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This manuscript encompasses our published and unpublished topological results in physics.
Topology, the mathematical branch that assesses objects and their properties preserved through
deformations, stretching and twisting, allows the investigation of the most general physical systems
features.  In particular,  the Borsuk-Ulam Theorem (BUT) states that,  if  a single point projects to a
higher spatial dimension, it gives rise to two antipodal points with matching description.  Physical
counterparts of BUT and its variants allow an inquiry of physical problems.   The opportunity to treat
systems as topological structures makes BUT a universal principle underlying natural phenomena.
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THE BORSUK-ULAM THEOREM: AN UNIVERSAL PRINCIPLE FOR
PHYSICAL SYSTEMS

The Borsuk-Ulam Theorem (BUT) states that a single point, if embedded in one spatial dimension higher, gives rise to
two antipodal points with matching descriptions and similar features.  Novel BUT variants allow the assessment of
countless physical systems, from entropies to quantum entanglement.  We argue that BUT, cast in a quantitative fashion
which has the potential of being operationalized, is a universal principle underlying a number of natural phenomena.

Topology, which assesses the properties that are preserved through deformations, stretchings and twistings of objects
(Manetti; Krantz), is a underrated methodological approach with countless possible applications.  In particular, we show
that novel incarnations of the “classical” Borsuk-Ulam theorem (BUT) lead to a better comprehension and assessment of
several physical phenomena. BUT and its variants provide indeed a topological methodology for the evaluation of the
most general features of systems activity, cast in an empirical fashion that has the potential to be operationalized.

The “standard” version of the Borsuk-Ulam theorem (BUT).   The  notation nS  denotes  an  n-sphere,  which  is  a
generalization of the circle (Weeks).  A n-sphere is a n-dimensional structure of constant, positive curvature, embedded
in a n+1 space (Marsaglia; Henderson).  For example, a 1-sphere (S1) is the one-dimensional circumference surrounding
a 2-dimensional disk, while a 2-sphere (S2) is the 2-dimensional surface of a 3-dimensional ball (a beach ball is a good
example).  A 3-sphere is a 3-dimensional manifold which is enclosed in a Euclidean 4-dimensional space called a 4-ball.
A 3-sphere is thus the surface of a 4-dimensional ball, while a 4-dimensional ball is the interior of a 3-sphere, in the same
way as  a  bottle  of  water  is  made of  a  glass  surface  and a  liquid  content.   The  Borsuk-Ulam Theorem (Borsuk 1933;
Dodson) states that, if a sphere Sn is mapped continuously into a n-dimensional Euclidean space Rn, there is at least one
pair of antipodal points on Sn which  map onto  the  same point  of  Rn (Beyer) (Figure A).   Points  on  Sn are antipodal,
provided they are diametrically opposite.  Examples of antipodal points are the opposite points along the circumference
of a circle, or the poles of a sphere (Matousek). The SUPPLEMENTARY INFORMATION 1 provides a mathematical
treatment for technical readers.

Matching signals (Signal-BUT).  The concept of antipodal points can be generalized to countless types of systems’
signals (Borsuk 1958-59; Borsuk 1969).  They can be used not just for the description of simple topological points, but
also of more complicated structures, such as shapes of space (spatial patterns), of shapes of time (temporal patterns),
vectors or tensors, functions, signals, thermodynamical parameters, movements, trajectories and general symmetries
(Peters 2016) (SUPPLEMENTARY INFORMATION 2).   If we simply evaluate systems activity instead of “signals”,
BUT leads naturally to the possibility of a region-based, not simply point-based, geometry, with many applications.  A
region can have indeed features such as area, diameter, average signal value, and so on.  We are thus allowed to describe
systems features as antipodal points on a n-sphere.  If we map the two points on a n-1 –sphere, we obtain a single point.
This means that signal shapes can be compared (Weeks; Peters 2016): the two antipodal points standing for systems
features are assessed at one level of observation, while the single point at a lower level (Tozzi 2016a).

BUT for non-antipodal points (Re-BUT). The BUT can be generalized not just for the evaluation of antipodal, but also
of non-antipodal points on an n-sphere (Figure B).  We can consider regions on an n-sphere that are either adjacent or far
apart (Tozzi 2016a).  And ReBUT applies, provided there are a pair of regions on n-sphere with the same feature value.
Therefore, the two points (or regions) do not need necessarily to be antipodal, in order to be described together (Peters
2016).  This makes it possible to evaluate matching signals, even if they are not “opposite”, but “near” each other: the
antipodal points restriction from the “standard” BUT is no longer needed.

Generalization of BUT to antipodal points occurring on hyperbolic manifolds (Hyper-BUT). The original
formulation of BUT describes antipodal points on spatial manifolds in every dimension, provided the n-sphere is a convex
structure with positive curvature (i.e, a ball).  However, many natural phenomena occur on manifolds endowed with other
types of geometry.  BUT can be generalized also to symmetries occurring either on flat manifolds, or on Riemannian
hyperbolic n-manifolds of constant sectional curvature -1 and concave shape (i.e, a saddle) (Mitroi-Symeonidis). In other
words, whether the systems function displays a concave, convex or flat structure, it does not matter: we may always find
the points with matching description predicted by BUT.  For further details, see Tozzi (2016a).
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Changes in the n value of Sn spheres (Sn-BUT). Although BUT was originally described just in case of n being a natural
number which expresses a structure embedded in a spatial dimension, nevertheless the value of n can stand for other types
of numbers.  The n value of Sn can be also cast as an integer, a rational or an irrational number (Tozzi 2016).  The n value
could express completely different parameters: for example, we might regard functions or shapes as embedded in a sphere
in which n does not stand for a spatial dimension, but for the time or a fractal dimension. This makes it possible to use
the n parameter as a versatile tool for the description of systems features.

Systems’ symmetry breaking (Sym-BUT).  Symmetries are widespread invariances underlining countless physical
systems (Weyl).  A symmetry break occurs when the symmetry is present at one level of observation, but “hidden” at
another level (Roldàn).  BUT tells us that symmetries can be found when evaluating the system in a proper dimension,
while they disappear (are hidden or broken) when we evaluate the same system in just one dimension lower.   The
symmetries are widespread at every level of organization and may be regarded as the most general feature of systems,
perhaps more general than free-energy and entropy constraints too (Tozzi 2016).  Thus, giving insights into symmetries
provides a very general approach to every kind of systems function.

BUT without euclidean spaces (No-R-BUT). A Sn manifold can also not map to a Rn-1 Euclidean space, but straight to
a Sn-1 manifold.  In other words, in this BUT formulation the Euclidean space is not mentioned.  In many applications (for
example, in fractal systems), we do not need the Euclidean manifold (the ball) at all: by an intrinsic, “internal” point of
view, a manifold may exist in - and on – itself, and does not need to lie in any dimensional space (Weeks).  Therefore,
we do not need a Sn manifold curving into a dimensional space Rn: we may think that the manifold just does exist by
itself.  Without the BUT limitation of the Euclidean space, we are allowed to modify the Sn exponent such that it can be
not just a natural number, but also other kinds of numbers, as already described above for the Sn-BUT.  Another important
consequence is that a n-sphere may map on itself: the projection of two antipodal points to a single point into a dimension
lower can be internal to the same n-sphere.

BUT’s four versatile ingredients (summarized in the Table) can be modified in different guises, in order to achieve a
wide range of uses.  To make an example, when we just consider quantum systems just one dimension higher, we are able
to assess entanglement from an unusual perspective.  A quantum entanglement’s composite system does not display
separable states and a single constituent cannot be fully described without considering the other states. If we introduce
quantum entanglement on a hypersphere -, derived from signals originating on the surface of an ordinary 3D sphere - a
separable state can be achieved for each of the entangled particles, just by embedding them in a higher dimensional space.
When the particles are entangled at the 3D level and un-entangled at the 4D hypersphere level, we accomplish a composite
system in which each local constituent is equipped with a pure state.  Other examples of BUT applications are provided
in Figures C-E.  For additional applications in nonlinear chaotic dynamics (evaluation of Sn spheres equipped with a n =
Feigenbaum constant), see Tozzi (2016a and 2016b).
A shift in conceptualizations is evident in the BUT approach: the opportunity to treat physical systems as topological
structures gives us the invaluable chance to evaluate them through correspondences from topological spaces to algebraic
groups (Matoušek; Yang; Dol’nikov).  Embracing systems in the framework of algebraic topology (Willard; Dodson)
means that transformations (the antipodal points) can be described as paths or trajectories on “abstract” structures: the
BUT perspective allows a system’s property located in the real space (the physical melieu’s geometric space) to be
translated to an abstract space (called topological configuration space manifolds) and vice-versa, enabling us to achieve
maps from one level to another.  It makes it possible for us to study systems interactions in terms of affine connections
and “proximity” among signals, in order to explain, for example, how network communities integrate or segregate
information (SUPPLEMENTARY INFORMATION 2).
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INGREDIENTS GENERAL FEATURES SPECIFIC FEATURES
1) CONTINUOUS

FUNCTION
LANDSCAPE Observation

2) TWO ANTIPODAL
POINTS (BUT) or
REGIONS (ReBUT)

SPATIAL PATTERNS

Points
Regions
Diameters
Areas
Shapes
Concave manifolds

TEMPORAL PATTERNS Movements
Trajectories

FUNCTIONS

Symmetries
Proximities
Affine connections
Vectors
Regions
Homologies

SIGNALS i.e., average signal value

3) N-VALUES

NUMBER
Natural
Fractional
Irrational

DIMENSION

Spatial
Temporal
Thermodynamical parameters
Index dimension
Absence of Euclidean space

4) MAPPING FROM A
HIGHER TO A LOWER
DIMENSION (and vice
versa)

FIXED Description
IN MOTION Real-Time Description
SYMMETRIES Increased in a n-dimension;

decreased in a n-1 dimension

Table. Different features of each one of the four ingredients of BUT and its variants.
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Figure.  Many phenomena can be described by BUT and its variants. A: the “standard” BUT for different values of
Sn (a circle, a sphere and a hypersphere). B:  A simplified sketch of Re-BUT. C:  ReBUT  allows  the  evaluation  of
gravitational lenses. D: Shannon (ergodic) entropy values projected to a S1 sphere: i.e, when entropy = 0.7, two antipodal
points are displayed on a S1’s diameter.   Also “non-ergodic” entropies (i.e. not following the Shannon’s curve) could be
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evaluated on other diameters of S1: the use of BUT variants wipes away this long-standing limit of Shannon entropy. E:
on a self-similar structure, two antipodal points (corresponding to the distinctive scale-free’s higher and lower
magnifications) are embedded in a n-sphere equipped with n = rational number (the fractal dimension: in this example,
1.3).
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SUPPLEMENTARY INFORMATION 1

The “standard” version of the Borsuk-Ulam theoerem (BUT).  The Borsuk-Ulam Theorem (BUT) is a remarkable
finding by K. Borsuk (Borsuk 1933) about Euclidean n-spheres and antipodal points.  It states that (Dodson 1997):
Every continuous map : n nf S R®  must identify a pair of antipodal points (on Sn).  (Figure 1).
An  n-sphere  is  formed  by  points  which  are  constant  distance  from  the  origin  in  (n+1)-dimensions (Marsaglia).  For
example, a 3-sphere (also called glome or hypersphere) of radius r (where r may be any positive real number) is defined
as the set of points in 4D Euclidean space at distance r from some fixed center point c (which may be any point in the 4D
space) (Henderson).  From a geometer’s perspective, we have the following n-spheres, starting with the perimeter of a
circle (S1) and advancing to S3, which is the smallest hypersphere (Figure 1), embedded in a 4-ball:
1-sphere S1  : x1

2 +  x2
2 (circle perimeter),

2-sphere S2  : x1
2 +  x2

2 + x3
2 (surface of the common sphere, i.e., a beach ball),

3-sphere S3 : x1
2 +  x2

2 + x3
2+ x4

2(hypersphere surface),  ...,
n-sphere Sn : x1

2 +  x2
2 + x3

2+ ... + xn
2
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SUPPLEMENTARY INFORMATION 2

Re-BUT variant for non-antipodal signals. Let a pair of systems modules (for sake of simplicity, we will talk about a
pair of cortical or subcortical neural modules), represented by An, Bn, be n-spheres that interact and then separate. This is
an example of the situation described by Schrödinger (1935).  Let p1,−p1 be a pair of antipodal points on An and let
q1,−q1 be a pair of antipodal points on Bn.  Also let f, g be continuous functions and, using BUT, assume that:
f ∶An→ Rn, such that f(p1) = f(−p1), and
g ∶Bn→ Rn, such that g(q1) = g(−q1).
From BUT, the signal value f(p1) from An can be used to make observations about Bn, provided f(p1) = g(−q1). This
situation is analogous to the one described by Schrödinger in his paper on separated systems  (Schrödinger 1935).  That
is, we look for an affine connexion (affinity) between modules represented by their feature vectors and by a sameness
described by continuous functions on the modules. Using BUT, if antipodal points on An, Bn  emit a common a signal
value, then an affine connexion between the physical entities is established. However, this situation is less than
satisfactory, since it is not apparent how to make the connexion between the n-spheres An, Bn based on the fact that both
n-spheres have pairs of antipodal points that map to the same vector in Rn.
Schrödinger was dissatisfied with attempting to find a connexion between vectors using a principle from Euclidean
geometry, namely, two vectors are equal when their components are equal.  He thought that it is more satisfactory to
establish a connexion between physical entities using the notion of continuous transfer (of energy) between points on a
curve finitely apart from each other (Schrödinger 1944).  But this alternative is still not satisfactory, because curvature is
described using rather complicated tensors such as the Riemann-Christoffel curvature tensor, which has 96 components,
and the Weyl’s metrical tensor, which has 40 components. An alternative to Schrödinger’s approaches to establishing
affinities between physical entities (neural modules) is obtainable by introducing a region-based form of BUT (denoted
by ReBUT). To use our knowledge of one n-sphere to gain knowledge about another d-sphere with d ≤ n, we consider
separated regions instead of antipodal points on an n-sphere.

The terminology we use is explained, next. Region.  A “region” (denoted by Re) on an n-sphere (i.e, a neural module) is
a set containing one or more points. A singleton region is the same as point.  Each region is a set of modules. Each module
has only feature, namely, its location identified by a vector.  By contrast, such a region Re (into a module) not only has
location represented by its centroid (center of mass) but also region features such as diameter, area, entropy, shape, porous
(shape with holes, i.e., some of the points in Re have gaps between them), average signal value and so on. Family of
regions 2Sn.  The collection (family) of all subsets on the n-sphere nS  is  denoted  by  2Sn. Regions Re1, Re2 ∈2Sn.
Regions Re1, Re2 are members in 2Sn. Feature value probe φ : Re → R.  A feature value probe is a real-valued function
that extracts a feature value from a region. Region feature k-vector.  Let φ1, φ2, . . . , φk be k region feature value probes.
A feature value vector for a region on an n-sphere has the following form:
(φ1(Re), φ2(Re), . . . , φk(Re)), called region feature vector.

Theorem 1. ReBUT. Assume that the regions on an n-sphere have n features.  If  f ∶2Sn→ Rn is a continuous function,
then f(Re1) = f(Re2)Rn for at least one pair of regions Re1,Re2 Î  2Sn (Peters 2016).  (Figure B).
Proof. The function f(Re1) is a feature vector in Rn for region Re1 ∈2Sn.  Given region Re1 ∈2Sn on an n sphere, we know,
from the symmetry of the latter, that there are many possible regions Re2 with feature vectors that match the feature
vector of Re1. Hence, f(Re1) = f(Re2) for some Re2 ∈2Sn.
For example, let each each region on a 2-sphere (a brain module) have two features, namely, area and diameter.  Since
there are many regions on a 2-sphere with the same area and diameter, from ReBUT, we know that f(Re1) = f(Re2)R2 for
at least one pair of regions Re1,Re2 2SÎ .   This means that the antipodal points restriction of the “classical” BUT is no
longer needed, when we consider regions on an n-sphere.  In fact, we can now consider neural regions that are either
adjacent or separated (far apart). And ReBUT applies, provided the feature vector for a region on an n-sphere (a nervous
module) has n feature values.

Observations Via ReBUT for symmetrical physical entities (two separated cortical modules).   In  touch  with
Schrödinger’s Programme of Observations, we want to use our knowledge on physical entity A (a cortical module) to
gain  knowledge about  another  physical  entity  B (another  cortical  module)  that  is  separated  from A.  We do this  using
ReBUT.  Let ଵܵ

, ܵଶ
 be a pair of n-spheres that represent a pair of separated cortical modules. The regions on the surface

of an n-sphere are comparable to mailboxes, each one containing information about some part of a module. All that we
know about an n-sphere is summarized by the collection of feature vectors that describe
the regions on an n-sphere.
Apply ReBUT to the pair of n-spheres ଵܵ

, ܵଶ
.  Let 1: n nf S ® � be a continuous function on ଵܵ

and let 2: n ng S ® �

be a continuous function on ܵଶ
.   Let ܴ݁ଵ

ଵ, ܴ݁ଵ
ଶ be a pair of regions on 1

nS  and let ܴ݁ଶ
ଵ, ܴ݁ଶ

ଶ be a pair of regions on ܵଶ
 that
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satisfy ReBUT. That is, from ReBUT, we obtain f(ܴ݁ଵ
ଵ) = f(ܴ݁ଵ

ଶ) and f(ܴ݁ଶ
ଵ) = f(ܴ݁ଶ

ଶ) on the separated n-spheres. Then
the pair of n-spheres ଵܵ

, ܵଶ
 resemble each other (similarity between the physical entities is established, provided f(ܴ݁ଵ

ଵ)
= f(ܴ݁ଶ

ଵ)).

Observations Via ReBUT for asymmetrical physical entities (a cortical and a subcortical module).  Let Sn, Sd, d ≤
n be n-sphere and d-sphere, respectively, that represent a pair of physical entities (in this case, a cortical and subcortical
nervous module). Assume that each region on Sn is described by a feature vector with n-components and assume that each
region on Sd is described by a feature vector with d-components with n ≠ d. All that we know about the n-sphere (the
cortical module) is summarized by the collection of feature vectors (each with n-components) that describe the regions
on an n-sphere.  By contrast, all that we know about the d-sphere (the subcortical module) is summarized by the collection
of feature vectors (each with d-components) that describe the regions on an d-sphere.
Let Re1,Re2 on Sn that satisfy ReBUT and let Re3,Re4 on Sd that satisfy ReBUT.  This means that f(Re1) = f(Re2) on Rn

and g(Re3) = g(Re4) on Rd.  Hence, the feature vectors f(Re1), g(Re3) are not comparable, since each has a different
number of components. Even so, we can compare f(Re1), g(Re3) componentwise. Let φ1, φ2, . . . , φn be n region feature
value probes. A feature value vector for a region on the n-sphere Sn has the following form:
Φ(Re1) = (φ1(Re1), φ2 (Re1), . . . , φn (Re1)), i.e, a Sn region Re1 feature vector.
Further, let φ1, φ2, . . . , φd be d region feature value probes, n ≠d. A feature value vector for a region on the n-sphere Sn

has the following form:
Φ(Re3) = (φ1(Re3), φ2 (Re3), . . . , φd (Re3)), i.e a Sd region Re3 feature vector.
The continuation of the Schrödinger’s Programme of Observations via ReBUT for asymmetrical physical entities (i.e.,
cortical and subcortical modules represented by hyperspheres with different dimensions), is made possible by the fact that
d region features are the same for both the modules. The pair of hyperspheres’ feature vectors f(Re1), g(Re3) are
descriptions of similar regions, provided Sn, Sd each contains at least one region Re1 on Sn and at least one region on Sd

with feature vectors Φ (Re1), Φ (Re3) with up to n−d matching components.  In other words, separated neural modules,
represented by hyperspheres with different dimensions, have feature vectors that are componentwise comparable. The
separated modules are similar, provided there is a feature vector f(Re1) for a region Re1 on a hypersphere Sn which has
d components with values that match the values of the corresponding components in the feature vector f(Re1) for a region
Re3 on a hypersphere Sd.  For example, we may evaluate the case of similarity between nural regions on hyperspheres
with different dimensions (a brain surface and a thalamus surface).  Let φ1, φ2, φ3 be three region feature value probes for
region features diameter, area, shape, respectively, on a 3-sphere (a cortical module). And let φ1, φ2, be two region feature
value probes for region features diameter, area, respectively, on a 2-sphere (for example, a thalamic module).  Let Re1,Re2
be regions on a hypersphere S2 that satisfy ReBUT and let Re3,Re4 be regions on a hypersphere S1 that satisfy ReBUT.
If Φ(R1) = (φ1(R3), φ1 (R2) = φ1 (R4) (matching components), then the hypersphere S2 is similar to S1. This tells us that
there are similarities between the separated nervous structures represented by the hyperspheres S2 and S1.

REFERENCES SUPPLEMENTARY INFORMATION
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GENERALIZATION OF BORSUK-ULAM THEOREM TO HYPERBOLIC
IMAGES

We stated that it is necessary to correlate images geometric regions with semantic features, such as oblung, concave,
perpendicular, circular and so on.  The Borsuk-Ulam theorem describes the presence of antipodal points on convex
manifolds in every dimension.  However, many images display figures equipped with another type of geometry: the
hyperbolic one, characterized by sectional curvature -1. i.e., a concave shape.  Now the question is whether the antipodal
points predicted by BUT can be detected not also on positive-curvature images as stated by Borsuk, but also on images
equipped with negative curvature.  In other words, is possible to transport such antipodal points onto riemannian manifolds
with NEGATIVE curvature?  The answer is positive, if we perform a parallel transport of the two antipodal points of Sn

onto the hyperbolic manifold.  Although parallel-transport requires the solution of a second-order differential equation,
however analysis shows us that we are allowed to use the first order approximation of the parallel transport – that we
pursue in terms of solving geodesic equations for the sufficient statistics (Hairer 2004).  There are different routes one
can take to achieve the goal: one needs to resort to one of the following generic transport procedures.

