identities, and we hereby list the most crucial ones for what
follows. Note that Ex :=

∑
j xj∂xj denotes the Euler operator on Rm, and

{A,B} = AB +BA (resp. [A,B] = AB −BA) denotes the anti-commutator
(resp. the commutator) of two operators A and B:

{x,∇} = 2
(
Ex + n

2

)
[∇2, ||x||2] = 4

(
Ex + n

2

)
{x,x} = 2||x||2 [∇, ||x||2] = 2x
{∇,∇} = 2∇2 [∇2,x] = 2∇

In particular, there also exists an operator which anti-commutes with the
generators x and ∇ of osp(1, 2), see [1]. This operator, which is known as the
Scasimir operator in abstract representation theory (it factorises the Casimir
operator), is related to the Gamma operator from Clifford analysis. To define
this latter operator, we need a polar decomposition of the Dirac operator.
Due to the change of signature, mentioned in the remark above, we will find
a Gamma operator which differs from the one obtained in e.g. [12] by an
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overall minus sign. In order to retain the most important properties of this
operator, we will therefore introduce a new notation Γ∇, for the operator
defined below4:

x∇ = Ex + Γ∇ :=

n∑
j=1

xj∂xj +
∑
i<j

eij(xi∂xj − xj∂xi) . (18)

Remark 7. Note that the operators dHx
ij := xi∂xj − xj∂xi appearing in the

definition for the Gamma operator are known as the angular momentum op-
erators. For n = 3, they are denoted by means of (Lx, Ly, Lz) and appear in
quantum mechanics as the generators of the Lie algebra so(3). In the next
section, we will need the higher-dimensional analogue.

Definition 3.3. The Scasimir operator is defined by means of

Sc :=
1

2
[x,∇] +

1

2
= Γ∇ −

n− 1

2
. (19)

This operator satisfies {Sc,x} = 0 = {Sc,∇} = 0, which can easily be
verified (although this is superfluous, as the operator is specifically designed
to satisfy these two conditions, see [1]). For example, one has that

{Sc,x} =
1

2
{[x,∇] + 1,x} =

1

2
[x,∇]x +

1

2
x[x,∇] + x = 0 ,

hereby using that [x2,∇] = −2x (see the relations above). Note also that
the spaces Mk(Rn,Gn) are eigenspaces for the Gamma operator Γ∇, which
follows from the polar decomposition (18):

Γ∇
(
Mk(x)

)
= −kMk(x)

(
∀Mk(x) ∈Mk(Rn,Gn)

)
.

As a result, one also has that

Sc
(
Mk(x)

)
= −

(
k +

n− 1

2

)
Mk(x)

(
∀Mk(x) ∈Mk(Rn,Gn)

)
. (20)

In the next section, we will also need the following:

Lemma 3.4. If f(r) = f(||x||) denotes a scalar radial function on Rn, one
has for all Mk(x) ∈Mk(Rn,Gn) that

Sc
[
Mk(x)f(r)

]
= −

(
k +

n− 1

2

)
Mk(x)f(r) .

Proof. This follows from the fact that

Sc
[
Mk(x)f(r)

]
=

(
Γ∇ −

n− 1

2

)[
Mk(x)f(r)

]
= [Γ∇Mk(x)]f(r)− n− 1

2
Mk(x)f(r)

=−
(
k +

n− 1

2

)
Mk(x)f(r) .

We hereby used the fact that Γ∇[f(r)] = 0, which follows from dHx
ij(r) = 0

for all i < j. �

4One simply has that Γ∇ = −Γ.
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4. The Clifford Fourier Transform

Let us recall the following definition, for which we refer to [20]:

Definition 4.1.
The Clifford Fourier Transform (CFT) of a function f(x) : Rn → Gn, with
n = 2, 3 (mod 4), is the function

F{f} : Rn → Gn

ω 7→ F{f}(ω) :=
1

(2π)
n
2

∫
Rn
f(x)e−inω·xdnx ,

where x,ω ∈ Rn and dnx = (dx1e1∧dx2e2∧· · ·∧dxnen)i−1n . Also note that
in the formula above we have added the factor (2π)−

n
2 , which will simplify

our expression for the Gaussian eigenfunction (see below).

For a complete list of the properties5 of this integral transform, which acts
on Gn-valued functions, we refer to Table 1 (see [20]).