1) Ehresmann connection (see Figure) (Ehresmann, 1950).
2) Levi-Civita connection (Boothby 1986).
3) We can formulate the Hessian operator on the Riemannian manifold in terms of the Laplace-Beltrami operator

(Jost 2002).
4) We can retain a first-order approximation and formulate descent directions that are orthogonal to the previous

descent ones, through numerical analysis with the conjugate gradient-descent algorithm (Snyman 2005).
Routinely used in optimization, conjugate gradient descent methods have been used for gradient descent on
manifolds traced out by energy functions such as the variational free-energy (Sengupta 2014).

In summary, the BUT can be generalized also to concave figures, in order to look for antipodal points also in images
equipped with a negative curvature.

Figure.  Parallel transport on Riemannian manifolds of two antipodal points p (corresponding to x and –x of the BUT),
from the convex Sn manifold to the concave one Mn.  After an Ehresmann connection has been performed and the vectors
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ω on Sn are achieved, the standard projection method (Hairer 2004) allows us to use the Riemann exponential map exp(ω)
to map the vector from Sn →  Mn, and the logaritmic map log(ω) for the opposite mapping Mn → Sn .  Let H be the plan
on the convex Riemannian manifold Mn where the vectors ω1 and ω2 (representing the antipodal points x or –x) lie.  Once
achieved the center of the hyperbolic manifold Mn through the ham-sandwich theorem, we are allowed to map the two
antipodal points from Sn to Mn.
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TIME AS A GAUGE FIELD

The concepts of “constraints” and “virtual displacement” from analytical mechanics shed new light on the role of time
and timescales in physical systems such as the Universe.  We propose a covariant version of a gauge theory, in which the
required global symmetry stands for the real constrained trajectories, i.e. the energetic gradient flows dictated by the
second law of thermodynamics.  The virtual displacements, occurring while time is held constant, stand for the local
transformations acting on the system and able to “break” the symmetry.  The time stands for the gauge field able to keep
the Lagrangian invariant.  We also provide a theoretical framework in which a topological approach to gravitational lenses
is able to elucidate aspects of our theory of “time as a gauge field”.  Thus, time is no longer one of the four phase space
coordinates of a 4-D Riemannan Universe: it is just a gauge field superimposed to a 3-D system.

INTRODUCTION

Many current theories emphasize the foremost role of the “time” and “timescales” in different physical and biological
fields, from cosmology – the 4-D Riemannian Universe –, to cellular function1 and neural activity2,3.  Is such a tenet true?
Although stochastic variables and random fluctuations regulated by the Langevin and the Fokker-Planck equations
frequently occur4, physical and biological activities are only partially Brownian, since they are “constrained”.  For
example, the protein-folding final conformation is dictated by the minimum frustration principle on long evolutionaly
timescales, which states that proteins’ energy decreases more than expected, as they assume conformations progressively
more like the native state5,6.  A strong bias in the protein’s surface energy landscape towards the native basin occurs,
overcoming the asperities of the rugged landscape7,8.  In other words, proteins were enriched by evolution for sequences
with the propensity to fold into the lowest energetic structures.  Constraints also occur in countless other systems, from
the nonlinear chaotic paths governed by strange attractors, to the structure of biological entities, ruled by their specific
genetic pools.  Despite the large number of different scenarios, the processes governing constraints on physical and
biological systems may be generalized, taking into account a universal principle: the second law of thermodynamics,
which states that  “every process occurring in nature proceeds in the sense in which the sum of the entropies of all bodies
taking part in the process is increased” (Planck’s formulation). In such a framework, the concepts of “virtual
displacement” - from the far-flung branch of analytical mechanics - come into play9,10,11,12.  In this paper we will indeed
elucidate, via a gauge theory, that close relationships occur among virtual displacements, probabilities and time.
In order to assess our theory, we also use the concept of gravitational lens.  The latter is a distribution of matter (such as
a cluster of galaxies) between a distant source and a terrestrial observer, capable of bending the light from the source, as
it travels towards the observer. The amount of bending is one of the predictions of Einstein's general theory of relativity.
For example, the light from a distant galaxy is deviated due to the gravitational effects of a foreground celestial body,
which acts like a lens and makes the distant source appear either distorted and magnified.  In this paper, we argue that the
mechanism of gravitational lenses can be explained in the algebraic topological terms of the Borsuk-Ulam theorem.  Such
a finding makes it possible to hypothesize a theory of time as a gauge field.
The manuscript contains four sections.  The first section describes the virtual and real constraints in the framework of a
“frozen” time.  The second section, taking into account probabilistic arguments, shows how is possible to insert virtual
constraints on the Shannon entropy’s plot, in order to correlate informational entropy with the arrow of time.  The third
section illustrates the procedure to sketch gauge theory based on the three above mentioned ingredients: constraints,
probabilities and time.  In the fourth section, a topological approach to gravitational lenses comes into play and shows
how the methodology can be applied in order to clarify a theory of “time as a gauge field”.

VIRTUAL CONSTRAINTS

The key concept of virtual constraints is a dynamically imposed outer feedback control, so that the trajectory of a particle
or an agent in the system’s phase space can be “forced” towards the desired orbits and outputs13.  The virtual constraints
reduce the degrees of freedom, coordinating the evolution of the various links throughout a single variable.  A closed-
loop mechanism is achieved, wherein dynamic behaviour is fully determined by the evolution of simplest lower-
dimension system14.  The resulting system is called a “virtual limit system”.
In mathematical terms, we define a set of n – 1 outputs (or constraints):

( ) ( ) ( ), , , ( ) ,y p q q h p q h p tj q q= = - = -
r r
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where y and ( ),p qj  are the outputs or constraints, qr ∈ Rn-1 is a vector describing the actuated coordinates and
velocities, p is the set of the design parameters, θ ∈ R is the unactuated variable, θ(q) is a function of the generalized
coordinates of q.  The latter equation describes the most general condition.
An inner-feedback loop is used to perform output feedback linearization in a local domain, where the matrix is invertible:
( ) ( ); ,q u k q q vy = +&

where v is the outer feedback loop.  Note that the equation includes a term q&  which depends on time, where the upper

dot stands for the partial time derivative, i.e.,
qq
t

¶
=
¶

&  (de Wit et al. 2003)26.

If an outer feedback loop v is designed to zeroing the output y, we get a partially linearized system in the form:
.y v=&&

Then the full system dynamic is captured by the solutions of:
( ) ( ) ( )2 0,a q q b q q g q+ + =&& &

together with the imposed constraint for mean q-value:
( ), ,q h pq=

where θ(q), α(θ), β(θ) and γ(θ) are scalar functions depending on the inner feedback loop.
In conclusion, the virtual constraints are forces external to the system’s phase space, able to modify an internal trajectory
towards the required one.  This process allows one to deal with high-dimensional systems with underactuated degree one,
by only analyzing this second-order nonlinear equation.
In analytical mechanics the researchers cope with under-actuated Lagrangian systems of the form:

( ) ,d L L B q u
dt q q
æ ö¶ ¶

- =ç ÷¶ ¶è ø&
where q and q&  are vectors of generalized coordinates and velocities, L(q; q& ) is a Lagrangian of the system, B(q) is a
matrix function of an appropriate dimension, with rank equal to the number of inputs and u is a vector of independent
control inputs.  The under-actuation means that dim u < dim q, i.e., the number of actuators is less than the number of its
degrees of freedom.
A virtual displacement is an assumed change of system coordinates occurring while time is held constant.  It is called
“virtual” rather than “real”, since no actual displacement takes place without the passage of time.  Computerized
simulations may be performed to see what happens to physical and biological paths when time is kept fixed, e.g, during
the movements of animals in an environment, or during cytoplasmatic enzymatic reactions.  For further details about the
methodology, see Figure 1.
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Figure 1. A graph plotting time t on the X-axis and the space x on the Y-axis.  We evaluated two trajectories which both
display a starting position at x0 and an ending position at x2.  The black solid curve x(t) is the particle trajectory, while
the dotted black curve xI(t) is the virtual trajectory. At position x1 and time t1, the virtual displacement δx - from x1 to the
point c - is shown (grey arrow).  The regular displacement dx is a vector pointing in the direction of the motion (black
arrow), which arises from differentiating with respect to time parameter along the path of the motion.  In contrast, the
virtual displacement δx is a tangent vector to the constraining manifold at a fixed time, because it arises from the
differentiation with respect to the enumerating paths of the motion, varied in a manner consistent with the constraints.

INFORMATIONAL ENTROPY AND TIME

The real displacements are governed by the second law of thermodynamics.  In every system, either physical or biological,
the thermodynamical entropy relentlessy increases from time T0 to T2 = ∞, until its maximum value.  In our case, it is
however preferable to use the informtional entropy, instead of the thermodynamical one.  Indeed, the two entropies are
linked through the formula:
S = k H
in which S is the thermodynamical entropy, k is the Bolztmann constant and H is the Shannon informational entropy.  The
informational entropy, apart from the invaluable advantage of quantifying the macroscopic states without a perfect
knowledge of the microscopic ones, is not directly linked with time, allowing us to remove such parameter from our
system.  However, we need to introduce the arrow of time on the “classic” Shannon’s curve: we did it by adding a third
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dimension to its 2-D plot (Figure 2).  The vector of time ζ lies  in  a  plane  forming an  angle A with  the  2-D plane  of
Shannon entropy.  Note that the timescales expressed by the vector ζ in the graphic may vary, depending on which system
we are evaluating.  As an example, if we take into account the system Universe, T0 stands for the state of minimum
entropy – the initial Big Bang -, while T2 = ∞ stands for the state of maximum entropy, i.e., the hypothetical final state of
the Universe.  Starting from the probability of a virtual constraint c, we may calculate the corresponding point T1 on the
arrow of time, in order to know how much time is still required to reach T2 = ∞ (which stands for the system’s “real” final
state at the energetic equilibrium).  There is however a still unknown parameter left: the value of the angle Α, which is
not implied to be constant, but could change in different examined systems.  The next section answers the question: how
can we find the value of the angle A?

Figure 2.  The informational entropy is plotted as a function of the random variable p, in the case of two possibilities with
probabilities p and (1-p).  The solid line black stands for the Shannon entropy (under ergodic conditions).  The values
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p=0 and p=1 stand for the minimum entropy, p= 0.5 for the maximum entropy.  The arrow of time ζ (grey solid line) lies
on a third coordinate of the phase space and is equipped with the angle A.  Due to the energetic gradient flows dictated
by the second law of thermodynamics, the time, in its route from T0 to  T2 = ∞, is correlated with an increase in
informational entropy.  Given a virtual displacement c on the virtual trajectory (dotted black line), the corresponding
value of T1 on the arrow of time can be calculated, provided the value of A is known.

TIME IS A GAUGE FIELD: BUILDING A GAUGE THEORY

Here we examine the possibility to sketch a on differential geometry-based theory of the real and virtual trajectories’
phase space.  We need to build a system where the real displacement - the real trajectory of particles or events - stands
for  the  continuous,  global  symmetry.   Such  a  symmetry  consists  in  the  energetic  constraints  that  the  second  law  of
thermodynamics enforces on the system.  However, the energetic gradient flow occurs just in long timescales.  In turn, in
the very instant in which T is “frozen”, fixed and equals to zero, the virtual displacement occurs, standing for a continuous
group of local transformations able to “break” the symmetry.  The local loss of symmetry (a disturbance of the gradient
flow) needs however to be ripristinated, by introducing a continuous field – the time -  able to restore the gradient flow.
The time, in such a framework, stands for a field acting on the system, which is continuous at nonrelativistic timescales.
There are many possible ways to deal with a theory of the virtual displacements in a differential geometric sense, for
example by analyzing them in terms of sections of fibre bundles, jet manifolds and Ehresmann connections15,16,17.  We
went through a system characterized by a global invariant symmetry.  In order to quantitatively assess the required forces,
we followed the procedure shown in the oversimplified Figure 3.  In Figure 3A, as an example, we choose four random
areas in a 3D system and equipped them with transformations belonging to the SO(2) Lie group, isomorphic to the rotation
group of the circle.  The Lie group stands for the measure of probability density in each of the four areas.  The manifold
is unfolded and flattened into a two-dimensional reconstruction18 (Figure 3B), allowing the entire system surface to be
transferred to an atlas M of C∞ (smooth), finite dimensional manifolds, each corresponding to one of the four single areas
at  a  fixed  time=0  (Figure 3B).  The set of virtual displacements describing area-specific probabilities stands for a
continuous group of local transformations acting on sections of M. M is thus equipped with a constant matrix G belonging
to the SO(2) Lie group.
M is a principal G-bundle P characterized by a trivial, smooth and differentiable fibre bundle, by vector bundles E and by
a tangent bundle TE (Figure 3B).  Virtual displacements are described by a field of vectors and angles, representing the
action G on the chosen local section E of P. Figure 3B depicts the four forces G as four vector bundles E arising from
four points p in the tangent space Tp.  They are equipped with four n-dimensional rotation angles φ (φ1,  φ2, …,φn)T

representing the (local) virtual displacement (expressed in terms of probability state) of every area.  Rotations through
tiny angles link nearby transformations of angles φ arising from points p: as a result, the linear approximation of the
function G at p (and its angle φ) in each dimension can be described by introducing a partial derivative.  Changes in
degree of φ in selected areas match with virtual displacements’ different probabilities and hence with different trajectory
configurations.
The geometric “link” between L and φ can be defined in terms of a connection form, the Ehresmann connection19.  If we
identify the horizontal space H, perpendicular to the vertical space VE, we can extrapolate the Ehresmann connection ω,
which  is  a  vector  on TE (Figure 3B).  The Lagrangian density L is indeed a function of TE and H.  It is possible to
formulate all rates of change of ω and φ in terms of a covariant derivative - a linear differential operator in each associated
TE - which allows different points (and their angles) to be compared. By mapping every vector ω of P into the bijective,
diffeomorphic PI space, a curvature form is constructed (Figure 3C).  When the vectors ωI intersect the unique horizontal
lift corresponding to the invariant L, the angles σ are achieved.  The behaviour of the vectors ωI and the angles σ can be
described compactly by point-wise vector addition of the partial derivatives of the function G at each point.  As a result,
we get a single vector: Ωሬሬ⃗ = ωଵሬሬሬሬ⃗ +ωଶሬሬሬሬ⃗ + …+ωሬሬሬሬሬ⃗ .  The angle Σ is introduced (Figure 3D), standing for the interaction
Lagrangian Lint and expressing the values of vector addition.
If the lines L and Ω are parallel, Σ equals zero, Lint equals L and the symmetry of the system is preserved.  Otherwise, if
L and Ω are not parallel (as in nearly all physical and biological systems at T =0), Σ is different from zero, Lint is different
from L and the system displays a “broken” symmetry.  In this case – to ensure the invariance of L and to restore the
symmetry – we need to define a covariant derivative such that the derivative of Σ will again transform identically with Σ.
According to the covariant version of gauge theories20, the correction terms are reinterpreted as couplings to an additional
divergent counter term, the gauge field, by allowing the symmetry parameter to vary from place to place in the local
coordinate system. Figure 3E shows the procedure in a very abridged form.  If we do not take L into account and examine
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the sole vector Ω and its angle Σ, we observe nothing else than a single force.  If instead we regard L as a vector that
results from the scalar components of its vector space v, then Ω (and its angle Σ) turns out to be just one of the covariant
components of L. To ensure that L is invariant, we need to add another component: we introduce the vector ζ, equipped
with the angle Π.  The latter stands for the gauge field Lagrangian Lgf  and expresses the global value of the required
gauge field.  We are thus able to make accurate predictions of the forces: we can extrapolate from Π the values of the
gauge field required to render the trajectories invariant under different virtual displacements.
Our scheme resembles a gauge theory21,22, but with some distinctions.  The physical gauge theories are based on three
tenets23,24:

a) The system is equipped with a continuous, preserved “global” symmetry (and a corresponding Lagrangian).
b) The system displays a continuous group of “local” transformations, equipped with a Lie group.
c) The Lagrangian is kept invariant under such local transformations by a “gauge field”, i.e. a continuous force

acting on the system.
The Lagrangian, through its connections with Noether’s theorem, throws a bridge between symmetries and energetic
requirements.  Note that the concept of the Lagrangian is slightly different in our model: instead of referring to the
principle of least action and the “preservation” of a physical quantity as usual in gauge theories, it refers to the
“dissipation” of a physical quantity through a gradient flow.
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Figure 3.  Oversimplified analysis of virtual displacements in a system equipped with a global, invariant symmetry (the
real constraints).  Four virtual displacements - expressed as measures of probability states in four areas of a 3D system,
at time kept fixed at zero - are equipped with a Lie group (Figure 3A) and mapped on a 2-D manifold (Figure 3B).  An
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Ehresmann connection is performed (Figure 3C) and the required gauge field (the vector ζ, equipped with the angle Π)
can be calculated (Figures 4D-E).  See the main text for further details.

TIME AS A GAUGE FIELD: CLUES FROM A TOPOLOGICAL APPROACH TO GRAVITATIONAL
LENSES

In this section we argue that the mechanism of gravitational lenses can be explained in the algebraic topological terms of
the Borsuk-Ulam theorem (BUT).  Indeed, gravitational lensing in the framework of BUT provides us the mathematical
apparatus to build the theory of time as gauge field, which is otherwise too theoretical and untestable.
At  first,  we  need  to  discuss  the  “standard”  version  of  the  Borsuk-Ulam  theorem  (BUT),  which  states  states  that
(Borsuk)29,30:
Every continuous map : n nf S R®  must identify a pair of antipodal points (on Sn).

This means that the n-sphere nS  maps  to  the  space nR ,  which  is  an n-dimensional Euclidean space.  Another less
technical definition is: if a sphere is mapped continuously into a plane set, there is at least one pair of antipodal points
having the same image; that is, they are mapped to the same point of the plane (Dodson)31.   The notation nS  denotes an
n-sphere, which is a generalization of the circle.  A n-sphere is a n-dimensional structure embedded in a n+1 space.  For
example, a 1-sphere (S1) is the one-dimensional circumference surrounding a 2-dimensional disk, while a 2-sphere (S2) is
the 2-dimensional surface of a 3-dimensional ball (a beach ball is a good example).  An n-sphere is formed by points
which are constant distance from the origin in (n+1)-dimensions.  For example, a 3-sphere (also called glome or
hypersphere) of radius r (where r may be any positive real number) is defined as the set of points in 4D Euclidean space
at distance r from some fixed center point c (which may be any point in the 4D space).  A3-sphere is a simply connected
3-dimensional manifold of constant, positive curvature, which is enclosed in a Euclidean 4-dimensional space called a 4-
ball.  A 3-sphere is thus the surface or boundary of a 4-dimensional ball, while a 4-dimensional ball is the interior of a 3-
sphere, in the same way as a bottle of water is made of a glass surface and a liquid content.
Points on Sn are antipodal, provided they are diametrically opposite.  Examples of antipodal points are the endpoints of a
line segment, or the opposite points along the circumference of a circle.  Further, every continuous function from a n-
sphere Sn into Euclidean n-space Rn maps some pair of antipodal points of Sn to the same point of Rn.  For example, if we
use the mapping f: S3→ R3, then f(x) in R3 is just a signal value (a real number associated with x in S3) and f(x) = f(-x) in
R3.  When g: S2 → R2, the continuous function g(x) in R2 is a vector in R2 that describes the x embedded in S2.  In other
words, a point embedded in a Rn manifold is projected to two opposite points on a Sn+1-sphere, and vice versa.
It is noteworthy that the concept of antipodal points can be generalized to countless types of system signals.  The two
opposite points can be used not just for the description of simple topological points, but also for more complicated
structures, such as shapes of space (spatial patterns), shapes of time (temporal patterns), vectors or tensors, functions,
signals, thermodynamical parameters, movements, trajectories, and general symmetries too (Peters)28.  If we simply
evaluate systems activity instead of “signals”, BUT leads naturally to the possibility of a region-based geometry (called
ReBUT), instead of point-based one, with many applications.  Indeed, a region can have features such as area, diameter,
average signal value, and so on.  The concept of reBUT and generalized antipodal points may be also applied to the
mechanism of gravitational lenses (Figure 4).  We are allowed to describe gravitational lenses’ regional features (i.e.,
average gradient direction, average intensity, feature vectors with many components, such as, for example, diameter,
surface area, and gradient direction) as antipodal points on a n-sphere: the antipodal points, even if they are distorted,
display indeed matching descriptions.  A cosmic body emitting a light stands for the single point embedded in Rn-1, which
projects to two antipodal points onto a n-sphere embedded in a dimension higher, i.e., Rn.  In other words, if we map the
two opposite points on an n-1 sphere, we obtain a single point, and vice versa.  The two antipodal points standing for
systems features are assessed at one level of observation, while the single point is assessed at a lower level.  The BUT
scenario provides, in this way, a vehicle for characterizing and modelling gravitational lenses.
It can be argued that the antipodal points on a gravitational lens are not exactly “opposite” each other.  However, the
applications of BUT can be generalized not just for the evaluation of brain symmetries as antipodal points, but also for
non-antipodal points on an n-sphere (Peters)28.  We can also consider homotopic regions on an n-sphere that are either
adjacent or far apart.  And BUT applies, provided there are a pair of regions on an n-sphere with the same feature values.
We are thus allowed to say that the two points (or regions) do not need necessarily to be antipodal, in order to be described
together (Peters)28.  This makes it possible to evaluate matching signals, even if they are not “opposite”, but “near” one
each other: the antipodal points restriction from the “classical” BUT is no longer needed.
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Figure 4.  A simplified scheme of the application of the Borsuk-Ulam theorem to a gravitational lens.  Two antipodal
points in Sn  project to a single point in Rn, and vice versa.  Remind that every Sn is embedded in a n+1-ball, so that every
Sn is one-dimension higher than the corresponding Rn manifold.  See the main text for further details.

A 3D Universe… plus time. By applying the equations of general relativity, the measure of the curvature of gravitational
lens makes it possible to calculate the mass of the hidden cosmic object.  Indeed, according to general relativity, when
light passes around a massive object, it is distorted and bent towards an observer’s eye, because of the curvature of the
4D spacetime.  Since light moves at a constant speed, lensing changes the direction of the velocity of the light, but not
the magnitude.  The angle of deflection is:

2

4 ,GM
rc

q =



22

Where M is the mass at a distance r from the affected radiation, G is the universal constant of gravitation and c is the
speed of light in a vacuum: the more the mass, the more the light angle deflection.  In such a way, we are able to achieve
the total quantity of matter which causes the gravitational lens effect: by measuring the distortion geometry, the mass of
the intervening cluster causing the phenomena can be obtained.  In the case of the Universe, according to the Einstein’s
dictates, the 4D dimension (the spacetime) occurs when the mechanism of gravitational lensing takes place.  It means that
the fourth dimension “appears” just when the light is projected, through gravitational lensing, in a dimension higher, while
the hidden galaxy is equipped with just three dimensions.  Therefore, according to BUT and Einstein claims, the
gravitational lensing lies in a Rn space, i.e., a 4D riemannian manifold (the spacetime), while the “hidden” celestial body,
which generates the light producing the gravitational lens, needs to lie in a Rn-1 space, i.e, the three “classical” Euclidean
dimensions.  This means that we achieve a dimensionality reduction: a Universe equipped with just three dimensions,
plus the time.  The latter is the fourth dimension, provided that we consider it as superimposed to a 3D Universe.  Thus,
we are allowed to argue that the angle reflection is caused by a further dimension, displayed by the n-sphere generated by
the gravitational lens.  Without such a higher dimension, the angle reflection does not exist and the mass cannot be
measured.

Gauge fields and time in the framework of BUT. According to BUT, we achieved a system with three dimensions plus
the time.  In such a vein, what is the role of the time? We need to invoke once again BUT, and its close relationships with
the symmetries.  Symmetries are widespread invariances underlining countless physical and biological systems (Weyl)32.
A symmetry break occurs when the symmetry is present at one level of observation, but “hidden” at another level
(Roldàn)33.  BUT tells us that we can find, on an n-dimensional sphere, a pair of opposite points that have same encoding
on an n-1 sphere.  This means that symmetries can be found when evaluating the system in a proper dimension, while
they disappear (are hidden or broken) when we evaluate the same system in just one dimension lower.   We emphasize
that the symmetries are widespread at every level of organization and may be regarded as the most general feature of
systems, perhaps more general than free-energy and entropy constraints too.  Indeed, recent data suggest that
thermodynamic requirements have close relationships with symmetries.  The recent, interesting observation that entropy
production is strictly correlated with symmetry breaking in quasistatic processes paves the way to use system invariances
for the estimation of the free energy of metastable states and the energy requirements of computations and information
processing (Roldán)33.  Thus, giving insights into symmetries provides a very general approach to every kind of systems
function.  In such a vein, BUT provides a topological methodology for the evaluation of the most general features of
systems activity, i.e., the symmetries, cast in a physical fashion that has the potential to be operationalized.
The symmetries, in turn, are closely linked with gauge theories, and in particular with gauge fields.  The n-sphere
displaying the antipodal points (the symmetries) is equipped with a dimension more than the euclidean space where the
the single point (symmetry break) occurs.  This extra-dimension where BUT occurs might stand for a gauge field which,
superimposed to the system, gives rise to the invariance of the symmetry, by “restoring” it with the simple add of a unity
to the n member of BUT (from Rn to Rn+1).  Although BUT was originally limited to the case of n being a natural number
which expresses a structure embedded in a spatial dimension, nevertheless the value of n in the brain Sn can also stand for
other types of numbers (Tozzi)27.  The n exponent does not need necessarily either to be a natural number or embedded
in a spatial dimension.  The n value of Sn can be casted as an integer, a rational or an irrational number.  The BUT can be
used not just for the description of “spatial” dimensions equipped with natural numbers, but also of antipodal points on
spheres equipped with other kinds of n’s dimensions, for example a fractal dimension d.  It allows us to use the n parameter
as a versatile tool for the description of systems symmetries.

CONCLUSION

We showed that the vector of time is able to represent the energetic gradient of the system, locally “broken” by timeless
perturbations.  We also provided a topological approach to gravitational lensing which strengthens our hypothesis.  It
allows us to draw some conclusions.
In analytical mechanics, the concept of virtual displacement - related to virtual work - is meaningful only when discussing
a system subject to constraints on its motion.  As stated above, this is the case of physical and biological activity.  Virtual
displacements occur exclusively in space and the underrated role of the sole “spatial” modifications needs to be
emphasized when bearing in mind physical and biological activities.  While virtual displacements take place, time is fixed
and δt = 0.  Thus, changes in physical/biological functions can be independent of the passage of time.  When time equals
= 0, the real trajectory does not exist: it is the passing of time that gives rise to the real displacement.  It has been recently
suggested that time is an emergent phenomenon arising from the quantistic entanglement and it exists just for observers
inside the universe25: any god-like observer outside sees a static, unchanging universe, just as the Wheeler-DeWitt
equations predict (note that time plays a role neither in such equations, nor in the formulation of the entangled states).  If
time stands for a continuous gauge field acting on the system’s Universe, the theory of a 4D Riemannian Universe needs
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to be revised: time is not anymore one of the four coordinates of the phase space of the system Universe, but becomes
just a field, a vector superimposed to an otherwise “simple” 3D Universe.  It may also be hypothesized that the virtual
constraints in the Universe stand for singularities and timeless perturbations, which could be regarded as places in which
life occurs.

REFERENCES

1. Kravchick, D.O. & Jordan, B.A.  Presynapses go nuclear!  EMBO J. 34, 984-986 (2015).
2. Linkenkaer-Hansen, K., Nikouline, V.V., Palva, J.M., & Ilmoniemi R.J.  Long-range temporal correlations and scaling behavior

in human brain oscillations.  J. Neurosci. 21, 1370-1377 (2001).
3. Papo, D.  How can we study reasoning in the brain?  Front Hum Neurosci. 9,  222 (2015).
4. Ribrault, C., Sekimoto, K. & Triller, A.  From the stochasticity of molecular processes to the variability of synaptic transmission.

Nat. Rev. Neurosci. 12, 375–387 (2011).
5. Bryngelson, J.D. & Wolynes, P.G.  Spin glasses and the statistical mechanics of protein folding.  Proc. Natl. Acad. Sci. U S A.

84, 7524-7528 (1987).
6. Ferreiro,  D.U,  Hegler,  J.A.,  Komives  E.A.  & Wolynes,  P.G.   On  the  role  of  frustration  in  the  energy  landscapes  of  allosteric

proteins.  Proc Natl Acad Sci U S A. 108, 3499-503 (2011).
7. Onuchic, J.N., Luthey-Schulten, Z. & Wolynes, P.G.  Theory of protein folding: the energy landscape perspective.  Annu. Rev.

Phys Chem. 48, 545-600 (1997).
8. Sutto,  L.,  Lätzer,  J.,  Hegler,  J.A.,  Ferreiro,  D.U.,  &  Wolynes,  P.G.   Consequences  of  localized  frustration  for  the  folding

mechanism of the IM7 protein.  Proc. Natl. Acad. Sci. U S A. 2007 104, 19825-19830 (2007).
9. Torby, B. Energy Methods.  Advanced Dynamics for Engineers. HRW Series in Mechanical Engineering (CBS College

Publishing, United States of America, 1984).
10. Goldstein, H. Classical Mechanics (Addison-Wesley Publishing Co., Reading, Massachusetts, 1980).
11. Sommerfeld, A. Mechanics, Lectures on Theoretical Physics, vol. I (Academic Press, New York, 1952).
12. Landau, L.L. & Lifshitz, M.  Mechanics (Pergamon Press, Oxford, 1976).
13. Canudas-de-Wit, C . On the concept of virtual constraints as a tool for walking robot control and balancing.   Annual Reviews in

Control 28, 157–166 (2004).
14. Stepp, C.E., Hillman, R.E. & Heaton, J.T.  A virtual trajectory model predicts differences in vocal fold kinematics in individuals

with vocal hyperfunction.  J Acoust Soc Am. 127, 3166-3176 (2010).
15. Kolar, I. & Michor, P. W.  Natural operations in differential geometry (Springer-Verlag, Berlin, 1993).
16. Abraham, R.H. & Marsden, J. E. Foundations of mechanics, (Benjamin-Cummings, London, 1978).
17. Lang, S. Differential and Riemannian manifolds (Springer-Verlag, Berlin, New York, 1995).
18. Van Essen, D.C. A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28,

635–666 (2005).
19. Ehresmann, C. Les connexions infinit´esimales dans un espace fibrée differentiable. Colloque de Topologie, Bruxelles, pp. 29–

55 (1950).
20. DeWitt, B.S. Quantum Theory of Gravity II. The Manifestly Covariant Theory. Phys. Rev. 160, 1195-1239 (1967).
21. Higgs, P.W.  Broken Symmetries and the Masses of Gauge Bosons.  Phys. Rev. Lett. 13, 508 (1964).
22. ’t Hooft, G.  Renormalizable Lagrangians for massive Yang-Mills fields.  Nuclear Physics B 35, 167–188 (1971).
23. Zeidler, E.  Quantum Field Theory III: Gauge Theory.  Springer-Verlag, Berlin, Heideberg (2011).
24. Helland, I. S. Statistical inference under symmetry. International Statistical Review 72, 409-422 (2004).
25. Moreva, E.V., Brida, G., Gramegna, M.,  Giovannetti, V., Maccone, L. & Genovese, M.  Time from quantum entanglement: An

experimental illustration.  Physical Review A 89,  052122 (2013).
26. De Wit, C.C., P. Tsiotras, E. Velenis, M. Basset, G. Gissinger, Dynamic tire friction models for vehicle traction/braking control,

Vehicle System Dynamics 39(3),189-226 (2003).
27. Tozzi A., Peters J.F. A topological approach unveils system invariances and broken symmetries in the brain. Journal of

Neuroscience Research, 2016, in press.
28. Peters, J.F. Computational Proximity.  Excursions in the Topology of Digital Images, Springer, 2016, in press.
29. Borsuk, K.  Drie satze uber die n-dimensional euklidische sphare, Fund. Math. XX, 177-190 (1933).
30. Borsuk, K.  Concerning the classification of topological spaces from the standpoint of the theory of retracts, Fund. Math., XLVI,

321-330 (1959), MR0104216.
31. Dodson, C.T.J., Parker, P.E.  A user’s guide to algebraic topology, Kluwer, 1997, xii+405 pp., MR1430097.
32. Weyl, H (1982). Symmetry. Princeton: Princeton University Press. ISBN 0-691-02374-3.
33. Roldán E, Martínez IA, Parrondo JMR, Petrov D. Universal features in the energetics of symmetry breaking.

Nature Physics 10, 457–461 (2014) doi:10.1038/nphys2940



24

QUANTUM ENTANGLEMENT ON A HYPERSPHERE

A quantum entanglement’s composite system does not display separable states and a single constituent cannot be fully
described without considering the other states.  We introduce quantum entanglement on a hypersphere - which is a 4D
space undetectable by observers living in a 3D world -, derived from signals originating on the surface of an ordinary 3D
sphere.  From the far-flung branch of algebraic topology, the Borsuk-Ulam theorem states that, when a pair of opposite
(antipodal) points on a hypersphere are projected onto the surface of 3D sphere, the projections have matching description.
In touch with this theorem, we show that a separable state can be achieved for each of the entangled particles, just by
embedding them in a higher dimensional space.  We view quantum entanglement as the simultaneous activation of signals
in a 3D space mapped into a hypersphere.  By showing that the particles are entangled at the 3D level and un-entangled
at the 4D hypersphere level, we achieved a composite system in which each local constituent is equipped with a pure
state.  We anticipate this new view of quantum entanglement leading to what are known as qubit information systems.

1. INTRODUCTION

Quantum entanglement is a widely accepted, experimentally verified physical phenomenon occurring when a system of
particles interact as a whole, in a way such that the quantum state of each particle cannot be described independently and
their physical properties - such as position or spin - are instantly correlated (1).  When a composite system is entangled,
it is impossible to separate its components and attribute to each one a definite pure state.  Quantum state cannot be factored
as a product of states of its local constituents (e.g. individual particles) and one constituent cannot be fully described
without considering the other(s) (2-4).  It gives rise to a paradoxical effect: it seems that one particle of an entangled pair
“knows” what measurement has been randomly performed on the other, even though such information cannot be
communicated between them.  While a composite system is always expressible as a sum of products of states of local
constituents, when the system is entangled the sum necessarily has more than one term.  This means that we cannot
recognize cause/effect relationships.  In such a framework, the Borsuk-Ulam theorem (BUT) from topology comes into
play, leading to a game-changing result: the hypersphere quantum information theorem.  The BUT states that every
continuous map from a n-sphere (denoted Sn) to a n-Euclidean space must identify on Sn a pair of antipodal points directly
opposite each other (5) (Figure 1). To make an example, the case n =1 says that there always exist a pair of opposite
points on the earth’s equator with the same temperature.  An 3-sphere (called a hypersphere) is a generalization of the
circle: mathematically, it is a simply connected manifold of constant, positive curvature that maps to a 3-dimensional
Euclidean space (6).  When we examine a system equipped with quantum entanglement, we usually do not take into
account a noteworthy feature: our measurements are on a S2 manifold, which is a 3D world.
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Figure 1.  The Borsuk-Ulam theorem for different values of Sn.   Two antipodal points in Sn  project to a single point in
Rn, and vice versa.  Remind that every Sn is embedded in a n+1-ball, and thus every Sn is one-dimension higher than the
corresponding Rn.

2. THEORY

Our basic approach is to map entangled system signals in S2 to S3.  Notice that our S2 measurements illustrate just the
“hints” of such an S3 activity analogous to way one recognizes an object from its shadow projected on a screen.  The
spheres equipped with n>2 are not detectable in the usual spatial 3-dimensions and are thus challenging to assess.   If we
look just at mappings on the surface of S3 system, we find the puzzling picture of quantum entanglement, apparently
incompatible with our perceptions.  BUT also states that every continuous function maps each pair of antipodal n-sphere
surface points into surface vectors on a Euclidean n-space.  This means that entanglement (i.e., a system not formed by
two product states) can be seen as just 3D space surface points that have a corresponding pair of S3 antipodal points (pure
states!). We demonstrate that each of the two entangled particles may have a pure state, provided they are embedded in
a dimension higher: the system is entangled at the S2 level, but un-entangled at the S3 hypersphere level.  We thus obtain
a 4D composite system, factored as a product of states of its local constituents.
In keeping with recent work on quantum computation, quantum distillation and quantum information science (1,2), we
propose an approach to entanglement which provides a new source of quantum information, by mapping entangled quanta
on a 3D surface to unentangled quanta on the surface of a hypersphere.  The old adage that opposites are attracted to each
other, applies here.  This analogy, applied to the problem of extracting information from entangled quanta, gets it impetus
from BUT, a discovery made by Borsuk (5) in 1933.  If we start with entangled quanta with antipodal locations on the
surface of a sphere, then a continuous mapping of surface particles to a higher level quanta on the surface of a hypersphere
results in matching quantum information derived from the entangled quanta.  This information is reversible for invertible
continuous mappings of antipodal surface quanta into the surface of a hypersphere.  Schrödinger (7)17 observed that we
must gather information about the entangled quanta to achieve disentanglement.  His work provides yet another solution
to the disentanglement problem.  In this instance, our proposed continuous mapping of surface quanta to hypersphere
surface quanta is analogous to what Schrödinger calls a programme of observations as a means of finding representatives
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of entangled quanta.  In our case, the quantum-mapping images are representatives of entangled quanta, with the added
bonus that the images provide matching signatures of the entangled surface quanta.

3. MATHEMATICAL MODEL AND EQUATIONS

The basic approach is to think in terms of a homotopic mapping of a 3D shape produced by one continuous function that
can be deformed into another shape by a second continuous function.  To do this, we first consider the BUT theorem.  An
n-dimensional Euclidean vector space is denoted by nR .  Thus, for example, a feature vector nx RÎ  models the

description of a surface signal.  BUT states that every continuous map : n nf S R®  must identify a pair of antipodal
points – diametrically opposite points on an n-sphere (8-11).   Points  are antipodal, provided they are diametrically
opposite (9).   Examples of antipodal points are the endpoints of a line segment, or opposite points along the circumference
of a circle, or poles of a sphere.
We will follow the terminology displayed in BOX.  The notation nS  designates an n-sphere.  We have the following n-
spheres, starting with the perimeter of a circle (this is S1) and advancing to S3, which is the smallest hypersphere:
1-sphere S1  : x1

2 +  x2
2 → R2 (circle perimeter),

2-sphere S2  : x1
2 +  x2

2 + x3
2 → R2 (surface),

3-sphere S3 : x1
2 +  x2

2 + x3
2+ x4

2 → R2 (smallest hypersphere surface),  ...,
n-sphere Sn : x1

2 +  x2
2 + x3

2+ ... + xn
2→ R2

If we view the phase space of quantum entanglement as a n-sphere and the feature space for signals as a finite-dimensional
Euclidean topological space, then BUT tells us that for each description ( )f x  of a signal x , we can expect to find an
antipodal feature vector ( )f x- that describes a signal on the opposite (antipodal) to x with a matching description (Figure
2).

Let X denote a nonempty set of points on the surface of a 3D system.  We assume that that is a topological space, which
means that the unions and intersections of the subsets of x belong to X.  Let ,X Y  be topological spaces.  Recall that a
function or map :f X Y®  on a set X to a set Y  is a subset X Y´ , so that for each x XÎ there is a unique y YÎ
such that ( , )x y fÎ  (usually written ( )y f x= ).  The mapping f  is defined by a rule that tells us how to find ( )f x
.  A mapping :f X Y®  is continuous, provided A YÌ  is open, then the inverse 1( )f A X- Ì  is also open (8,11,12)
14,19,22. In this view of continuous mappings from a signals topological space X on the surface of a 3-sphere to the signal
feature space nR , we can consider not just one signal feature vector nx RÎ , but also mappings from X  to a set of
signal feature vectors ( )f X . This expanded view of signals has interest, since every connected set of feature vectors

( )f X  has a shape, which has direct bearing on the study of the shapes of space (13).   This means that signal shapes (in
our case, mappings of sets of entangled particles) can be compared.
A consideration of ( )f X (set of region signal descriptions entangled on a n-sphere) instead of ( )f x  (description of a
single signal x ) leads to a region-based view of signals, which arises naturally in terms of a comparison of shapes
produced by different mappings from X (object space) to the feature space nR .
Let , :f g X Y®  be continuous mappings from X  to Y  . The continuous map : [0,1]H X Y´ ®  is defined by

( ,0) ( ),H x f x= ( ,1) ( ),H x g x=  for every x XÎ .
The mapping H is a homotopy (6,14,15), if there is a continuous transformation (called a deformation) from f to g. The
continuous maps f, g are called homotopic maps, provided ( )f X continuously deforms into ( )g X (denoted by

( ) ( )f X g X® ). The sets of points ( )f X , ( )g X are called shapes (8,13).

The mapping : [0,1] nH X R´ ® , where ( ,0)H X  and ( ,1)H X  are homotopic, provided ( )f X  and ( )g X have
the same shape. That is, ( )f X  and ( )g X are homotopic, if:

( ) ( ) ( )f X g X f X- <  , for all x XÎ .
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BOX

The following notation and terminology is used in this paper:

Qubit stands for quantum information.

Qubit system stands for a system that can be in one of an infinite number of states.

A space X is pathwise-connected, provided, for every two points A,B∈ X,  there is a path connecting them (22). This
means that each pair of points A,B are connected by a curve lying wholly within X.

1-sphere: S1 stands for a 1-sphere (i.e, a collection of circles). Each x ∈ S1 is a vector (x1, x2) on the perimeter of a

S1 circle. A∈ S1, is a vector (x1, x2) on the circumference of a 1-sphere.

2-sphere: S2 is a 2-sphere (for example, a common beach ball). Each x∈ S2 is a vector (x1, x2, x3).

(A, q(A)) is a vector on the surface of a 2-sphere, in which q(A) ∈ R is a real number that is a signal value.

|q(A)⟩q(A) stands for a singlet state vector written as a ket	|q(A)⟩q(A) of the signal q(A) on a 2-sphere.