Table 1. Properties of the Clifford Fourier transform
(CFT) of Definition 4.1 with n = 2, 3 (mod 4). Multivector
functions f, g, f1, f2 all belong to L2(Rn,Gn), the constants
are α, β ∈ Gn, 0 6= a ∈ R, a,ω0 ∈ Rn and m ∈ N.

Property Multiv. Funct. CFT
Left lin. αf(x)+β g(x) αF{f}(ω)+ βF{g}(ω)
x-Shift f(x− a) F{f}(ω) e−inω·a

ω-Shift f(x) einω0·x F{f}(ω − ω0)
Scaling f(ax) 1

|a|nF{f}(
ω
a )

Vec. diff. (a · ∇)mf(x) (a · ω)mF{f}(ω) imn
(a · x)m f(x) (a · ∇ω)m F{f}(ω) imn

Powers of x xmf(x) ∇mω F{f}(ω) imn
Vec. deriv. ∇mf(x) ωm F{f}(ω) imn

Plancherel
∫
Rn f1(x)f̃2(x) dnx 1

(2π)n

∫
Rn F{f1}(ω) ˜F{f2}(ω) dnω

sc. Parseval
∫
Rn ‖f(x)‖2 dnx 1

(2π)n

∫
Rn ‖F{f}(ω)‖2 dnω

However, in the present paper, the following properties will play a crucial
role:

Proposition 4.2.
For functions f(x) : Rn → Gn, the CFT satisfies the following:

(i) powers of x from the left:

F{xmf}(ω) = ∇mωF{f}(ω)imn , m ∈ N .

5Note that Theorem 4.33 in [20] also states the CFTs of the Clifford convolution. In the

case of n = 3 (mod 4) it is simply the product of the CFTs of the two factor functions. In
the case of n = 2 (mod 4) the second factor function is split into even and odd grades, and

the sign of the frequency argument of the CFT of the first factor function is reversed when
multiplied with the CFT of the odd grade part of the second factor function.
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(ii) powers of a · x:

F{(a · x)mf}(ω) = (a · ∇ω)mF{f}(ω)imn , m ∈ N .

(iii) vector derivatives from the left:

F{∇mx f}(ω) = ωmF{f}(ω)imn , m ∈ N .

(iv) directional derivatives:

F{(a · ∇x)mf}(ω) = (a · ω)mF{f}(ω)imn , m ∈ N .

In order to obtain an operator exponential expression for the CFT from
above, see definition 4.1, we need to construct a family of eigenfunctions which
then moreover serves as a basis for the function space S(Rn,Gn) of rapidly
decreasing test functions taking values in Gn. In other words the operator
exponential expression acts on functions in the very same was as the Clifford-
Fourier transform does. For this we use an expansion into eigenfunctions
which form an orthonormal basis of S(Rn,Gn). To do so, we need a series of
results:

Proposition 4.3.
The Gaussian function G(x) := exp(− 1

2x
2) = exp(− 1

2 ||x||
2) on Rn defines

an eigenfunction for the CFT:

F{G(x)}(ω) :=
1

(2π)
n
2

∫
Rn

exp(−1

2
x2)e−inω·xdnx = G(ω) .

Proof. This follows from a similar property in [20], taking the rescaling factor
(2π)−

n
2 into account. �

Next, we prove that the Gaussian G(x) may be multiplied with arbitrary
monogenic polynomials: this will still yield an eigenfunction for F . In order
to prove this, we recall formula (16):

Mk(x) ∈ Pk(Rn,Gn) ∩ ker∇ =⇒ Mk(x) =
∑
A

eAM
(A)
k (x) , (21)

with each M
(A)
k (x) ∈ Hk(Rn,R) a real-valued harmonic polynomial on Rn.

This allows us to focus our attention on harmonic polynomials. As is well-
known, the vector space Hk(Rn,C) of k-homogeneous harmonic polynomials
in n real variables defines an irreducible module for the special orthogonal
group SO(n) or its Lie algebra so(n). This algebra is spanned by the

(
n
2

)
angular momentum operators

dHx
ij := xi(ej · ∇)− xj(ei · ∇) = xi∂xj − xj∂xi (1 ≤ i < j ≤ n),

see remark 7. It then follows from general Lie theoretical considerations that
the vector space Hk(Rn,C) is generated by the repeated action of the neg-
ative root vectors in so(m) acting on a unique highest weight vector. For
the representation space Hk(Rn,C), this highest weight vector is given by
hk(x) := (x1− ix2)k, see e.g. [10, 16]. Without going into too much detail, it
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suffices to understand that this implies that arbitrary elements in Hk(Rn,C)
can always be written as

Hk(x) = L(dHx
ij)hk(x) ,

where L(dHx
ij) denotes some linear combination6 of products of the angular

momentum operators dHx
ij . Note that the presence of the complex number

field in the argument above has no influence on the fact that we are working
with functions taking values in the real algebra Gn in this paper: it suffices
to focus on the real (or pure imaginary) part afterwards.

Theorem 4.4.
Given an arbitrary element Mk(x) ∈Mk(Rn,Gn), one has:

F{Mk(x)G(x)}(ω) = Mk(ω)G(ω)(−in)k .

Proof. In view of the decomposition (21), we have that

F{Mk(x)G(x)}(ω) =
∑
A

eAF{M (A)
k (x)G(x)}(ω) .

If we then write each scalar component M
(A)
k (x) as a linear combination of

the form

M
(A)
k (x) = L(A)(dHx

ij)hk(x) ,

we are clearly left with the analysis of terms of the following type (with
1 ≤ i < j ≤ n arbitrary):

F{L(A)(dHx
ij)(x1 − ix2)kG(x)}(ω) .

Without loosing generality, we can focus our attention on a single operator
dHx

ij , since any L(A)(dHx
ij) can always be written as a sum of products of

these operators. Invoking properties from proposition 4.2, it is clear that

F{dHx
ijhkG}(ω) = F

{
(xi(ej · ∇x)− xj(ei · ∇x))hkG

}
(ω)

= (ωj(ei · ∇ω)− ωi(ej · ∇ω))F
{
hkG

}
(ω)i2n

= dHω
ijF
{
hkG

}
(ω) ,

where dHω
ij denotes the angular momentum operator in the variable ω ∈ Rn.

Next, invoking the same proposition, we also have that

F
{
hkG

}
(ω) = F

{
(x1 − ix2)kG

}
(ω)

=
(
(e1 · ∇ω)− i(e2 · ∇ω)

)kF{G}(ω)ikn

=
(
(e1 · ∇ω)− i(e2 · ∇ω)

)k
G(ω)ikn .

It then suffices to note that(
(e1 · ∇ω)− i(e2 · ∇ω)

)k
exp(−1

2
||ω||2) = (−ω1 + iω2)k exp(−1

2
||ω||2)

6In a sense, each combination L(dHx
ij) can be seen as some sort of non-commutative

polynomial (the factors dHx
ij do not commute).
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to arrive at F
{
hkG

}
(ω) = (−1)khk(ω)G(ω)ikn. Together with what was

found above, this then proves the theorem. �

Remark 8. There exist alternative ways to prove the fact that harmonic poly-
nomials times a Gaussian kernel define eigenfunctions for the Fourier trans-
form, see e.g. the seminal work [26] by Stein and Weiss, but to our best
knowledge the proof above has not appeared in the literature yet.

In order to arrive at a basis of eigenfunctions for the space S(Rn,Gn), we
need more eigenfunctions for the CFT. For that purpose, we introduce the
following definition (recall that we have defined dk in the previous section).

Definition 4.5.
For a given monogenic polynomial M

(b)
k (x) ∈ Mk(Rn,Gn), where the index

b ∈ {1, 2, . . . , dk} is used to label a basis for the vector space of monogenics
of degree k, we define the Clifford-Hermite eigenfunctions as

ϕa,b;k(x) := (∇− x)aM
(b)
k (x)G(x) .

Hereby, the index a ≥ 0 denotes an arbitrary non-negative integer.

Theorem 4.6.
For all indices (a, b; k) ∈ N× {1, . . . , dk} × N, one has that

F{ϕa,b;k}(ω) = ϕa,b;k(ω)(−in)a+k .

Proof. This can again be proved using proposition 4.2. Indeed, we clearly
have that

F{ϕa,b;k}(ω) = F{(∇x − x)aM
(b)
k (x)G(x)}(ω)

= (ω −∇ω)aF{M (b)
k (x)G(x)}(ω)ian

= (∇ω − ω)aM
(b)
k (ω)G(ω)(−in)k(−in)a

= ϕa,b;k(ω)(−in)a+k ,

where we have made use of theorem 4.4. �

Before we come to an exponential operator form for the CFT, we prove a few
additional results:

Lemma 4.7.
For all indices (a, b; k) ∈ N× {1, . . . , dk} × N, one has:

(∇+ x)ϕ2a,b;k(x) = −4aϕ2a−1,b;k(x)

(∇+ x)ϕ2a+1,b;k(x) = −2(n+ 2k + 2a)ϕ2a,b;k(x) .