3-sphere: S3 stands for a 3-sphere (the smallest hypersphere).  Each x∈ S3 is a vector (x1, x2, x3, x4).

f(q(A)) ∈ S3 is a vector (A, q(A), f(q(A))) on the surface of a hypersphere S3, while f(q(−A)) ∈ S3 is a vector ((−A, q(

−A), f(q(−A))).   Observe that f(q(A)) = f(q(−A)) is predicted by BUT.

|f(q(A))⟩q(A) is a singlet state vector written as a ket	|f(q(A))⟩ of the description of q(A) on the 3-sphere.
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Figure 2A. Spontaneous parametric down-conversion, the commonest method used to create quantum entanglement,
may generate a pair of photons entangled in polarisation (23,24).  When a strong laser beam is conveyed through a
nonlinear crystal, the most of photons continue straight through the crystal, while a small amount are splitted into photon
pairs. The two photons may share the same polarization (type I correlation), or may be equipped with mutually
perpendicular polarizations (type II correlation). In the latter case, displayed in Figure, we are in front of a pair of
horizontally- and vertically- polarized entangled photons (A and B).  These type II photons display trajectories,
constrained within the two cones, which may exist simultaneously in the lines where the cones intersect.

Figure 2B.  The two cones represent sources of pairs of photons that become entangled.  We embedded the two points A
and B (visually represented by blobs with dark centers), corresponding to the entangled particles of Figure 1A,  in  a
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circumference centred in the laser beam.  Such a circumference is one of the circles surrounding the sphere Sn.  For the
Borsuk-Ulam theorem, the two antipodal points A and B are described by the same function, provided they are embedded
in Sn.  The function stands for the physical properties corresponding to the quantum entanglement of the two particles A
and B: in this framework, it becomes clear that the two points are strictly correlated.  Note that the figure is just an
oversimplification: the Sn sphere,  which  is  actually  a  3-sphere,  is  depicted  as  a  simple  2-sphere,  to  make  it  easier  to
recognize.

4. RESULTS AND DISCUSSION

Once achieved an association between the geometric notion of shape and homotopies, we introduce the following
theorem:
Hypersphere Quantum Information Theorem. Let {|f(q(−A))⟩} be a set of pathwise-connected qubit vectors on the
surface of a hypersphere S4 in a normed linear space. The shape {|f(q(−A))⟩} induced by the set of path-connected qubit
state vectors can be deformed onto the shape {|f(q(A))⟩} on a 4-sphere.
Proof: The proof is an immediate consequence of the Borsuk-Ulam Theorem.  From BUT, each |f(q(A))⟩ = |f(q(−A))⟩.
Hence the shape {|f(q(−A))⟩} deforms into the shape {|f(q(A))⟩}.
Next, we investigate quantum entanglement on an n-Sphere embedded in a normed linear space X.  Let E(A,B) denote
the entanglement of vectors A,B on a normed linear space.   Conventional entanglement is represented by:
E(A,B) =1/√2 (|0⟩A ⊗ |1⟩B −|1⟩A⊗ |0⟩B) .

Let S1∈ X  be the circumference (perimeter) of a 1-sphere circle, A,−A ∈ X the quanta (vectors) on X and, finally, let

A,−A be antipodal quanta on X.   Let q : X → R be a mapping from a quantum A on X into the reals R and q(A), q(B) ∈
R be real-valued antipodal entangled signals.  In addition, let Q be a set of signal values originating from points A, B on
the perimeter X of a 1-sphere circle.
Remark 1. For A in Sn, the point A (also called a state) and the signal q(A) defines a vector (A, q(A)) on the surface of a
2-sphere.  That is, Sq(A)⟩A∈ S2. Signals on an S2 surface are then mapped to feature vectors f(q(A)) ∈ S3 that describe
the signals q(A).  From this, we can rewrite the quantum entanglement model in the following way. Let E(A,−A) denote
the quantum entanglement of states A,−A, defined by:
E(A,−A) =1/√2 (|q(A)⟩A ⊗ |q(B)⟩−A −|q(−A)⟩−A ⊗ |q(A)⟩A) .
Let Q be a set of signals on the surface of a 2-sphere, Y be a set of feature vectors S3 on the surface of a 4-dimensional
hypersphere and f : Q → Y be a continuous mapping on the set of signals Q into Y.  Let q,−q ∈ Q be antipodal quantum
signals.
Remark 2. f(q(A)) defines a feature vector (A, q(A), f(q(A))) on the surface of a hypersphere S3. That is, |f(q(A))⟩q(A)
∈ S3. Each qubit provides information about a signal q(A).  In addition, the Borsuk-Ulam Theorem predicts the presence
of antipodal qubits f(q(A)), f(q(−A)), such that the information provided by f(q(−A)) matches the information provided
by f(q(A)).  From this, we obtain a new form of entanglement, at the information level on a hypersphere.  Let E(q(A),
q(−A)) denote the quantum entanglement of states q(A), q(−A), defined by:
E(q(A), q(−A)) =1/√2 (|f(q(A))⟩q(A) ⊗ |f(q(−A))⟩q(−A) − |f(q(−A))⟩q(−A) ⊗ |f(q(A))⟩q(A)).

Let the qubit system Y = {Sf(q(A))⟩} be a set of pathwise-connected qubit vectors on the surface of a hypersphere S3 in
a Hilbert space, which defines a quantum information system. That is, the set of descriptions Y of signals provides a
model for a process about a collection of signals.  From the Hypersphere Quantum Information Theorem, we know that
the shape {|f(q(−A))⟩} can be deformed into the shape Y . In addition, from the Borsuk-Ulam Theorem, we also know
that:
|f(q(A))⟩ = |f(q(−A))⟩.
This means that a definite pure state can be attributed to |f(q(A))⟩. The system is thus entangled at the S2 level, while is
un-entangled at the S3 hypersphere level.
The geometrical aspects of entanglement have been already investigated by offering a numerical approach, iteratively
refining an estimated separable state towards the target state to be tested, and checking if the target state can indeed be
reached (16)16.   We gave instead a different geometrical account of quantum entanglement, by exploring the possibility
of a a correlation between it and the Borsuk-Ulam Theorem.  We showed that there are striking analogies between the
antipodal points evoked by BUT and the entangled particles evoked by quantistics, such that the phenomenon of quantum



30

entanglement can be investigated in guise of an n-sphere embedded in a Hilbert Space.   This leads naturally to the
possibility of a region-based, instead of a point-based, geometry in which we view collections of signals as surface shapes,
where one shape maps to another antipodal one (17-21).   We have developed a mathematical model of antipodal points
and regions cast in a physically-informed fashion, resulting in a framework that has the potential to be operationalized
and assessed empirically.  The notion that information about particles resides on a hypersphere is a counter-intuitive
hypothesis, since we live in a 3D world with no immediate perception that 4D space exists at all, e.g., if we walk along
one of the curves of a 4-ball, we think are crossing a straight trajectory, not recognizing that our environment is embedded
in higher spatial dimensions.  The cause/effect relationships of the entangled system occurs in the fourth dimension: for
this reason, we are not able to detect it by ordinary means.  We are able to look just at at the 3D part part of the S3 system
and such an incomplete viewpoint gives us the false impression of a weird picture, apparently incompatible with our
common sense.  In conclusion, the Borsuk-Ulam theorem sheds new light on quantum entanglement.  It explains how the
two entangled particles on a hypersphere yield observations about particles that reside on a lower dimensional sphere,
thus leading to a quantum information system.
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COMPUTATIONAL GEOMETRY PROVIDES INDIRECT EVIDENCE OF
DARK MATTER LOCATION IN COSMIC STRUCTURES

The elusive dark matter is the best candidate in order to explain gravitational effects such as, for example, the motion of
stars in galaxies.  We introduce a novel method for the measurement of information in cosmic images called maximal
nucleus clustering (MNC) i.e., nucleus clustering’s Rényi entropy derived from strong proximities in feature-based
Voronoï tessellations. MNC is a novel, fast and inexpensive image-analysis technique, independent from other detectable
signals.  It  permits the assessment of changes in gradient orientation into zones of two-dimensional cosmic images that
generally are not taken into account by other techniques. In order to evaluate the potential applications of MNC, we
looked for the presence of MNC’s distinctive hallmarks in the plane surface of astronomic images. We found that Rényi
entropy is higher in MNC areas of cosmic images than in the surrounding regions, and that these patterns are correlated
with cosmic zones containing a lesser amount of dark energy.  Therefore, computational geometry provides a bridge made
of affine connexions and proximities between features of a two-dimensional pictures and physical features of the
Universe.

A diffuse presence of invisible dark matter in the Universe is required by current cosmological models, in order to explain
features such as the experimentally detected movement of stars in the peripheries of galaxies (Penrose, 2011; Aad et al.,
2013; Khachatryan et al, 2015).   Here  we introduce a novel technique of cosmic image analysis  in the plane surface of
2D images.  The method, called computational proximity, takes into account  maximal nucleus clustering in Voronoï
tessellations (Peters, 2016, Peters and Inan, 2016).  Cosmic images are subdivided in contiguous polygons, termed
“Voronoï polygons” (without interstices or overlap).  They yield a density map, called “tessellation”, that makes it
possible to make an objective measurement of the spatial distribution of polygon areas  and helps to define “random”,
“regular” and “clustered” distributions (Franck and Hart, 2010; Edelsbrunner, 2014; Peters and Guadagni, 2015; Peters
et al., 2016).  Voronoï  tessellations have been already used in cosmology, i.e., in order to to investigate spatial cosmic
matter distribution on scales of a few up to more than a hundred Megaparsec  (van de Weygaert, 2007).   In a Voronoï
tessellation of a cosmic image, of particular interest is the presence of maximal nucleus clusters (MNC), i.e., cosmic zones
with the highest number of adjacent polygons (Peters and Inan,  2016).  The MNC clustering approach includes a main
feature of level set methods, namely, a nucleus boundary that is embedded in a family of nearby level sets (Saye and
Sethian, 2011).  MNC reveals regions of the Universe, independent from other techniques, characterized by different
gradient orientation and gradient magnitude (edge strength) of region pixels.  Here we evaluate the power and
potentialities of this novel, easy and inexpensive approach.  We also establish a link between MNCs and the presence of
the otherwise undetectable  dark matter in cosmic images.

MATERIALS AND METHODS

Cosmic images.  We used public domain astronomic pictures from the NASA website
(http://apod.nasa.gov/apod/archivepix.html). Here follows a list of the cosmic structures we evaluated using
computational geometry techniques.

1) Starburst Galaxy Messier 94 (Figure 1).  It lies 15 million light-years distant in the northern constellation of
Canes Venatici. The galaxy’s compact nucleus and prominent inner dust lanes  are surrounded by a ring of
young, massive stars, likely less than 10 million years old (Image Credit: ESA/Hubble and NASA).

2) The “classical” image depicting the cosmic microwave background (Figure 2A), which is the almost isotropic
thermal radiation left over from an early stage in the development of the Universe, about 380,000 years after the
Big Bang (Penzias and Wilson, 1965; Gawiser and  Silk, 2000; Fixsen, 2009).

3) the SDSS 3-dimensional map of the distribution of galaxies (Figure 2B). Earth is at the center, and each point
represents a galaxy, containing about 100 billion stars. The outer circle is at a distance of two billion light years.
Both slices contain all galaxies within -1.25 and 1.25 degrees declination.  (Image Credit: M. Blanton and the
Sloan Digital Sky Survey,  https://www.sdss3.org/science/gallery_sdss_pie2.php).

4) Cosmic structures from the in the long-necked, northern constellation of Camelopardalis.  In particular, we
evaluated the the spiral galaxy NGC 2403 (Figure 3A), which stands within the boundaries of the constellation
(Image Credit & Copyright: Eric Coles and Mel Helm), and the Hidden Galaxy IC 342 (Figure 3B), similar in
size to large spiral galaxies in our neighborhood.  IC 342 may have undergone a recent burst of star formation
activity and has gravitationally influenced the evolution of the Milky Way (Image Credit & Copyright:
Fabiomassimo  Castelluzzo).
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5) IRG-NGC303, magnitude 14.3, lenticular Galaxy (Figure 3C).
6) the Red Square Nebula MWC9 22 (Figure 4).  The featured image combines infrared exposures from the Hale

Telescope on Mt. Palomar in California, and the Keck-2 Telescope on Mauna Kea in Hawaii. A hypothesis for
the unusual square shape is that the central stars expelled cones of gas during their late developmental stage.
These cones incorporated nearly right angles and were visible from the sides. Supporting evidence for the cone
hypothesis includes radial spokes in the image that might run along the cone walls. (Image Credit & Copyright:
Peter Tuthill  & James Lloyd).

7) NGC 1068  (Figure 5A). This spiral galaxy, located in the Cetus constellation 47 million light-years
away, contains a supermassive black hole (detected by NASA’s Nuclear Spectroscopic Telescope Array, or
NuSTAR, and the European Space Agency’s XMM-Newton space observatory).

8) Markarian 231 (Figure 5B).  This Hubble Space Telescope image reveals a bright glow in the center of the
interacting galaxy Markarian 231, the nearest quasar to the Earth.  Quasars are powered by a central black hole
that heats gas around it to unleash tremendous amounts of energy.  Hubble spectroscopic observations infer the
presence of two supermassive black holes whirling around each other (Credit: NASA, ESA, the Hubble Heritage
Team (StScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia,
Charlottesville/NRAO/Stony Brook University).

9) SDSSJ1126-2944 (Figure 5C).  This galaxy is the result of a merger between two smaller galaxies, which
brought together a pair of supermassive black holes. One of the black holes is surrounded by a typical amount
of stars, while the other is strangely “naked” and has a much lower number of associated stars than expected
(Comerford 2015).  (Image Credit & Copyright: Julie Comerford and NASA Chandra Xray Observatory).

Nucleus clustering in Voronoï  tessellations. The plane surfaces of cosmic structures’ pictures were subdivided into
contiguous polygons, the so-called “Voronoï polygons” (Figure 1A).  Geometrically, a Voronoï tessellation is a collection
of non-overlapping convex polygons (Edelsbrunner,  2006).   Each point p in the tiling represents a generating point
(called a site) with particular features, such as corners, centroids, gradient orientation and brightness (some of them are
depicted with the letter p in Figure 1A). A Voronoï region contains every point in the plane that is closer to the point p
than to any other site.  In technical words, each polygon is a Voronoï region V(s) of a generating point s SÎ , which is
a set of all points nearer s than to any other point in S.   We achieve a “tessellation”, i.e., a density map that allows an
objective measurement of the polygon areas’ spatial distribution.  A central Voronoï region in called the cluster nucleus
(some of of the cluster nuclei are depicted with the letter N in Figure 1A) and contains all the points on the plane surface
that are nearer to the generating point p than to any other generating point on the surface (Figure 1B).   A Voronoï nucleus
cluster is a collection of Voronoï  polygons that are adjacent to their central cluster nucleus (Peters, 2016): that is, each
polygon which is strongly near a cluster nucleus has an edge in common with its polygon (Edelsbrunner, 2014).  In a
Voronoï  tessellation carried out in a so called “strong” proximity space (Peters 2016), of particular interest is the presence
of maximal nuclei, i.e.,  zones  with  the  highest  number  of  sides  and of  adjacent  polygons  (Figure 1C, letter M). The
maximal nucleus plus its adjacent polygons is called maximal nucleus cluster (MNC): in sum, the latter is a Voronoï
cluster in which the cluster nucleus is a polygon which displays the highest number of sides (in Figure 1E, a MNC is
embedded in the white oval).    In technical terms, this clustering approach includes a main feature of level set methods,
namely, a nucleus boundary that is embedded in a family of nearby level sets.   Strongly near Voronoï polygons is an
application of the notion of strong proximity between sets of points: for further details and the algorithms, see Peters
(2016) and Peters and Inan (2016).
Summarizing, in a tessellated image, Voronoï  tessellation serve as indicator of high object concentration and
inhomogeneity distributions, while MNCs as indicators of gradient orientations.

Steps to Construct Maximal Nucleus Clusters on a Tessellated Cosmic Image. Here we give the steps to construct
MNCs on a tessellated cosmic image (see Figure 1.0).   The basic approach is to find those polygonal regions in a cosmic
image that yield the most information and the reflect the fact that the site (generating point) each Voronoï region has a
gradient orientation and gradient magnitude (edge strength) that is different from all of the other generating points.   The
nucleus of an MNC has a singular character, since the number of Voronoï regions along the borders of the nucleus is
maximal.   It is this maximality that is a signature of cosmic regions that yield the greatest information levels.
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Figure 1.0. The steps in the method used to construct the mesh MNCs on a cosmic image shown in Figure 1D.

Rényi entropy assessed information content in cosmic Nucleus Clusters. We showed in the previous paragraphs that
the major new elements in the evaluation of cosmic images are nucleus clusters, maximal nucleus clusters, strongly near
maximal nucleus clusters, e.g., convexity structures that occur whenever max nucleus clusters intersect (Peters and Inan,
2016).   In a Voronoï tessellation, of particular interest is the presence of maximal nucleus clusters (MNC), i.e., clusters
with the highest number of adjacent polygons.   In this section, we introduce a measure of the information that MNCs in
cosmic images yield.  We demonstrate that MNC reveal regions of the Universe with higher levels of information, in
comparison with non-MNC regions, that uniformly yield less information.

In a series of papers, Rényi (Rènyi, 1961; Rènyi, 1966), introduced a measure of information of a set random events.  Let
X be a set random events such as the occurrence of polygonal areas in a Voronoï tessellation and let 0, 1, ( )p xb b> ¹
the probability of the occurrence of x in X.   Then Rényi entropy ( )H Xb is defined by
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Because of the relationship between Rényi entropy of a set of events and the information represented by events, Rényi
entropy and information are interchangeable in practical applications (Rènyi, 1982; Bromiley et al., 2010).  In fact, it has



34

been shown that Rényi entropy ( )H Xb   is a monotonic function of the information associated with X.   This means that

Rényi entropy can be used as a measure of information for any order 0b > .

Let ,MNC nonMNCX X  be sets of MNC polygon areas and non-MNC polygon areas in a random distribution of tessellation

polygon areas.   Also, let
1 1( ) , ( )p x p y
x y

= =  be the probability of occurrence of , .MNC nonMNCx X y XÎ Î  Notice

that the nuclei in MNCs have the highest concentration of adjacent polygons, compared with non-MNC polygons.  Based
on measurements of Rényi entropy for MNC vs. non-MNC observations, we have confirmed that Rényi entropy of nucleus
polygon clusters is consistently higher than the set of non-MNC polygons (Figures 3 and 4).   This finding indicates that
MNCs yield higher information than any of the polygon areas outside the MNCs.

Figure 3.  Rényi entropy values of maximal nucleus clusters, compared with the surrounding areas of cosmic  images.
The x axis displays the values of the Beta parameter for 1.1 2.5b£ £  .
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Figure 4.  Rényi entropy values vs. number polygon areas vs. 1.1 2.5b£ £  of maximal nucleus clusters in cosmic
images.   MNC Nuclei surrounded by polygons with smaller areas have higher Rényi entropy, which tells us that smaller
MNC areas yield more information than MNCs with larger areas.

In sum, Rényi entropy provides a measure of the information in maximal nucleus clusters and the surrounding zones of
cosmic images.  This means that the information from areas occupied by MNCs vs. non-MNC areas can be measured and
compared.  This also means that the maximal nucleus clusters are equipped with higher entropy values (and corresponding
higher information), which contrasts with measure of information in the surrounding non-MNC zones.  Hence, MNCs
make it possible to pinpoint the highest source of information in images of the Universe.

Dark matter comes into play. MNCs  indicate zones where singular generating points lie which are equipped with
gradient orientations and gradient magnitudes different from the rest of the cosmic image.   This  means, in our case, that
the homogeneity of the galaxies is broken in some points, where a different gradient orientation angle occurs.  A
deformation of the spacetime occurs in the zones of MNCs.  What is the cause of such local inhomogeneities?   We can
assess the discrepancies in terms of symmetry  breaks, locally disrupting the general symmetry of the cosmic structures’
experimentally detected movements.  Symmetries, in turn, are dictated by the mutual interactions between visible and
dark matter.  Symmetry breaks could be due to factors that obstruct  the natural settings of stars in galaxies, which results
from the subtle interaction of visible and dark masses.  Indeed, a variant of the virial theorem (Pollard, 1964) states that:
v = ඥݎ/ܯܩ
where v is the velocity of stars, G is the gravitational constant, M is the mass and r is the distance of the star from the
center of the galaxy.  It means that an increase of dark matter, believed as located out of the galaxies, increases the value
of the mass M, in order that stars speed v does not decrease as could be expected when their distance r from the center of
the Galaxy increases.  Therefore, MNCs might stand for zones where the ratio visible/dark matter is different, compared
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with others.  It leads to the subtle differences in gradient orientation detected by MNCs.  In sum, the concentration of dark
matter in MNCs cosmic zones is different from the surrounding ones.  The next answer is: once established that in MNCs
zones the concentration of dark matter is diverse from the surrounding zones, could we assess whether it  is higher or
lower?  The increase of Rényi entropy in the MNCs zones suggests that information is higher into such zones and lower
outside.  Because visible matter is detectable, while dark matter is not, it is expected that an increase in information in
MNCs is dictated by larger concentrations of visible matter.   In sum, MNC zones contain more visible matter than the
surrounding zones, and it means less dark matter.  In sum, MNCs in a tessellated cosmic image point to cosmic regions
that has a diminished presence of dark matter.

RESULTS

At first, we evaluated the presence of MNC in the coarse graining, large-scale image of the cosmic microwave background
(Figure 2A).  We found that MNSs, rather than being scattered everywhere, are localized in clusters embedding specific
zones of the Universe.  It  is noteworthy that the MNC pattern is not as isotropic as the microwave background.   The
SDSS 3-dimensional map displays instead a symmetrical pattern of MNCs (Figure 2B).   Note that the maximal nuclei
lie in zones with lesser concentration of galaxies.   The MNC tessellation of more recent, lower-scale cosmic bodies
(Figure 3), revealed that MNCs, rather than being embedded in the very core of the galaxies, generally lie in their outer
branches.  Note that the MNCs are generally not embedded in the youngest astronomic bodies (see, e.g., Figure  1).
Clusters of MNCs micro-zones are scattered throughout the pictures  (Figures 4 and 5).  In order to quantitatively assess
MNCs’ size, we also provided the nuclei areas in square light years (see the legends of Figures 2 and 3).  Interestingly,
the galactic zones containing black holes displayed less MNCs than the surrounding structures (Figure 5).   In sum, MNCs
clusters, equipped with higher Rényi entropy compared with the surrounding zones, are scattered throughout different
cosmic areas.  It means that some micro-areas of a specific cosmical zones contain more information than the adjacent
ones.

CONCLUSIONS
We showed that computational proximity (i.e., strongly near nucleus mesh clusters) is able to reveal, in 2D fMRI images,
hidden patterns of Rényi entropy, enabling us to detect functional information from morphological data. There is a
difference in Rényi entropy between MNC and the surrounding zones, these data pointing towards diverse levels of dark
matter.   Therefore, in different coarse-grained images of the Universe at different times of evolution, MNC is able to
detect the presence of zones in which the concentration of dark matter is lower.  This result paves the way towards novel
approaches to cosmological evaluation, because MNC elucidates the zones of the Universe more likely to contain dark
matter.   MNC tessellation allows us to confine the zones of the sky in looking for such elusive matter: this could also
help reduce the number of dark matter candidates.  The holographic principle states that informational content of all the
objects that have fallen into a black hole might be entirely contained in surface fluctuations of the event horizon (Susskind,
2004; Pourhasan et al., 2014). It means that the black hole surface needs to have less information than the surrounding
cosmological structures. Our data show that this is the case: indeed, in the zones of the black hole, the information is
lower.  In conclusion, by uncovering evidence of dark matter in different cosmic images, our study shows that a novel
and fairly inexpensive image-analysis technique of simple planar images gives insights into the expansion of the Universe.
Further, MNC allows the detection of informational entropy which does not necessarily correspond to the zones of the
image that we repute more significant.  This means that MNC provide a basis for quantifying high-yield information areas
in cosmic image features that are normally “hidden” from our attention.
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Figure 1.  Computational proximity methods on a cosmic image (Starburst Galaxy Messier 94). Figure 1A depicts a
Voronoï tessellation, Figure 1B three cluster nuclei and Figure 1C their surface tiling (without the original picture),
which allows an easier evaluation. Figure 1D shows the three maximal nucleus clusters and Figure 1E their surface
tiling. See main text for further details.
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Figure 2A: cluster nuclei and MNC of a picture taken from the cosmic microwave background. Figure 2B: cluster nuclei
and MNC of a picture taken from the SDSS 3-dimensional map of the distribution of galaxies.
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Figure 3.  Cluster nuclei and MNC of pictures taken from different cosmic structures. Figure 3A: NGC 2403.  The
nuclei areas in square light years (ltyr2) are: N1 area= 14979.1 ltyr2; N2= 14861.9; N3 = 9074.54; N4 = 2774.25; N5=
1179.78.  The nuclei are marked with numbers (not shown in Figure) N1-N5 from right to left. Figure 3B: the Hidden
Galaxy IC 342.  Nuclei areas: N1 = 29375.9, N2 = 5624.46. Figure 3C: IRG-NGC303 Galaxy. Nuclei areas: N1 =
21654.8, N2 = 17403.7.
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Figure 4. Tessellation of the Red Square Nebula MWC9 22. Figure 4A illustrates the original image, Figure 4B its three
cluster nuclei and Figure 4C the corresponding three MNCs. Figure 4D shows two Voronoï nuclei.   The concentric

circles  represent nuclei generating points, while the non-concentric circles (endpoints of the straight edges in this
mesh) are the generating points of the adjacent Voronoï regions.   This means that this pair of MNCs overlaps.
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Figure 5.  Tessellation of three different galactic structures containing black holes: NGC 1068  (Figure 5A),
Markarian231 (Figure 5B) and SDSSK1126-2944 (Figure 5C).  Note  that  the  MNCs  always  occur  outside  the  black
holes.
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TOPOLOGICAL FRAMEWORK FOR BRANE COSMOLOGY

Our Universe could either lie on a spatial three-dimensional brane embedded in a higher dimensional bulk, or could be
flanked by one or more multi-dimensional branes of different possible sizes and shapes. Here we demonstrate, based on
novel topological findings, that disconnected strings with matching descriptions moving on a 4-brane  (or more) project
to a single string on a 3-brane.  This means that strings travelling on the bulk or on higher dimensional branes necessarily
display a counterpart in our 3D world, and vice versa.  Furthermore, based on the concept of homotopy equivalence, we
show how it is possible for branes to stitch together to become condensed branes.  Our framework allows a topological
duality among different brane theories, because it holds for all the types of branes, independent of their hypothetical
shape, curvature, size and boundaries.  Furthermore, a topological approach allow branes assessment in the general terms
of particle trajectories taking place on donut-like manifolds.   Indeed, every  high-dimensional brane, independent on the
subtending cosmological model, can be described in terms of multi-dimensional toruses  mapping to branes with lower
spatial dimensions.

1. INTRODUCTION

In brane cosmology, a brane is a domain of the Universe withnumber of dimensionslower than the surrounding or
bordering space (Baulieu et al., 2001; Burgess and Van Nierop, 2013).  Several brane theories have been developed
throughout the years (Candelas et al., 1985; Arkani-Hamed et al., 1998; Randall and Sundrum, 1999; Hitchin, 2003;
Hashimoto, 2012).  Some scientists believe that our visible four-dimensional Universe is a restricted 3-braneworld
endowed in a space extending in all directions, called the bulk, equipped with any number of spatial dimensions more
than three.  At least some of the extra-dimensions are extensive (possibly infinite) and branes may be moving through
them.  Brane-world scenarios might involve more than one,  either warped or large, multi-dimensional branes, giving rise
to a so-called multiverse.   A 3-brane can be either the boundary wall of a  bulk  spanning every dimension both on and
off the brane, or a non-boundary domain flanked by one or  more branes.   Other brane models state that  the additional
dimensions are compact and our Universe contains the extra-dimensions, so that no reference to the bulk is needed.  The
concept of braneworlds is based on the assumption that some strings are confined to lower-dimensional branes, trapped
there by physical laws.  They cannot travel in other dimensions and their forces influence just other strings confined to
the same brane.  Brane-bound forces would spread out only along their brane, and brane-bound particles would be
exchanged solely along its dimensions.  Not all strings are confined to a single brane, because some of them might be free
to travel throughout the bulk.  Gravity, for example, is never confined to a brane.  This means that, at least via gravity,
braneworlds must interact with the bulk, or must be  connected to extra-dimensional branes.  Interactions with the bulk,
and possibly with other branes, can influence our world, introducing effects not detectable by standard cosmological
models.
Here we explore the possibility to assess branes, bulks and multiverse bulks in terms of algebraic topology.  We
demonstrate, based on novel topological findings, that disconnected strings with matching description embedded in a 4-
brane (or more) map to a single string on a 3-brane.  Therefore, strings moving on higher dimensional brane necessarily
display a counterpart in our 3D world, and vice versa.  This leads also to novel scenarios, where branes are able to scatter,
collide and combine, so that they merge together in an assessable way. Our framework holds for all the types of branes,
independent of their hypothetical shape, curvature, size and boundaries.  It means that all the hypothesized branes are
dual under topological transformation.  Here we show how such duality allows branes assessment in the general terms of
particles trajectories taking place on donut-like manifolds.  Indeed, every high-dimensional branes’ model can be
described in guise of  multi-dimensional toruses, projecting and mapping to branes which display lower spatial
dimensions.

2. TOPOLOGY, STRINGS AND BRANES

Here we assess a geometric structure, e.g.,  a string (denoted str) or worldline (Olive and Landsberg, 1989), which is a
region on the surface of either abstract geometric spaces or non-abstract physical spaces.  A string displays zero or non-
zero width ([30,  [6], [13])  and either bounded or  unbounded length.  A string is the path followed by a particle  moving
through a brane, or different branes, or the bulk (Olive, 1987).  Our 3D brane can be depicted as a  n-dimensional normed
linear space, while the bulk (or the higher-dimensional brane)  as a  n-dimensional hypersphere.  Various continuous
mappings from an n-dimensional hypersphere Sn to a feature space that is an n-dimensional Euclidean space Rn leadto a



44

string-based incarnation of the Borsuk-Ulam theorem  (BUT) (Borsuk 1933; Krantz, 2009; Tozzi and Peters, 2016a).  It
states states that:
Every continuous map : n nf S R®  must identify a pair of antipodal points (on Sn).
Points on Sn are antipodal, provided they are diametrically opposite (Weisstein, 2016).   If we simply evaluate branes  or
strings instead of points, BUT leads naturally to the possibility of a region-based brane geometry.  The two opposite
points could stand not just for the description of simple topological points (Marsaglia, 1972), but also of brane or strings
features, such as  spatial or temporal patterns, tensors, signals, particle trajectories (Peters, 2016). Therefore, we can
describe branes or strings features as antipodal points on n-manifolds.  Signal shapes can be compared, because the two
antipodal points can be assessed at higher-dimensional levels of observation, while single points at lower levels (Tozzi
and Peters, 2016b). The two points (or regions) do not need necessarily to be antipodal, in order to be described together
(Peters, 2016).  Indeed, BUT can be generalized also for the assessment of non-antipodal features, provided there are a
pair of regions on a n-sphere with the same feature value (Peters and Tozzi, 2016a).  We are allowed to consider also
homotopic regions on an n-sphere that are either adjacent or far apart.   Despite BUT was originally described just for
positive-curvature n-spheres,we are allowed to look for antipodal points also on manifolds equipped with non convex
curvatures (Mitroi-Symeonidis, 2015; Tozzi, 2016).  Whether branes display concave, convex or flat geometry, it does
not count, because we may always find the points with matching description predicted by BUT.Furthermore, a Sn manifold
might not map just to a Rn-1 Euclidean space, but straight to a Sn-1 manifold, e.g, a lower-dimensional surface of the same
Sn.  In other words, either the Euclidean space and other manifolds could be  omitted in brane theory.  We do not need
anymore a Sn manifold curving into a dimensional space Rn: we may think the brane just as existing by itself.  Indeed,
somebrane theoriesdo not requiretwo branes at all (Randall and Sundrum, 1999): by an intrinsic point of view, a single
brane might exist in - and on – itself and does not need to lie in a bulk (Weeks, 2002).  It means that the mapping of two
antipodal points to a single point in a dimension lower becames a projection internal to the same brane.   For technical
readers, see also: Dodson and Parker (1997), Matousek (2003), Crabb and Jaworowski (2013).

In the evaluations of strings confined to a brane, we take into account antipodal sets instead of antipodal points  (Peters
and Naimpally, 2012), because in a point-free geometry regions replace points as the primitives (Di Concilio, 2013; Di
Concilio and Gerla, 2006).  If we assess a string  in terms of a spatial regions on the surface of an n-sphere, or in an n-
dimensional normedlinear space, the same string can be defined as antipodal, provided the regions encompassing the
strings belong to disjoint parallel hyperplanes.  Put simply, strings have no points in common (Figure 1).  A region is
called a worldsheet,  or  a  brane,  if  everyone  of  its  subregions  contains  at  least  one  string.  In  other  words,  the  term
worldsheet or brane designates a nonempty region of a space completely covered by strings, in which every member is a
string (Peters and Tozzi, 2016b). A 2D plane worldsheet can be rolled up to form the lateral surface of a 3D cylinder,
termed a worldsheet cylinder. Further, a worldsheet cylinder maps to a worldsheet torus, formed by bending the former
until the ends meet.  In sum, a flattened worldsheet maps to a worldsheet cylinder and a flattened worldsheet cylinder
maps to worldsheet torus.  It means that a bounded worldsheet cylinder is homotopically equivalent to a worldsheet torus,
so that every brane can be described in terms of particle movements along the surface of multi-dimensional toruses.
Although strings on different wordsheets are antipodal and descriptively near, e.g., they share matching description, there
is however a difference between the strings embedded in branes of diverse dimensions.   The higher the dimension of the
wordsheet, the more the information encompassed in strings on the same region, because the number of coordinates is
higher. Strings contain more information than their projections in lower dimensions.  It means that BUT allows us to
evaluate systems features in higher-dimensions, in order to increase the amount of detectable information.  Vice versa,
dropping down a dimension means that each region in the lower-dimensional space is simpler.  Hence, BUT provides a
way to evaluate changes of information among different branes and bulk in a topological, other than thermodynamical,
fashion.
Next, consider Brouwer’s fixed point theorem (FPT), which states that  every continuous function from a n-sphere of
every dimension to itself has at least one fixed point  (Volovikov and Yu, 2008).  FPT applies, for example,  to any disk-
shaped area, where it guarantees the existence of a fixed point, which behaves like a sort of whirlpool attracting moving
particles.  Su (1997) gives a coffee cup illustration of the FPT: no matter how you continuously slosh the coffee around
in a coffee cup, some point is always in the same position that it was before the sloshing began. And if you move this
point out of its original position, you will eventually move some other point in the sloshing coffee back into its original
position.In BUT terms, it means that not only we can always find a n-sphere, e.g, a brane, containing a string, but also
that every string with a particular shape comes together with another string, termed a wired friend.  These observations
lead to a wired friend theorem: every occurrence of a wired friend string with a particular shape on the structure Sn maps
to a fixed description, e.g. to another string that belongs to a manifold or Euclidean space with different dimensions.
Every wired friend is recognizable by its shape, because the shape of a string is the silhouette of a wired friend
string.Therefore, we are allowed to achieve a map of wired friend strings, projecting from the 2D wordsheet to the 3D
cylinder and torus wordsheets. The mean achievement is that we can always find a string embedded in a higher-
dimensional brane which is the description of another string in a lower dimensional brane, and vice versa.
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Figure 1.  Samples of strings with finite length are represented by the bounded strings strA and strB. Regions strA,strBare
examples of antipodal strings.   Note that the torus might depict, according to the different brane theories, either a 4-brane
adjacent our 3D brane, or a 4D bulk in which our 3-brane is embedded.   The branes are depicted, for sake of clarity, one
dimension lower than the real ones.

3. BRANES AND HOMOTOPY EQUIVALENCE

In the previous paragraph, we showed why different branes necessarily have at least a few features in common.  Here we
illustrate how, in topological terms, brane shapes are continually transforming into new homotopically equivalent shapes.
Branes might influence each other by scattering, colliding and combining, to create bounded regions into the bulk.   Hence,
it is possible for branes to stick together to become condensed branes, e.g., worldsheets  (operationally assessable in terms
of the torus described above)  which depict the behaviour of a collection of interacting and scattering elements.

Homotopy Equivalence.
Let , :f g X Y® be  a  pair  of  continuous  maps.    For  example,  let ( )f X and ( )g X be two branes with fixed

endpoints.  A homotopy (Cohen, 1973) between f and g is a continuous map : [0,1]H X Y´ ® so that
( ,1) ( )H x g x= and ( ,0) ( )H x f x= .   The interest here is in the possibility of deforming (transforming) one brane

with a particular shape into another with a different shape.  It means that it the birth of branes, that evolve out of the
interaction of initially disjoint branes, is allowed.   Let :Xid X X®  denote an identity map defined by ( )Xid x x= .

Similarly, :Yid Y Y® is defined by ( )Yid t y= .  The composition ( )f g Xo is defined by ( )( ) ( )f g X f g X=o
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.  Similarly, ( )g f Xo is defined by ( )( ) ( )g f X g f X=o .   The sets X and Y are homotopically equivalent, provided

there are continuous maps so that ( )Xg f id xo � and ( )Yf g id yo � .   The sets X and Y are the same homotopy
type, provided X and Y are homotopically equivalent (Peters and Inan, 2016).   The interest here is in evolving branes that
have the same homotopy type.   In effect, homotopically equivalent brane shapes have the same homotopy type (Peters
and Naimpally, 2012).  This leads to a comparison of branes with seemingly varying shapes and sizes that are
homotopically equivalent.

Example.   Homotopically Equivalent Shapes.

 Fig. 2.A  3-Brane           Fig. 2.B  Two branes            Fig. 2.C  interacting branes

  Fig. 2.D dual branes            Fig. 2.E concentric branes     Fig. 2.F  tooth brane

Figure 2.  Eventually brane will deform into another, as a result of the collision of a pair of separate branes.  Let a brane
be represented by the 3-brane in Fig. 2.A.  This brane evolves over time as it twists and turns through the outer reaches
of the bulk.  An inkling twisting brane appearing in the neighbourhood of the first one is shown in Fig. 2.B.   The two
branes begin interacting, so that the first now has a region of space in common with the second in Fig. 2.C.  In effect, as
a result of the interaction between the branes, they  are partially stitched together in Fig. 2.C.   The partial absorbtion of
one brane in another is shown in Fig. 2.D. Here, a very large region of bulk space occupied by the first brane is absorbed
by the second and we have the birth of a condensed brane.  The two branes become at first concentric in Fig. 2.E., then a
complete  condensed brane is formed with a tooth shape in Fig. 2.F.  When the two branes are completely transformed
into a new one, we have instance of their homotopy of equivalence,  with the second that has completely absorbed the
first.

A stitching action on a pair of branes is homotopic mapping of one brane into another.    This is a further instance of the
duality principle in brane cosmology.   That is, one brane is the dual of another brane, provided the first can be deformed
into the second.   The brane in Fig. 2.E is an example of a Edelsbrunner-Harer nerve (Peters and Inan, 2016), which is a
collection NrvÁ  such that all nonempty subcollections of NrvÁ  have a non-void common intersection, i.e.,

{ }: .Nrv X XÁ= ÎÁ ¹ ÆI

Lemma 1.  Branes of the same homotopy type are stitched together to form a condensedbrane.
Proof.   Let A, B be branes with the same homotopy type.   Then brane A can be deformed into brane B.  In effect, brane
B absorbes brane A.   By definition, brane B is a condensed brane.  This phenomenon is true in general for homotopically
equivalent branes that have the potential to be stitched together.   Hence, the desired result follows.
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Theorem 1.  A condensed brane is an instance of an Edelsbrunner-Harer nerve.
Proof.  From Lemma 1, a condensed brane is an instance of an Edelsbrunner-Harer nerve.

Theorem 2.  Every brane is a Edelsbrunner-Harer nerve.
Proof.  Let A be a brane.  Every brane is a collection of strings.  Each of the strings have brane A in common.   That is,
all sub-branes of brane A have nonempty intersection.   Consequently, A is an Edelsbrunner-Harer nerve.  Hence, the
desired result follows.