Proof. This lemma can easily be proved by induction on the parameter a ∈ N,
hereby taking into account that

[∇+ x,∇− x] = 2[x,∇] = 4Sc− 2 ,
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with Sc ∈ osp(1, 2) the Scasimir operator defined in (19). Indeed, for a = 0
we immediately get that

(∇+ x)ϕ0,b;k = ∇̇G(ẋ)M
(b)
k (x) + xϕ0,b;k

= − xG(x)M
(b)
k (x) + xϕ0,b;k = 0 .

For a = 1, we get that

(∇+ x)ϕ1,b;k =
(
(∇− x)(∇+ x) + 2(2Sc− 1)

)
ϕ0,b;k

= − 2(n+ 2k)ϕ0,b;k .

Here we have used the fact (20) that monogenic homogeneous polynomials
are eigenfunctions for the Scasimir operator, together with lemma 3.4. Let
us then for example consider a general odd index 2a+ 1 (the case of an even
index 2a is completely similar):

(∇+ x)ϕ2a+1,b;k =
(
(∇− x)(∇+ x) + 2(2Sc− 1)

)
ϕ2a,b;k

= − 4a(∇− x)ϕ2a−1,b;k + 2(∇− x)2a(2Sc− 1)ϕ0,b;k

= − 2(2a+ n+ 2k)ϕ2a,b;k .

Here, we have used the induction hypothesis and the fact that the operator
Sc commutes with an even power (∇ − x), as it anti-commutes with each
individual factor. �

This lemma will now be used to construct another operator, for which our
Clifford-Hermite functions from definition 4.5 are again eigenfunctions.

Theorem 4.8.
For all indices (a, b; k) ∈ N× {1, . . . , dk} × N, one has:

(∇2 − x2)ϕa,b;k(x) = −(n+ 2a+ 2k)ϕa,b;k(x) .

Proof. First of all, we note that

(∇+ x)(∇− x) = ∇2 − x2 + [x,∇] ,

from which we note that the operator appearing in the theorem can also be
written as

∇2 − x2 = (∇+ x)(∇− x)− (2Sc− 1) .

Using lemma 4.7 and properties of the Scasimir operator, we get:

(∇2 − x2)ϕ2a,b;k =
(
(∇+ x)(∇− x)− (2Sc− 1)

)
ϕ2a,b;k

= (∇+ x)ϕ2a+1,b;k − (∇− x)2a(2Sc− 1)ϕ0,b;k

= − 2(n+ 2k + 2a)ϕ2a,b;k + (n+ 2k)ϕ2a,b;k

= − (n+ 2k + 4a)ϕ2a,b;k
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for the case of an even index 2a, and

(∇2 − x2)ϕ2a+1,b;k =
(
(∇+ x)(∇− x)− (2Sc− 1)

)
ϕ2a+1,b;k

= (∇+ x)ϕ2a+2,b;k + (∇− x)2a+1(2Sc+ 1)ϕ0,b;k

= − 2(2a+ 2)ϕ2a+1,b;k − (n+ 2k − 2)ϕ2a+1,b;k

= − (n+ 2k + 4a+ 2)ϕ2a+1,b;k

for odd indices 2a+ 1. Together, this proves the theorem. �

In order to compare the eigenvalues of the Clifford-Hermite functions as eigen-
functions for the CFT and the operator from the theorem above (which is
nothing but the Hamiltonian of the harmonic oscillator), we mention the
following remarkable property:

ϕa,b;k(ẋ)e−
π
4 (x2−∇̇2−n)in =

∞∑
j=0

1

j!
(x2 −∇2 − n)jϕa,b;k(x)

(
−π

4
in

)j
= ϕa,b;k(x)

∞∑
j=0

1

j!

(
−(a+ k)

π

2
in

)j
= ϕa,b;k(x)(−in)a+k . (22)

In the first line above, we have used the Hestenes’ overdot notation, to stress
the fact that the operator acts on x from the right. This is due to the fact that
the pseudoscalar in does not necessarily commute with the Clifford-Hermite
eigenfunction.