4. DISCUSSION

Extra dimensional branes can come in different  numbers of sizes and shapes and may display either warped or large
extra-dimensions. If the bulk separates one brane from another, some strings might be embedded in the bulk, while others
are confined to branes.   Here we introduced novel topological variants that elucidate the features of different types of
extra dimensional setups.  We achieve generalizations that allow the assessment of every possible cosmological brane,
independent on its shape, size or boundaries. Our results show that sets of strings, equipped either with antipodal or non-
antipodal matching description and embedded in d-dimensional branes Md, map to a single set of strings in Md-1branes,
and vice versa.  The term matching description means the strings display common feature values, e.g., all the branes, even
if embedded in different dimensions, must have features in common.  It has been hypothesized that there exist different
branes that are too far apart ever to communicate with one another, so that strings bounded on distant branes would never
have direct contact. However, our topological investigation reveals that this scenario is unfeasible, because there must be
at least one element in common among branes that are very distant one each other too.  Further, all the branes and bulks
will always have some element in common, not just gravity: branes do not exist in isolation, rather they are part of a larger
interconnected whole with which they interact.
In brane cosmology, particle  movements are described as functions occurring on manifolds equipped with different
possible geometric curvatures.  We showed that M may stand for a multi-dimensional brane with any kind of curvature,
either concave, convex or flat.    Md-1 may also be a part of Md, or in other words, embedded in Md or lying on its surface.
Such rather general BUT dictates encompass almost all the brane models.  Indeed, cosmic theories claiming different
curvatures of the Universe (from hyperbolic anti-deSitter Cosmos, to inflationary models, to flat Riemannian 4D
Universes) and brane theories describing branes with small or large extra-dimensions (from warped scenarios and Calabi-
Yau manifolds, to extralarge and infinite dimensions) are DUAL: e.g., their topological description is the same, despite
the huge differences in the subtending manifolds.  Therefore, the shape is not important in the evaluation of branes,
because it is fully interchangeable. This also means that projections between dimensions describe  phenomena  spanning
from the smallest to the highest scales: the distinction in brane size in different theories does not count anymore.
Some branes theories predict the existence of open strings, e.g., strings equipped with two ends lying on diverse branes.
For our definition of antipodality, the two strings need to be separated.  An appropriate projection mapping shows that, if
two strings have matching features (shape, length, width, area), the two strings are the same.  This calls for the Brouwer
fixed point and wired friend theorems.  In sum, two strings with matching description embedded on two branes of different
dimensions are the same string and are not divided.   Strings with matching ends (regions) in different dimensions might
also help to explain  Einstein–Rosen-Podolski bridges.
The fundamental problem with conventional approaches to duality is starting with points instead of regions.   It carries
over in string theory, where one stitches together strings to obtain a new string.  This problem is solved in a framework
of  region-based spacetime geometry (Lentzen, 1939; Disalle, 1995; Henderson, 1996).
Our results also entail that every kind of high-dimensional brane can be described in terms of donut-like structures (Peters
and Tozzi, 2016b).  We showed that, while strings’ features  in our 3D Universe can be described in terms of particle
trajectories on 3D sheets, strings’ features in higher-dimensional branes  can be assessed in the generic terms of particle
trajectories traveling on multi-dimensional toruses.  This methodological advance could be useful in order to uniform  the
operationalization of the countless theories in brane cosmology.
By way of application of the proposed framework, the closed paths described  by BUT and FPT variants represent branes
occurring in different dimensions.  Every pathway in a brane is a closed string intertwined with strong proximities with
other strings in other branes.  Indeed, we showed that the branes’ components are densely connected with the rest of the
Universe. The tight coupling among different branes features gives rise to cosmic systems that are in charge of receiving
and interpreting signals from other branes, in closely intertwined relationships.
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TOWARDS A MONSTER GROUP ENCOMPASSING THE UNIVERSE
(symmetries, information and monster groups before and after the big bang)

The Monster group, the biggest of the sporadic groups, is equipped with the highest known number of dimensions and
symmetries. Taking into account variants of the Borsuk-Ulam theorem and a novel topological approach cast in a physical
fashion that has the potential to be operationalized, the Universe can be conceived as a lower-dimensional manifold
encompassed in the Monster group.  Our Universe might arise from spontaneous dimension decrease and symmetry
breaking that occur inside the very structure of the Monster Module.  We elucidate how the energetic loss caused by
projection from higher to lower dimensions and by the Monster group’s non-abelian features is correlated with the present-
day asymmetry in thermodynamic arrow.  By linking the Monster Module to theoretical physical counterparts, we are
allowed to calculate its enthalpy and Lie group trajectories.  Our approach also reveals how a symmetry break might lead
to a Universe based on multi-dimensional string theories and CFT/AdS correspondence.

The Mode is an enclosed, detectable manifestation of the Substance…
The Substance is equipped with infinite attributes (Spinoza, Ethica, pars I)

INTRODUCTION

The Fischer-Griess Monster group, the largest among the twenty-six sporadic groups, is equipped with 196,883 dimension
and an order of about 1054 elements (Conway et al., 1986).  It is noteworthy that the Monster Module displays the highest
known number of symmetries (du Sautoy).  It has been recently proposed that the symmetries, widespread invariances
occurring at every level of organization in our Universe, may be regarded as the most general feature of physical systems,
perhaps also more general than thermodynamic constraints (Tozzi and Peters, 2016a, Roldán 2014).  Therefore, giving
insights into the Monster symmetries would provide a very general approach to systems function, Universe evolution and
energetic dynamics.  Here we show how a novel symmetry-based, topological approach sheds new light on Monster’s
features.  We provide a foundation for the Monster’s physical counterparts, cast in a fashion that has the potential to be
operationalized, which can be used for the assessment of our Universe’s evolution and, in particular, pre-big bang
scenarios.
This paper comprises four sections.  In the first section, we describe a generalized version of the Borsuk-Ulam theorem,
in order to provide the topological machinery for further evaluations of the Monster in the context of theoretical physics.
Section two explains how the Universe might originate from the Monster Module, due to a dimension loss, linking the
Monster group to theoretical physics counterparts.  Furthermore, taking into account energetic arguments dictated by
topological dimension decrease, the section explains why and how our Universe is equipped with the symmetry breaks
which give rise to the thermodynamic arrow. Section three elucidates various physical features of the Monster.  In the
final section, we raise a number of still open questions.

1) TOPOLOGICAL TOOLS

The standard version of the Borsuk-Ulam theorem (BUT).
The Borsuk-Ulam Theorem (Borsuk 1933) states that:
Every continuous map : n nf S R®  must identify a pair of antipodal points (on nS ).

This means that the sphere nS maps to the Euclidean space ,nR which stands for an n-dimensional Euclidean space
(Beyer; Matoušek).  See Tozzi and Peters (2016b) for further details.  The original formulation of BUT displays four
versatile ingredients which can be modified, resulting in different guises: a continuous function, two antipodal (or non-
antipodal) points with matching description, an n-sphere equipped with different n values and, last but not the least, a
mapping from a higher to a lower dimension that is invertible.

BUT variants.  We resume some BUT variants described by Peters (2016) and Tozzi and Peters (2016a).  The concept
of antipodal points can be generalized to countless types of signals.  Two opposite points encompass not just the
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description of simple topological points, but also of spatial and temporal patterns, vectors and tensors, functions, signals,
thermodynamical parameters, trajectories, symmetries (Peters and Tozzi, 2016a).  The two antipodal points standing for
different systems features are assessed at one level of observation, while the single point is assessed at a lower level.  The
antipodal points restriction from the classical BUT is no longer needed, because the applications on an n-sphere can be
generalized not just for the evaluation of diametrally opposite points, but also of non-antipodal ones.  We are allowed to
take into account homotopic regions on an n-sphere that are either adjacent or far apart.   This means that the points (or
regions) with the same feature value do not need necessarily to be antipodal, in order to be described together (Peters
2016).  The original formulation of BUT describes the presence of antipodal points on spatial manifolds in every
dimension, provided the n-sphere is a convex, positive-curvature structure.  However, many physical functions occur on
manifolds endowed with other types of geometry: for example, the hyperbolic one (Watanabe; Sengupta et al., 2016).
Whether the manifold displays a concave, convex or flat activity, it does not count: we may always find the points with
matching description predicted by BUT. Although BUT has been originally described just in case of n being a natural
number which expresses a spatial dimension, its value in Sn can also stand for other types of numbers.  The n value can
be also cast as an integer, a rational or an irrational number.  It allows us to use the n parameter as a versatile tool for the
description of systems symmetries (Tozzi and Peters, 2016a).  A BUT variant tells us that we can find a pair of opposite
points an n-dimensional sphere, that display the same encoding not just on a Rn manifold, but also on an n-1 sphere.  A
symmetry break occurs when the symmetry is present at one level of observation, but hidden at another level (Roldàn).
This means that symmetries can be found when evaluating the system in a proper dimension, while they disappear (are
hidden or broken) when the same system is embedded in just one dimension lower.
Here we introduce recently developed, unpublished BUT variants.  The first is a BUT corollary, which states that a Sn

manifold does not map just to a Rn-1 Euclidean space, but straight to a Sn-1 manifold.  In other words, the Euclidean space
is not mentioned in this formulation.  Indeed, in many applications, e.g., in fractal systems, we do not need a Euclidean
manifold at all.  A manifold, in this case Sn, may exist in - and on – itself, by an intrinsic, internal point of view, and does
not need to be embedded in any dimensional space (Weeks).  Therefore, we do not need a Sn manifold curving into a
dimensional space Rn: we may think that the manifold just does exist by itself.  An important consequence of this BUT
version is that a n-sphere may map on itself.   The mapping of two antipodal points to a single point in a dimension lower
can be a projection internal to the same n-sphere.
The second and foremost variant is termed Energy-BUT. There exists a physical link between the abstract concept of
BUT and the real energetic features of systems formed by two spheres Sn and Sn-1.  An n-sphere Sn is equipped with two
antipodal points, standing for symmetries according to BUT.  When these opposite points map to a n-Euclidean manifold
where Sn-1 lies, a symmetry break/dimensionality reduction occurs, and a single point is achieved (Peters and Tozzi,
2016b).  It is widely recognized that a decrease in symmetry goes together with a reduction in entropy and free-energy
(in a closed system).  It means that the single mapping function on Sn-1displays energy parameters lower than the sum of
the two corresponding antipodal functions on Sn.  Therefore, a decrease in dimensions gives rise to a decrease of energy
and energy requirements.  BUT and its variants become physical quantities, because we achieve a system in which the
energetic changes do not depend anymore on thermodynamic parameters, rather on topological features such as affine
connections and homotopies.   The energy-BUT concerns not just energy, but also information.  Indeed, two antipodal
points contain more information than their single projection in a lower dimension.  Dropping down a dimension means
each point in the lower dimensional space is simpler, because each point has one less coordinate.  In sum, energy-BUT
provides a way to evaluate the decrease of energy in topological, other than thermodynamical, terms.
Another novel variant of BUT is the string-based BUT (briefly, strBUT). The usual continuous function required by
reBUT (region-based BUT in Peters and Tozzi, 2016a) is replaced by a proximally continous function, which guarantees
that, whenever a pair of strings (regions that are world lines) are close (near enough to have common elements), then we
always know that their mappings will be also be close.  A string is a region of space with zero width and either bounded
or unbounded length.     As a particle moves through space following a world line (Olive and Landsberg, 1989).
Interactions occur at the junctions of world lines.  Let t the proper time of a particle, measured by clock travelling with
a particle and integration along the world line of the particle.  The particleaction  of a freely moving particle is defined by

2 .particleaction mc dt= - ò
As time evolves, a particle leaves a trace of its movements along a surface that are “remembered”.   A string is then a
remembered parts of a hypersphere surface over which a particle travels.  In terms of quantum theory, a string is a path
defined by a moving particle.   Put another way, a string is path-connected and its path is defined by a sequence of adjacent
fat surface points.   The points are fat because they are physical as opposed to abstract geometric points.   In other words,
a string A (briefly, strA) is a thin region of space that has describable features such as connectedness, length, open-ended
or closed-ended, and shape.   Strings str , strAA Ø are antipodal, provided strA  and strAØ are disjoint and yet have
the same description.   Strings str , strAA Ø are examples of antipodal sets (Petty, 1971). The description of strA  (briefly,

( )strAF ) is a feature vector in Rn, where that each component of ( )strAF  is a feature value of str .A
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Quantum String Axioms

1. Every string has an action.
2. If str , strAA Ø are antipodal, then str straction action .A AØ=
3. Separate strings with k features with the same description are antipodal.
4. There is a set { }strAØ  of antipodal strings for every string str .A

Let X be a topological space equipped with descriptive proximity .dF str  strAA dF Ø  reads strA  and strAØ  have

the same description.   Let 2
nS denote the family of sets on the surface of a hypersphere nS and str , strA 2

nSA Ø Î are

antidodal strings on .nS    A function : 2
nS nf R®  is proximally continuous, provided str  strAA dF Ø  implies

( ) ( )f str   f strA .A dF Ø With these observations about strings, we obtain the following results.

Lemma  [strBUT].   If : 2
nS nf R® is proximally continuous, ( ) ( )f str f strAA = Ø  for some strA  in 2 .

nS

Proof.  Case n = 1.  Let each strAhave 1 feature, namely, action.  Assume antipodal strings str , strAA Ø  with n features

are descriptively close, i.e., str  strA.A dF Ø Since f is proximally continuous, we have ( ) ( )f str   f strA .A dF Ø

From Axiom 2, str straction action .A AØ= Hence, from the definition of the descriptive proximity dF ,

( ) ( )f str  f strA .A = Ø
Case n > 1.  The proof is symmetric with case n = 1 and Axiom 3. �

Theorem 1.  If : 2 ,  0
nS kf R k® > is proximally continuous, str straction actionA AØ=  for some strA  in 2 .

nS

Proof.  We consider only the case for k = 1, for strings whose only feature is action.  The desired result is immediate from
the strBUT Lemma and Axiom 2.   This result is easily extend to the case where k > 1 for strings with k features. �

Theorem 2.   If : 2 2 ,  0
n kS Rf k® > is proximally continuous, ( ) ( )f A f A= Ø  for  each strAØ  in  the  set  of

antipodes { }strA 2 .
nSØ Î

Proof.  Immediate from the Theorem 1 and Axiom 4. �

In order to map Sn to S{n-1}, we need to work with lower dimensional spaces containing regions where each point in S{n-

1} has one less coordinate that a point in Sn.

Let X be a topological space equipped with Lodato proximity d (Peters, 2016). str  strAA d Ø  reads strA  and strAØ
are close.   Dochviri and Peters (2016) introduce a natural approach in the evaluation of the nearness of sets in topological
spaces. The objective is to classify levels of nearness of sets relative to each given set. The main result is a proximity
measure of nearness for disjoint sets in an extremely disconnected topological space.  Let int(str )A  be the set of points
in the interior of str .A  Another result is that if stringsstr , strAA Ø  are nonempty semi-open sets such that
str  strAA d Ø , then  int(str )  int( strA).A d Ø

An important feature is that the manifolds Md and Md-1 are topological spaces equipped with a strong descriptive proximity
relation.  Recall that in a topological space M, every subset in M and M itself are open sets.  A set E in M is open, provided
all points sufficiently near E belong to E (Bourbaki, 1966).  The description-based functions in genBUT are strongly
proximally continuous and their domain can be mathematical, physical or biological features of world line shapes.  Let
A,B be subsets in the family of sets in M (denoted by 2M ) and let : 2 , 2 , ( )M n Mf R A f A® Î = a feature vector that
describes A.  That is, ( ), ( )f A f B are descriptions of A and B.  Nonempty sets are strongly near, provided the sets of
have elements in common. The function f is strongly proximally continuous, provided A strongly near B implies ( )f A
is strongly near ( )f B .  This means that strongly near sets have nonempty intersection.   From a genBUT perspective,

multiple sets of objects in Md are mapped to ( ) ,f A BÇ  which is a description of those objects common to A and B.  In
other words, the functions in genBUT are set-based embedded in a strong proximity space.   In particular, each set is set
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of contiguous points in a path traced by a moving particle.  The path is called a world line. Pairs of world lines have
squiggly, twisted shapes opposite each other on the surface of a manifold.   Unlike the antipodes in a conventional
hypersphere assumed by the BUT, the antipodes are now sets of world lines that are discrete and extremely
disconnected.   Sets are extremely disconnected, provided the closure of every set is an open set (Dochviri and Peters,
2016),  is  in  the  discrete  space  and  the  intersection  of  the  closure  of  the  intersection  of  every  pair  of  antipodes  is
empty.   The shapes of the antipodes are separated and belong to a computational geometry.   That is, the shapes of the
antipodal world lines approximate the shapes in conventional homotopy theory (Borsuk, 1969).   The focus here is on the
descriptions (sets of features) of world line shapes.  Mappings onsets with matching description, or, in other words,
mappings on descriptively strongly proximal sets, here means that such mappings preserve the nearness of pairs of sets.
The assumption made here is that antipodal sets live in a descriptive Lodato proximity (DLP) space.   Therefore, antipodal
sets satisfy the requirements for a DLP (Peters, 2016).   Letd  be  a  DLP  and  write A Bd to denote the descriptive
nearness of antipodes A and B.    And  let  f  be  a  DLP  continuous  function.    This  means

   implies f( )  f( ) f( ) f( ) .A B A B A Bd d = Ç ¹ Æ
Example: Assume that antipodes A and B have symmetries (shape, bipolar, colour, overlap, path-connectedness), and f
is DLP strongly continuous function, then     f( )   f( )A B A Bd dÞ
This means that, whenever A and B are descriptively close, then A is mapped to ( )f A  and B is mapped to ( )f B and
f( )  f( ).A Bd   If we include in the description of A and B the location of the discrete points in A and B, then the DLP
mapping is invertible.   That is, ( )f A  maps to A, ( )f B  maps to Band ( )   ( )  implies    .f A f B A Bd d
Figure 1 provides an example of antipodal sets in case of a pair of closed regions, e.g., strings.

Figure 1.  Torus Antipodal Strings.  World lines with matching description preserve the nearness of pairs of sets.  See
text for further details.
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Generalized BUT (genBUT). We conclude this section by introducing generalized version of BUT, which encompasses
all the previously described variants.  This version allows the study of the Monster in the context of theoretical physics.
Gen-BUT states that:
Multiple sets of objects with matching descriptions in a d-dimensional manifold Md are mapped to a single set of objects
in Md-1 and vice versa.   The sets of objects, which can be mathematical, physical or biological features, do not need to
be antipodal and their mappings need not to be continuous.   The term matching description means the sets of objects
display common feature values or symmetries.
M stands for a manifold with any kind of curvature, either concave, convex or flat.    Md-1 may also be a part of Md.  The
projection from S to R in not anymore required, just M is required.  The notation d stands for a natural,  or rational, or
irrational number.  This means that the need for spatial dimensions of the classical BUT is no longer required.  The process
is reversible, depending on energetic constraints.  Note that a force, or a group, an operator, an energetic source, is
required, in order to project from one dimension to another.

2) EMBEDDING THE MONSTER GROUP IN Md-1

The Monstrous Moonshine conjecture suggests a puzzling relationship between the Fourier coefficients of the normalized
elliptic modular invariant, e.g., the hauptmodul J, which value is 19884, and the simple sums of dimensions of irreducible
representation of the Monster group M, which is 196883 (Frenkel et al, 1984).  It would seem that a relationship between
the symmetries in the plot (range) of the j-function and symmetries in the Monster group products occurs.  We might
speculate that, in physical terms, the j-function could stand for an activity occurring into to the Monster Module during
the movements of the Lie Monster Group.  In an infinite-dimensional space, the action of the J function is correlated with
the the Monster vertex operator Virasoro algebra, e.g., the Monster Module (Duncan et al., 2015).
A topological approach helps to elucidate such an unusual relationship.   In the BUT framework, the J function and the
Monster Module are sets of objects with matching description embedded in a Md manifold, where d stands for their abstract
dimension 196,884.  Encompassing the two parameters in a Md manifold allows us to provide a topological
commensurability between the Monster Module and the J function. When we reduce the dimensions to S196,883, we achieve
a single function, e.g., the Monster Lie group.  It easy to see that, if we map the two functions to a dimension lower, in
this case M196,883,  we achieve  a  single  function  which  retains  the  features  of  both.   This  single  function  stands  for  the
Monster Group, which is the automorphic Lie group acting on the Monster Module (Figure 2, upper part). In topological
terms, as always, two functions on a Sn sphere lead to a single function on a Sn-1 sphere.

3) OF MONSTERS AND UNIVERSES

Dimensions reduction.  Here we propose a BUT model of our Universe located inside the Monster Module.  We argue,
based on topological and energetic claims, that our Universe might arise from a spontaneous loss of dimensions, e.g., an
automorphism, occurring into the very structure of the supersymmetric, multidimensional Monster Module. According to
energy-BUT, the more the symmetries, the more the energy, so that every increase of symmetric level doubles the energy
of the previous, less symmetric one.  If the Monster stood before the Big-Bang, we are in front of a manifold with the
highest possible energy, because it displays the highest number of symmetries.
The group Monster encompasses several subgroups, also classified into the sporadic groups (e.g., Mathieu groups, Leech
lattice groups, and so on) (Gannon., 2006).  It is worth of mention that the symmetries in a hypothetical Md encompassing
our Universe do not need to be necessarily of the huge order of 1054.  In such a vein, one might think two possible physical
scenarios:

a) The Monster group is progressively formed starting from its subgroups, with a gradual building from blocks.
b) The Monster group is the initial structure.  It then might split into its subgroups.

Because the entropy is increasing in the Universe, the second hypothesis is more reasonable.  It would be better to take a
starting point before the Big Bang with a higher energetic manifold, and not vice versa.  Our Universe goes towards
gradually lower energetic levels.  At the Big- Bang, a loss of dimensions and thermodynamic free-energy occurred.  There
was, going from a dimension to a lower one, a sort of quantum jump towards lesser levels, of which one is the half of the
other.  It is a testable hypothesis. Like an electron orbit, a jump towards more internal levels occurred.  This explains the
arrow of entropy.  A loss of dimensions came together with a loss of symmetries.  Indeed, at the low-dimensional level
of our Universe, just the symmetries embedded in the preserved dimensions are kept, while the other are apparently
lost.  The original lost symmetries could in theory be restored, inverting the process from lower dimensions to the higher
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ones of the Monster Module, but it would require a source of energy able to perform the inverse projection, and this is
not the case of our Universe.

Topological relationships between the Monster and string theories. Moonshine can be regarded as a collection of
related examples where algebraic structures have been associated with automorphic functions or forms, because it is also
displays relationships with the Lie group E8(C) and a lattice vertex operator algebra equipped with a rank 24 Leech lattice
(Borcherds, 1992; Frenkel, 1988).  Several features of the Monster, either the Module, or the group and the subgroups,
have been associated with different physical scenarios.  Some examples are depicted in figure 2 (lower part).  Links
between Monstrous Moonshine and string theories have been described.  The Monster might stand for the symmetry of a
string theory for a Z2-orbifold of free bosons on a Leech lattice torus, in the context of a conformal field theory equipped
with partition function j.   Recent papers link other sporadic groups with modular forms, suggestive of a more central role
for the Umbral Moonshine (Eguchi et al., 2011).  Witten proposed that pure gravity in AdS3 (anti deSitter) space with
maximally negative cosmological constant is AdS/CFT dual to a holomorphic CFT (conformal field theory), with the
numbers of the Moonshine coming into play (Witten, 2007).  CFT/AdS is dual to string theories, and is involved in the
many models: CFT, Chern-Simon-Matter, Super Jang-Mills, Superconformal algebras.  The AdS\CFT correspondence
means that conformal field theory is like a hologram, which captures information about the higher-dimensional quantum
gravity theory.  It  is exactly a picture which could be described in the BUT framework.  The Witten’s conjecture of a
duality between pure quantum gravity and external holomorphic CFT predicts the existence of a hyperbolic anti-DeSitter
Universe equipped with a strongly negative cosmologic constant. The relationships between Universe’s negative
curvature and Monster Moonshine have been recently explored in the above mentioned, unpublished paper (Tozzi and
Peters, unpublished data; under review for Eur Phys J C).