It thus suffices to prove that these eigenfunctions provide a basis for the
function space S(Rn,Gn)7 in order to arrive at the main result of our paper,
which is the exponential operator form for the CFT.

Proposition 4.9.
The space S(Rn,Gn) is spanned by the countable basis

B :=
{
ϕa,b;k(x) : (a, b; k) ∈ N× {1, . . . , dk} × N

}
.

Proof. In order to prove this, it suffices to show that we can express arbitrary
elements of P(Rn,Gn)⊗G(x) as a linear combination of the Clifford-Hermite
eigenfunctions. To do so, we can use the fact that we know the structure of
the space of Gn-valued polynomials in terms of the Fischer decomposition,
see (17). It thus suffices to note that

(∇− x)aM
(b)
k (x)G(x) = (−2)axaM

(b)
k (x)G(x) + L.O.T. ,

where L.O.T. = lower order terms, i.e. it refers to lower powers in x times the

product of M
(b)
k (x) and the Gaussian function. For a ∈ {0, 1}, this is trivial,

7More recisely: for a dense subspace thereof.
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as we for example have that

(∇− x)M
(b)
k (x)G(x) = − xM

(b)
k (x)G(x) + ∇̇G(ẋ)M

(b)
k (x)

= − 2xM
(b)
k (x)G(x) ,

and the rest follows from an easy induction argument. In case of an odd index
2a+ 1 for example, the induction hypothesis gives:

(∇− x)2a+1M
(b)
k (x)G(x) = (∇− x)

(
4ax2aM

(b)
k (x)G(x) + L.O.T.

)
,

where the first power in x appearing in L.O.T. is equal to (2a − 2). This is
due to the fact that the operator (∇− x) can only raise by one, either from
the multiplication by x or the action of ∇ on G(x), or lower by one, which
comes from the action of ∇ on a power in x. Using the relation

∇xx = x∇x − (2Sc− 1) ,

it is then easily seen that we indeed arrive at the constant (−2)2a+1 for the
leading term in x. As all the leading terms are different, it follows that any

function of the form xaM
(b)
k (x)G(x) can indeed be expressed as a unique

linear combination of the Clifford-Hermite eigenfunctions. �

Bringing everything together, we have obtained from theorem 4.6, equation
(22), and proposition 4.9, the following final result:

Theorem 4.10. CFT as exponential operator
The Clifford Fourier transform F{f} : Rn → Gn, as an operator on the
function space S(Rn,Gn), can be defined by means of

F{f}(ω) = f(ω̇)e−
π
4 (ω2−∇̇2

ω−n)in . (23)

In other words, the CFT can be written as an exponential operator acting
from the right, involving the Hamiltonian operator ω2−∇̇2

ω, for the harmonic

oscillator, and a phase factor e
nπ
4 in which reduces to (i3 − 1)/

√
2 for n = 3

and to i2 for n = 2.

Acknowledgment

One of the authors (D. Eelbode) would like to express his gratitude to E.
Hitzer for the kind hospitality during his stay at the ICU Tokyo, where this
paper was conceived. The author (E. Hitzer) would like to acknowledge God:
Soli Deo Gloria, and to strongly encourage readers to abide with the Creative
Peace License [21], when further applying the results of the current research.

References

[1] A. Arnaudon, M. Bauer, L. Frappat, On Casimir’s Ghost, Commun. Math.
Phys. 187, pp. 429–439 (1997).

[2] F. Brackx, E. Hitzer, S. Sangwine, History of Quaternion and Clifford-Fourier
Transforms and Wavelets, In E. Hitzer, S. Sangwine (eds.), Quaternion and
Clifford-Fourier Transforms and Wavelets, Trends in Mathematics, pp. xi–
xxvii, Springer, Berlin, 2013.



Operator exponentials for the CFT 15

[3] H. De Bie, The kernel of the radially deformed Fourier transform, Integral
Transforms Spec. Funct. 24(12), pp. 1000–1008 (2013).

[4] H. De Bie and N. De Schepper, The fractional Clifford-Fourier transform, Com-
plex Anal. Oper. Th. 6, pp. 1047–1067 (2012).

[5] H. De Bie, B. Orsted, P. Somberg and V. Souček, The Clifford deformation of
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