The problem of singularity. A problem which arises is how to explain the event, commonly called singularity (Chow,
2008), which caused an apparent loss of dimensions in parts of the Monster, giving rise to our Universe.  It must be taken
into account that the trajectory on a hypersphere, or in general on a manifold, does not need necessarily to be closed,
because a particle could just travel along a shortest path, and not along the entire surface (Collins, 2004).  We might think
of world lines traced by a moving particle: this line evolves, whereas the line in the chart is static.  A hypothetical particle
embedded into the Monster Module follows the movements dictated by the Monster Lie group.  However, the particle
cannot travel everywhere, due to the huge amount of dimensions. The complete ergodicity of particle pathways on the
Monster Module cannot be guaranteed, due to the countless possible trajectories.   When a particle travels on the ergodic
Monster manifold’s huge phase space, it might simply take a random direction towards any dimensions and not others.
In other words, the particle follows (probably random) paths equipped with dimension decrease.   We provide an example
which takes into account the well-studied model of a 26D bosonic string theory.  Such a model, although partially
dismissed,  provides  a  good  example  of  our  model.   Bosons’  trajectories  in  a  24D  Leech  lattice  may  follow  paths  of
196,884 dimensions.  Notice that the Leech lattice is almost ubiquitous in the description of sporadic groups, thus offers
an interesting example. When particles go towards preferential trajectories, they follow paths involving just some of the
total Monster’s dimensions.  They fall into trajectories lying into the lower dimensions of our Universe. When bosons’
paths  fall  into  some  of  the  Monster’s  dimensions,  they  lose  energy  for  energy-BUT.   It  might  explain  the  Big  Bang,
equipped with high energetic levels that decrease with time passing.  Therefore, the singularity might be explained simply
by random particles’ movements.  Note that, because random paths might occur everywhere on the Monster Module, it
means that countless Universe are allowed, every one equipped with just some of the primeval symmetries.  Our (and
others) Big Bang might just have been occurred naturally, when a particle fell into a dimension instead of another. It also
means that the path chosen by a particle is equipped with just some of the Monster symmetries, while the others are lost
(or, better, hidden, because they might reappear at the level higher than the ones where they are embedded).  If a particle
travels along a path embedded just in a few dimensions (our Universe), the loss of the other primeval dimensions gives
rise in our Universe to symmetry breakings, including the thermodynamical arrow.  In order to elucidate why a decrease
in symmetries and dimensions leads to our Universe equipped with symmetry breakings, another important argument
must be taken into account.  Indeed, almost all the finite groups are non-abelian: it explains how the multisymmetric
Monster loses dimensions and leads to our Universe, in which the rules are dictated by asymmetric laws.  The intrinsic
non-abelian structure of the Monster itself ensures that the patterns are not reversible.  Once taken a path, for the non-
abelian and energetic arguments, it is not possible to reverse the process in our Universe, unless other energy is supplied.
The presence of an ergodic, homogeneous Monster Module before the big bang also solves the so called horizon
problem.  A few Planck times after the Big Bang, the Universe consisted of 1090 Planckian size, disconnected regions
(Veneziano, 1998).  Currently, those regions make up our observable Universe and resemble one another.  The presence
of the homogeneous Monster Module before the Big Bang explains why the initial disconnected regions had all the same
conditions.
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The Monster and the spacetime. The Monster is a manifold which, for the BUT variants, can be also described as a
hypersphere, and thus equipped with closed trajectories.  Therefore, our Universe is internal to the Monster.  The loss of
dimensions occurs into the Monster, giving rise to the Big Bang.  That’s why the fossil background cosmic radiation
comes from everywhere, when we look at it (Fixsen, 2009).  A problem arises: how can a string-like manifold give rise
and contain the whole Universe? A possible solution is that the Monster is not in the space, and the space occurs together
with the Universe.  Concerning the time, the things are more complicated.  Indeed, in touch with Veneziano’s pre big
bang scenarios (Veneziano, 1998), the time could exist before the Big Bang, and not arise together with the Universe.
The Monster group needs to be embedded into the time, because it, acting as a Lie group, needs to perform symmetric
movements which may just occur in a given time. It might however be speculated that the time is not required at the
Monster Module level, and the Wheeler-DeWitt equation might be valid at such level.  By a physical point of view, you
start from two algebraic structures and reach a Lie group, which needs to perform an action. It means that the level S196883

requires that the introduction of the parameter time, while the Monster Module in S196884 lies in infinite dimensions, and
is atemporal.
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Figure 2.  Progressive loss of dimensions in sporadic groups can be encompassed in a BUT framework. Note also the
loss of symmetries from the highest dimension levels to the lowest ones.  The Figure also illustrates how every sporadic
group might display a theoretical physical counterpart.
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3) QUANTIFYING PHYSICAL MONSTER’S PARAMETERS

Towards the Monster’s enthalpy. We are allowed to use the energy BUT in order to calculate the energetic requirements
of Monster Modules in a physical context.  Thermodynamics says that:
H = F + T x E
Where H is the Enthalpy, F the free-energy, T the temperature (trascurable) e E the entropy.  We assume that our Universe
is closed.  We will evaluate the possible values  at the Big Bang (H0, F0, T0, E0) and at the present time (H1, F1, T1, E1).
The current level E1 of entropy in the Universe is estimated in 2.6 ± 0.3 x 10122 k (Egan and Lineweaver, 2010; Frampton
et  al,  2008),  while  T1 is neglectable.  If the Universe displays four dimension as currently believed, every dimension
contains approximately an average entropy of:
E1/4.
As shown in Figure 10 of Egan and Lineweaver (2010), the current Universe displays almost the highest possible values
of entropy.  Also in the future, the entropy will be just slightly larger than the current value E1, because a monotonical
increase already occurred.    It means that E1 is more or less the maximum value of entropy achievable in the whole life
of the Universe, and also means that the free-energy F1 is currently very low.  It also means that:
E1 = H1.
At the Big Bang, on the contrary, E0 was close to zero and F0 very high.
Therefore the current E1 almost equals the total enthalpy H1 of the Universe.  Vice versa, at the Big Bang, F0 and T0 were
very high and E0 the lowest possible.  It means that, at the Big Bang:
F0 = H0 - T0.
If the Monster occurred before the Big-Bang, we are in front of a manifold with the highest possible energy, because it
displays the higher number of symmetries.  If the Monster gave rise to our Universe, and the Monster displays 196,883
dimensions, the Entropy of the Monster EM is:
EM = E1/4 x 196,883.
Thus, the enthalpy of the Monster HM stands  roughly for the same value:
HM  = E1/4 x 196,883

The loss of dimensions into the Monster Module, due to the non-abelian movements of the Monster Lie group and the
energy-BUT, give rise to different Universes with dimensions lower than the Monster, and equipped with less energy and
information.
Through the Conway atlas of finite groups, we know the dimensions and the order of every group, including the sporadic
ones.  It is not difficult to calculate how many dimensions have been lost.  We know this number, e.g., 196,883 - 4, the
dimensions of our Universe, we know how many symmetries are preserved, and we know, for energy-BUT, that every
decrease  of  a  single  symmetric  level  denotes  the  loss  of  half  of  the  energy.    If  the  pre-Big  Bang  manifold,  e.g.,  the
Monster Module, is equipped with 196,884 dimensions and 1054 elements, and if our Universe has 4 dimensions (the
spacetime), we have 1050 elements in our Universe.
Summarizing, once hypothesized a high-energy Monster Module before the rise of our Universe, the next step is to reduce
the symmetries from the Monster vertex operator to the Monster group, which is the Lie group acting on it.  A further
step gives rise to a dimensions and symmetries reduction until our Universe, equipped with the Standard Model.

Information.  The energy-BUT states that it is not possible to achieve higher information, starting from a lower
dimensional level.  It means that we need to start from the Monster Module, and not vice versa.  The process must be top-
down, e.g., from the Monster to the Universe, and not bottom-up.  According to the energy-BUT, a loss of information
occurs together with a decrease in dimensions.  It means that, from the Monster to our Universe, it occurs a loss if
information.  You cannot move a particle in our Universe from lower to higher dimensions, unless you, for energy BUT,
do not inject novel free-energy or enthalpy.  You can do it just locally in the Universe, for example when biological
entities are formed in limited niches, but not everywhere, because the total entropy increases together with a decrease in
free-energy.  It also means that from the highest to the lower levels there is a reduction,  and  not  an emergence of
information.
Watching the Monster: vertex algebra. In order to incorporate the j-function into a general context and to visualize the
movements of the Monster Group on the Monster Module, we built a simplified 3D model equipped with a hypersphere
and a vertex algebra operator.  We achieved a low-dimensional model of j-function and its group, embedded into a vertex
algebra’s manifold. Briefly, a vertex algebra provides a mathematical formulation of the chiral part of 2-dimensional
conformal field theory. The axioms of a vertex algebra are obtained from the properties of quantum field theories and
operator product expansions (OPEs).   The main tactic flowing from OPEs is that a product of local operators defined at
nearby locations can be expanded in a series of local operations (Ekstrand, 2011).   A graphical representation of an OPE
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is represented in Figure 3A.   Let 1 2,w w  be periods of a doubly periodic function with 1
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The function ( )J t is the j-function modulo a constant multiplicative factor (Weisstein, 2016). A dynamical system
with a strange attractor and invariant tori (Sprott, 2014) initialized with the j-function is illustrated in Figure 3B.

Figure 3. Defining a vertex algebra on a torus helps us to visualize otherwise abstract structures.  Starting from a vertex
operator algebra (a very small portion is described in Figure 3A) we made use of the attractors and the corresponding
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ODEs described by Sprott (2014).  In Figure 3B, the j-function on the attractor torus displays one coordinate initialized
with a j-function value.

4) QUESTIONS AND CONCLUSIONS

Starting from a Spinozian global system, shaped in guise of a multidimensional and multisymmetric manifold equipped
with a structural order of relationships, we were able to analyse, through a loss of dimensions dictated by the intrinsic
features of the Monster Module and its Lie group, the individual history of the Universe.  The Universe can be thus
conceived as a manifold at lower dimensions encompassed in higher ones.  The Monster Module is a manifold equipped
with absolutely the highest dimensions - that is, a manifold consisting in the highest number of symmetries.  The Monster
Moonshine manifold is prior to its modifications.  We may mean the nature and the flow of events in the Universe as a
Monster’s self-projection towards less dimensions.  The Universe stands for a local symmetry, e.g., modifications of the
Monster manifold.  The Monster Module cannot exist in, and cannot be conceived through, an higher manifold other than
itself.  Every manifold in the Universe exists either in itself or in some higher manifold else, e.g., the Monster Module.
The knowledge of a lower dimension manifold in the Universe depends on and involves the knowledge of higher
dimensions mapping the lower manifold.  In the meantime, the Monster Module, which n-dimensions are untouched, is
still there.  If different trajectories on the Monster Module give rise to different local losses of dimensions, it means that
countless Universes are possible, each one equipped with different or overlapping symmetries.
We would like to bring to an end with a few unsolved problems.

a) Where does the Monster take such a huge amount of enthalpy? It takes us in pre, pre- Big Bang scenarios.  This
is the same problem of inflaton models, that do not explain where does the energy of the required false vacuum
come from.  A link between the Monster group and the fales vacuum might be speculated.

b) Which is the role of the J function in the pre Big Bang period? Does it provide energy?
c) How does the Monstruos Moonshine look like? We might either imagine a timeless, immutable manifold where

just the Monster Group movements take place, or as we did, a dynamical, time-dependent structure.
d) Does the curvature of the Monster Module change with time passing?  It could be a very useful information, in

order to elucidate the predicted passage from an ancient anti DeSitter hyperbolic Universe to the current, flat
one.

e) Our Universe might not arise directly from the Monster, but by one of its subgroups, e.g., Th, which is correlated
with the successful superstring 10D theory.  Is it possible to split the Leech lattice in which the Monster group
is embedded, in order to achieve the lower dimensional E8 lattice where the Th group’s movements take place?
Remind that the step from E8 lattice to the Leech requires x3 multiplication and peculiar rotations.

f) The topological step from the vertex operator algebra to the Lie Monster Group requires a continuous function.
Are we in front of a super gauge field? In other words, is there a gauge field which causes the first projection
depicted  at  the  top  of  the Figure 2? In a topological framework, the feature which links the symmetries at a
higher level with the single point at a lower level is the continuous function.  If we assess two antipodal points
as symmetries, and the single point as symmetry breaks and local transformations, a gauge field could be
required, in order to restore the (apparently hidden) symmetry.
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TIME SYMMETRY BREAKING IN PRE-BIG BANG VACUUM STATE

The vacuum catastrophe refers to the discrepancy between the predicted and detected values of repulsive vacuum energy.
To tackle the issue, we start from a model of inflation in a time-symmetric quantistic  vacuum, which, due to the
Mandelstamm-Tamm inequality, leads to a trapping of a part of the original vacuum during the formation of our closed
Universe.  We show how the energy of our cosmos is stored in two different compartments, the microscopic quantistic
vacuum and the macroscopic detectable cosmos.  If we take into account, at the time of the Big Bang, the occurrence of
time symmetry breaking into our Universe, we achieve a macroscopic energetic system governed by the second law of
thermodynamics, where time acts like a continuous gauge field able to progressively increase the entropy. Our framework
makes it possible to assess, among other issues, the vacuum catastrophe, to calculate the minimum three-dimensional
volume of the pre-Big Bang vacuum and to make previsions for the future evolution of the two energetic compartments.

Our Universe started with the Big Bang, expanding from a very high density and high temperature state  (Penrose, 2011).
At the age of 10-43 seconds, the Universe was very hot (1034 K).  By then, the temperature halved every double expansion.
The Universe underwent an inflationary expansion at 10-35 sec, which is the current explanation for cosmic features such
as isotropicity, homogeneity, symmetry and zero curvature.  Another gentler inflationary period started approximately
4.5 billion years ago, due to the prevalence of the anti-gravitational vacuum energy (e.g., the repulsive dark energy
corresponding to the cosmological constant), that overtook the decrease of matter and radiation due to cosmic dilation
(Ellwanger, 2012).  The vacuum catastrophe refers to the discrepancy between the predicted and real values of the
repulsive vacuum energy.  Currently, 13.79 billions years after its birth, our Universe is still accelerating, slowly
proceeding towards thermal death  (Bars and Terning, 2009).
Our Universe displays four known dimensions, three temporal and one spatial.  Here we focus on the time.  It has been
recently suggested that time exists just for observers inside the universe, because it is an emergent phenomenon arising
from quantum entanglement (Moreva et al., 2013). Any god-like observer outside the cosmos sees a static, unchanging
Universe, just as the Wheeler-DeWitt equations predict.  In such a vein, it is noteworthy that time plays a role neither in
such equations, nor in the formulation of the entangled states (Peters and Tozzi, 2016).  Here we propose a time symmetry-
based mechanism, which elucidates how and why, during the Big Bang, part of the original pre-Big Bang vacuum was
sequestrated into our time-asymmetrical Universe.  The mechanism gave rise to two different types of energy in our
cosmos:  a microscopic one acting at quantum levels, and a macroscopic one acting at relativistic and non-relativistic
scales.    Our framework, which focuses on time symmetry breaking, suggests that the arrow of time works like a gauge
field,  leading to progressive increase of entropy.  Furthermore, our approach makes it possible for us to assess different
features of our Universe, from the very first phases of the Big Bang to the final doom, from the required cosmic energetic
requirements to the vacuum catastrophe.  Also, our model makes predictions about the size of the original vacuum that
gave rise to our Universe.

Pre-Big Bang vacuum with T-invariance.  An overall description of vacuum energy is given as an energy tensor of the
form

2 for , or 0, or ,v vT g tl l l l -= = ¥ = »
where vt is Planck time and g  is a mathematical tensor quantity (Penrose, 2011). The vacuum catastrophe refers to the
huge discrepancy in our Universe between the detected values of vacuum energy, and the theoretical previsions, that
suggest a huge value.  Indeed, the vacuum energy of free space has been estimated to be 10−9 joules (10−2 ergs), per
cubic meter, e.g., 0.683ρcrit, while theoretical arguments require it to have a much larger value of 10113 joules per cubic
meter (Hobson et al., 2006).   Some Authors believe that our Universe arose from an inflationary event taking place in
the quantistic vacuum (Veneziano, 1998).   If we assume that an inflative event in the quantistic vacuum gave rise to the
Big Bang and our Universe, we are allowed to hypothesize a pre-Big Bang quantistic “original vacuum”, e.g., a vacuum
state equipped with the massive levels of dark energy predicted by theoreticians.  This original vacuum is equipped both
with false vacuum, e.g., high-energy fields with vacuum expectation value different from zero, and real vacuum, e.g.,
low-energy fields that do not allow the production of real particles. The original vacuum is a n-manifold, bounded or
unbounded.  The term manifold is commonly used in this context, referring to a spatial structure with a smooth, rubber
sheet geometry.   A CPT symmetry occurs in the original vacuum.  While real charged particles cannot exist in such an
empty vacuum, however charged virtual particles are produced.  Every one blinks into existence with its antimatter
counterpart, then both quickly annihilate and  fall back into the original vacuum. Therefore, the energetic balance in the
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original vacuum is always zero.  In the original quantistic vacuum, a time reversal symmetry (also called time-reversal
invariance or T-symmetry) occurs, e.g., many variables do not change under  a time reversal transformation (right part of
Figure 1).  To make some examples in our observable Universe, time-reversal invariant parameters include: coupling
constants except those associated with the weak force, electric potential and field, density of electric charge, electric
polarization, some particle features (position in three-space, acceleration, force, energy), microscopic level of physical
systems, including microscopic reversibility in physical and chemical kinetics, laws of mechanics and, last but not the
least, the same observable Universe in equilibrium states.  On the other hand, some variables in our observable Universe
change under  a time reversal transformation (a feature also called time reversal symmetry violation, T-asymmetry):
violations of either C, or, P or T, the time when an event occurs, power, electromagnetic vector potential, magnetic field,
density of electric current, magnetization, weak force, some particle features (velocity, linear momentum, angular
momentum), macroscopic levels of physical systems and the observable Universe in non-equilibrium states.
In the original vacuum, the Mandelstamm-Tamm inequality for quantistic systems holds (Mandelstam and Tamm, 1945).
The inequality assesses the rate evolution of an isolated quantum state, allowing us to calculate how long does it take for
a quantum system like the original vacuum to evolve to an orthogonal state (Vaidman 1992).  There is a general lower
bound for the lifetime of all quantum states in terms of reasonable measures of uncertainty in energy, even if the standard
deviation is infinite.  Indeed, according to a formulation of the Heisengberg principle, energy and time in the original
vacuum can be related by the formula:
ΔE ΔT ≥ 

ସగ
where ΔE is a non-infinite uncertainty in energy that is independent of time (Uffink, 1993).  This means that a significant
change in energetic conformation may occur in a very short time interval.  The original vacuum is time-invariant, and
therefore time can be both positive or negative, or even “frozen” and close to T0.   These short time intervals lead to huge
fluctuations in energy. One of such common, almost instantaneous, fluctuations could have produced the inflation that
gave rise to our Universe.

Vacuum trapped in an inflationary T-asymmetric Universe. We stated that, in very short times, huge energetic
differences may occur in the original vacuum.  One (or more) large fluctuations are able to put in motion the well-
described process of inflation.  In the original vacuum, a high energetic state of false vacuum abruptly falls towards the
low energetic basins of real vacuum  (left part of Figure 1).  This process leads to an inflationary mechanism, e.g., the
production of a huge amount of anti-gravitational energy that leads to cosmic dilation and the generation of real particles
and fields in our Universe.  Such inflationary event that occurred in the original vacuum is different from the one that
occurred 10-35 sec after the birth of Universe.  Both might be explained by huge energetic oscillations occurring in almost
frozen times.  Therefore, our Universe (and probably countless others, equipped with cosmological constants and physical
laws different from ours) is born, like a closed bubble arising from the original vacuum.  It is noteworthy that, in our
framework, the closed inflationary Universe encompasses parts of  the original vacuum that was trapped into the bubble
during its formation.  Indeed, our bubble includes, apart from   particles and energy, also a certain amount of vacuum,
“stolen” from the original one (right part of Figure 1).  Such vacuum, that we will term “trapped vacuum”, is equipped
with a much lower energetic level than the original one.  Such a level matches the experimentally detected value of
0.683ρcrit.   Therefore, our  closed Universe is equipped with a certain amount of energy, provided by two sources: a) the
observable particles, fields and energy produced by the inflationary events occurred  in the original vacuum  during the
Big Bang; and b) the dark energy enclosed in the trapped vacuum.  The energetic behaviors of the open original vacuum
and the trapped one are  different.  They display a completely different evolution  (Figure 1).   The  cause  of  this
discrepancy lies in the very structure of the closed bubble and its subtle differences from the original vacuum.  While the
original vacuum displays T-symmetry, in our Universe the time  invariance is lost.  Indeed, our time, is not anymore
symmetric.  The arrow of time becomes positive and cannot be reverted, splitting the past from the future.  In such a way,
the sudden appearance of a novel single parameter, e.g., a T-symmetry violation in the trapped vacuum,  is able to explain
why high energy particles, once produced in the T-symmetric  original vacuum during the Big Bang, give rise to our
Universe, instead of promptly disappear.  Time, together with other factors, makes it possible for the bubble to not
implode, rather progressively to dilate (stretch) indefinitely.
In our Universe, due to time asymmetry, the two energies  of the trapped vacuum and the observable Universe  have
different developments  (Figure 1).  In the macroscopic Universe, the energy becomes enthalpy and drives the cosmos
towards progressively higher levels of entropy.  Indeed, our observable Universe  is subjected to the second law of
thermodynamics.  It means that our cosmos’  asymmetric time dimension acts like a constraint, allowing just the
trajectories that lead towards an increase of entropy in the macroscopic Universe.  We will describe this macroscopic
process in the following paragraphs.  On the other side, in the microscopic compartment of the trapped vacuum, energy
oscillations progressively decrease with time passing, due to the quantistic Mandelstamm-Tamm inequality.  For the first
law of thermodynamics, this vacuum energy is conserved.  However, the large energetic oscillations that could lead to
false vacuums and subsequent inflationary processes disappear, because the energetic variations are progressively
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flattened.   It is noteworthy that,  in very  long timescales, the Universe reaches a final state of equilibrium, where time
symmetry is restored.  Indeed, a system at equilibrium displays time reversal invariance.

Figure 1. Evolution from the original time symmetric vacuum to our time asymmetric Universe.  Our Universe is splitted
into two compartments with different energetic features: the trapped vacuum and the macroscopic Universe.  See the text
for further details.

Energetic evolution of the macroscopic Universe.  Macroscopic physical systems like the observable Universe are not
just regulated by stochastic variables and random fluctuations4, but also by constraints given by the arrow of time.  The
same stands for biological system: to make an example, protein-folding final conformation is dictated by the minimum
frustration principle on long evolutionary  timescales, which states that proteins’ energy decreases more than expected,
as they assume conformations progressively more like the native state (Bryngelson and Wolynes, 1987;  Ferreiro et al.,
2011; Tozzi et al., 2016).  Despite the large number of different scenarios, the processes  governing time constraints of
physical and biological systems may be generalized, taking into account a universal principle: the second law of
thermodynamics, which states that  “every process occurring in nature proceeds in the sense in which the sum of the
entropies of all bodies taking part in the process is increased” (Planck’s formulation).  Therefore, the positive arrow of
time observed in the macroscopic Universe (due to the time-reversal symmetry violation) is strictly correlated  with the
second law of thermodynamics.  In other words, the arrow of time acts, in long timescales, like a constraint dictating the
evolution of the Universe towards an increase of entropy.
In this framework, it is interesting to see what happens to physical paths when time is kept fixed (Figure 2A).  In a graph
plotting time t on the X-axis and the space x on the Y-axis, take two trajectories which both display a starting position at
x0 and an ending position at x2.  In Figure 2A, the black solid curve x(t) stands for the trajectory describing the real path
followed by a particle in the macroscopic Universe.  This path is dictated by the second law of thermodynamics and the
arrow of time.  Note that such a real trajectory is constrained along the line of the time: it cannot go back from t1 to t0,
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e.g., time cannot be reversed (Goldstein, 1980; Torby, 1984).   On the contrary, the dotted black curve  xI displays one of
the possible virtual trajectories, e.g., a trajectory different from the real one, that might take place when the time is kept
fixed and δt = 0 (Sommerfeld, 1952; Landau and Lifshitz, 1976).  Starting from the position x1 and time t1, the virtual
displacement δx, e.g., from x1 to the point c,  is shown in Figure 2A (green arrow).  Therefore, in very short timescales,
virtual changes in physical/biological trajectories might occur far from the real path.    It might be also hypothesized that
virtual trajectories stand for singularities and timeless perturbations in our Universe: they could be regarded, for example,
as places in which life occurs.   Virtual constraints are central, because they allow us to understand the current state of
our Universe.  Indeed, an observer cannot understand whether a trajectory she is observing lies on a virtual or a real path,
therefore she cannot predict the real, final trajectory that will necessarily take place according to the second law of
thermodynamics.  In very short timescales, the macroscopic paths bear a resemblance to Feynman’s diagrams describing
subatomic particles’ behaviour: the possible trajectories  are countless, although just a very few are the most probable in
the real life.  The next paragraph, just for technical readers, provides a mathematical explanation of virtual constraints.
Technical interlude: virtual constraints.  In analytical mechanics, a virtual displacement is an assumed change of
system coordinates occurring while time is held constant.  It is called “virtual” rather than “real”, since no actual
displacement takes place without the passage of time.  The key concept of virtual constraints is a dynamically imposed
outer feedback control, so that the trajectory of a particle or an agent in the system’s phase space can be  “forced” towards
the desired orbits and outputs (Canudas-de-Wit, 2004).   Virtual constraints reduce the degrees of freedom,  coordinating
the evolution of the various links throughout a single variable. A closed-loop mechanism is achieved,  wherein dynamic
behaviour is fully determined by the evolution of simplest lower-dimension system (Stepp et al., 2010).  The resulting
system is called a “virtual limit system”.
In mathematical terms, we define a set of n – 1 outputs (or constraints):

( ) ( ) ( ), , , ( ) ,y p q q h p q h p tj q q= = - = -
r r

where y and ( ),p qj  are the outputs or constraints, qr∈Rn-1 is a vector describing the actuated coordinates and velocities,
p is the set of the design parameters, θ∈R is the unactuated variable, θ(q) is a function of the generalized coordinates ofq.
The latter equation describes the most general condition.
An inner-feedback loop is used to perform output feedback linearization in a local domain, where the matrix is invertible:
( ) ( ); ,q u k q q vy = +&

where v is the outer feedback loop.  Note that the equation includes a term q&  which depends on time, where the upper

dot stands for the partial time derivative, i.e.,
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& ( Canudas-de-Wit et al., 2003).

If an outer feedback loop v is designed to zeroing the output y, we get a partially linearized system in the form:
.y v=&&

Then the full system dynamic is captured by the solutions of:
( ) ( ) ( )2 0,a q q b q q g q+ + =&& &

together with the imposed constraint for mean q-value:
( ), ,q h pq=

where θ(q), α(θ), β(θ) and γ(θ) are scalar functions depending on the inner feedback loop.
In conclusion, the virtual constraints are forces external to the system’s phase space, able to modify an internal trajectory
towards the required one.  This process allows one to deal with high-dimensional systems with underactuated degree one,
by only analyzing this second-order nonlinear equation.
In analytical mechanics the researchers cope with under-actuated Lagrangian systems of the form:
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where q and q&  are vectors of generalized coordinates and velocities, L(q; q& ) is a Lagrangian of the system, B(q) is a
matrix function of an appropriate dimension, with rank equal to the number of inputs and u is a vector of independent
control inputs.  The under-actuation means that dim u< dim q, i.e., the number of actuators is less than the number of its
degrees of freedom.

Prediction of macroscopic trajectories in long cosmic timescales. Here we, elucidating the close relationships among
virtual displacements, probabilities and time, show how we can assess whether observed trajectories are real or virtual
and, in case they are virtual, how long does it take to become real.  Real displacements are governed by the second law
of thermodynamics because in every closed system, either physical or biological, the thermodynamical  entropy
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relentlessly increases from time T0 to T2 = ∞, until its maximum value.  It is however preferable to use the informational
entropy, instead of the thermodynamical one.  Indeed, the two entropies are linked through the formula:
S = k H
in which S is the thermodynamical entropy, k is the Bolztmann constant and H is the Shannon informational entropy.
The informational entropy, apart from the invaluable advantage of quantifying the macroscopic states without a perfect
knowledge of the microscopic ones, is not linked with time.  Therefore, Shannon entropy allows us to neglect the
parameter time from our system, in order to assess its behavior not taking into account its evolution.   However, to evaluate
whether the trajectory we observe in different time frames is real or virtual, we need to superimpose the arrow of time on
the “classic” two-dimensional plane containing the Shannon curve.  Indeed, we are allowed to add a third dimension to
the 2-D plot of Shannon entropy (Figure 2B).  The vector of time ζ lies in a plane forming  an angle A with the 2-D plane
of Shannon entropy.  This procedure allows the observer to evaluate how much time is needed, for the particle she is
observing, to reach the real final state.   To make an example, in the system Universe, T0 on the vector of time ζ stands
for the state of minimum entropy, e.g., the initial Big Bang, while T2 = ∞ stands for the state of maximum entropy, e.g.,
the hypothetical final macroscopic state of the Universe.  The real trajectory follows the Shannon curve: the highest
probabilities can be found at p=0 and 1, while the maximum entropy at p =0.5-    Starting from the probability of a virtual
constraint observed in a point c, the corresponding point T1 on the arrow of time can be detected.  Therefore, we can
calculate how much time is required to the vector of time ζ to reach T2 = ∞, which stands for the Universes’s “real”  final
state  at the energetic equilibrium.  In order to proceed, there is a still unknown parameter left: the value of the angle Α.
The latter can be calculated by sketching a differential geometry-based  theory (Tozzi and Peters, 2016).  We need to
ponder the Universe as a system where real displacements, e.g., the real trajectory of particles or events, stand for the
continuous, global symmetry.  This symmetry stands for the energetic constraints dictated by the second law of
thermodynamics, e.g., an energetic gradient flow occurring just in long timescales.  In turn, in the very instant in which
T is “frozen”, fixed and equals to  zero, virtual displacements occur.  The latter stand for continuous groups of local
transformations, able to “break” the above mentioned symmetry.  The local loss of symmetry, e.g., a disturbance of the
gradient flow, can be restored by introducing a continuous field, the time,   able to re-establish the gradient flow.  The
time, in such a framework, stands for a field which is continuous, by the point of view of an inertial observer.  There are
many possible ways to deal with real and virtual displacements in a differential geometric sense, for example by analysing
them in terms of sections of fibre bundles, jet manifolds and Ehresmann connections (Ehresmann, 1950; Abraham and
Marsden, 1978; Lang, 1995; Kolar and Michor, 1993). One of the procedures is described in Sengupta et al. (2016).   In
sum, we can make accurate predictions about the time required for a trajectory in order to converge towards the most
probable pattern, e.g., to increase its thermodynamical entropy.  Our scheme resembles a physical gauge theory, retaining
its tenets (Higgs, 1964; DeWitt, 1967;’t Hooft, 1971; Zeidler, 2011):

d) The system is equipped with a continuous, preserved “global” symmetry (and a corresponding Lagrangian).
e) The system displays a continuous group of “local” transformations, equipped with a Lie group.
f) The Lagrangian is kept invariant under such local transformations by a “gauge field”, i.e. a continuous force

acting on the system.
However, our framework draws an important distinction from a classical gauge theory.  Our concept of Lagrangian is
slightly different: instead of referring to the principle of least action and the “preservation” of a physical quantity as usual
in gauge theories and in Noether theorem, our Lagrangian refers to the “dissipation”  of a physical quantity through a
gradient flow.  In other words, we provide a framework in which a Universe trajectory can be predicted in long timescales,
by introducing the arrow of time in guise of a gauge field that keeps invariant the second law of thermodynamics.  Such
gauge field counterbalances the effects of local energetic peaks caused by the virtual transformations that might occur in
very short timescales.
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Figure 2A. Graph of the macroscopic observable Universe plotting time t on the X-axis and the space x on the Y-axis.
The regular displacement dx is a vector pointing in the direction of the motion (black arrow), which arises from
differentiating with respect to time parameter along the path of the motion.  In contrast, the virtual displacement δx is a
tangent vector to the constraining manifold at a fixed time, because it arises from the differentiation with respect to the
enumerating paths of the motion, varied in a manner consistent with the constraints. See text for further details.
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Figure 2B. Informational entropy is plotted as a function of the random variable p, in the case of two possibilities with
probabilities p and (1-p).  The solid line black stands for the Shannon entropy (under ergodic conditions).  The values
p=0 and p=1 stand for the minimum entropy, p= 0.5 for the maximum entropy.  The arrow of time ζ (blue solid line) lies
on a third coordinate of the phase space and forms the angle A.  Due to the energetic gradient flows dictated by the second
law of thermodynamics, time, in its real route from T0 to T2 = ∞, must be correlated with an increase in informational
entropy.  Given a virtual displacement c on the virtual trajectory (dotted black line), the corresponding value of T1 on the
arrow of time can be calculated, provided the value of the angle A is known.

CONCLUSIONS

We described the peculiar features of energy and time in the original vacuum and in our Universe.  The latter  encompasses
trapped vacuum and is equipped with T-symmetry break.  Further, we showed that the vector of time may stand for the
macroscopic Universe’s energetic gradient, locally “broken” by virtual timeless perturbations.  Our framework allows us
to elucidate controversial issues in cosmology and to make a few empirically testable previsions.
The problem of the vacuum catastrophe is solved straightforwardly: just a small amount of the original vacuum is
embedded in our Universe.  It means that the trapped vacuum displays the low experimentally detected values of dark
energy, while the original vacuum the very high predicted ones.  Therefore, we are allowed to calculate the size of the
original vacuum that gave rise to our Universe: if 10−9 joules (10−2 ergs) per cubic meter are trapped in the size of our
Universe before inflation, e.g., 3 x 10-25 cm, it means that the total dark energy of 10113 joules per cubic meter is trapped
in an original vacuum with spatial dimensions (in cubic meters) of more than 100 orders of magnitude.    Such calculation
does not take in to account the possible decrease of dark energy occurred in the Universe lifetime until the current age.
However, this loss of energy is not likely to happen in the trapped vacuum, because of the first law of thermodynamics.
The concepts of “constraints” and “virtual displacement” from analytical mechanics shed new light on the role of time
and timescales in physical systems such as the Universe.  Here we proposed a covariant version of a gauge theory, in
which the required global symmetry stands for the real constrained trajectories, i.e., the energetic gradient flows dictated
by the second law of thermodynamics.  The virtual displacements, occurring while time is held constant, stand for the
local transformations acting on the Universe.  In this framework, time stands for a continuous gauge field.  At the end of
the Universe, before the thermal death,   the quantum fluctuations in the trapped vacuum are close to zero.  Indeed, our
framework suggests that, with time passing, the vacuum will progressively loose its dark energy oscillations.  It means
that the spontaneous production of real matter and energy from quantistic vacuum will decrease.  The energy located in
the false vacuum will not have further possibilities to fluctuate, then it will not be able to give rise to novel inflationary
events.  Therefore, other inflations will not be possible when our Universe will approximate its end.   However, in the
very last phases of thermal death, a state of energetic equilibrium will be achieved, both in the trapped vacuum and in the
observable Universe.  This means that an almost complete T-symmetry could be restored.  Some questions remain
unanswered: at thermal death, does another Big Bang take place? Or does the trapped vacuum join the original one?
Further studies will elucidate such issues.
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A THEOREM FROM TOPOLOGY UNVEILS THE MYSTERY OF
FRACTALS AND POWER LAWS

The (spatial) fractals and (temporal) power laws are ubiquitously displayed by large classes of biological systems.
Nevertheless, they are controversial phenomena with still unexplained genesis.  From the far-flung branch of topology, a
helpful concept comes into play, namely the Borsuk-Ulam theorem, shedding new light on the scale-free origin’s long-
standing enigma.  The theorem states that a single point, if embedded in just one spatial dimension higher, gives rise to
two antipodal points that have matching descriptions and similar features.  Here we demonstrate that, when we introduce
into a system the proper fractal extra-dimension instead of a spatial one, we are able to achieve two antipodal self-similar
shapes, corresponding to the distinctive scale-free’s higher and lower magnifications.  By showing that the elusive
phenomena of fractals and power laws can be explained and analyzed in a topological framework, we make clear why
the Borsuk-Ulam theorem is the most general principle underlying their pervasive occurrence in nature.

Scale-free dynamics – also called 1/fα behavior, pink noise, power law, self-similarity, fractal-like distribution (Newman;
Slomczynski) - are an intrinsic feature of a large class of natural models, from earthquakes to brain activity (Milstein;
Linkenkaer-Hansen).  In particular, in many dynamical systems, the frequency spectrum displays a scale-invariant
behaviour S(f)= 1/fα, where S(f) is the power spectrum and f is the frequency.  Further, α stands for an exponent, the so-
called “dimension” of the fractal, which equals the negative slope of the line in a log power versus log frequency plot
(Pritchard, Van de Ville) (Figure 1A).  Such a general scheme stands both for (spatial) fractals and (temporal) power
laws.  For example, when a one-dimensional curve is self-similar, its fractal dimension α (also called D) is a continuous
quantity ranging from 0 to infinity, characterized by the expression:

log
log ( )

ND
r N

-
= .

This tells us that the fractal segment can be exactly decomposed into N overlapping segments (N stands in this case for
any positive integer) (Mandelbrot).  The fractal dimension gives rise to a dimension greater than the “classical” one-
dimension which is generally attributed to the “normal” curves embedded in a standard Euclidean space.  More
importantly, the fractal dimension encourages us to have another look at the the mechanism that gives rise to the
ubiquitous power law distributions, both in physical and biological systems.

Several possibilities have been suggested to explain the origin of power law distributions: from combination of
exponentials, to successive fractionation, from inverses of quantities to the Yule process, to multiplicative noise
(Newman; Beggs & Timme).  It has also been proposed that power laws are involved in random walks, phase transitions
and self-organized criticality, leading to physical/biological systems of increasing complexity (Bak).  Recent papers start
to uncover connections between the exponent of a fractal scaling in escape paths from energy basins and the activation
free energy (Perkins).  The ongoing fluctuations with complex scale-free properties have been absorbed into a free energy
scheme (Friston), suggesting that the critical slowing implicit in power law scaling might be mandated by any system that
minimizes its energetic expenditure.  It has also been demonstrated that a pink noise can be achieved by adding together
a  random  sine  wave  and  a  proper  one  (Tozzi),  so  that  a  fractal  system  might  be  produced  by  simply  choosing  the
appropriate oscillation to include.  In such a multifaceted framework, a simple theorem from the far-flung branch of the
algebraic topology, namely the Borsuk-Ulam theorem (BUT) (Borsuk 1933; Manetti) is able to elucidate the general
mechanism underlying different models of scale-free behavior.
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Figure 1A. Example of temporal power laws.  The plot displays log power versus log frequency of an electric wave,
along with the regression line (modified from Pritchard 1992).  The regression line’s slope (in this case, α = 2.1) is the
linear alignment of the data points reflecting the dominant power law.  Note that at the slope’s tails the α exponent is lost
(dotted lines on the right and left of the main slope).
Figure 1B.  The Borsuk-Ulam theorem for different values of Sn.  Each Sn is embedded in an Euclidean space Rn+1.  Two
antipodal points (black circles) in Sn  project to a single point in Rn, and vice versa.  Note that the two antipodal points do
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not stand just for topological points, but they can also stand either for feature vectors, or shapes, or signals, or changes in
their dynamic character.

MATERIALS AND METHODS

n-spheres. The notation Sn denotes an n-sphere, which is a generalization of the circle (Weeks).  An n-sphere, also called
Sn, is a n-dimensional structure embedded in a n+1 euclidean space (Moura;Weeks).  For example, a 1-sphere (S1) is the
one-dimensional circumference surrounding a 2-dimensional disk, while a 2-sphere (S2) is the 2-dimensional surface of a
3-dimensional space (a beach ball’s surface is a good illustration) (Marsaglia).  A n-sphere is a n-dimensional structure
embedded in a n+1  space.   An n-sphere  is  formed  by  points  which  are  constant  distance  from  the  origin  in  (n+1)-
dimensions (Marsaglia).  For example, a 2-sphere (also called glome or hypersphere) of radius r (where r may be any
positive real number) is defined as the set of points in a 3D Euclidean space at distance r from some fixed center point c
(which may be any point in the 3D space) (Moura).  A2-sphere is a simply connected 2-dimensional manifold of constant,
positive curvature, which is enclosed in an Euclidean 3-dimensional space called a 3-ball.  A 2-sphere is thus the surface
or boundary of a 3-dimensional ball, while a 3-dimensional ball is the interior of a 2-sphere.  From a geometer’s
perspective, we have different n-spheres, starting with the perimeter of a circle (S1) and advancing to S3, which is the
smallest hypersphere, embedded in a 4-ball (Figure 1).

The Borsuk-Ulam theorem: Definition. The Borsuk-Ulam Theorem (BUT) is a finding by K. Borsuk (Borsuk
1933)about Euclidean n-spheres and antipodal points.  It states that (Dodson):
Every continuous map f : Sn → Rn must identify a pair of antipodal points on Sn map to same point in Rn.
This means that diametrically opposite points (antipodes) on Sn are mapped to a single point in the n-dimensional
Euclidean spaceRn.Points on Sn are antipodal, provided they are diametrically opposite (Krantz).  Examples of antipodal
points are the endpoints of a line segment, or opposite points along the circumference of a circle, or poles of a sphere.  A
point embedded in an Rn manifold is projected to a pair of diametrically opposite points on a Sn+1-sphere, and vice versa.
In effect, the Borsuk-Ulam theoremtells us that we can always find antipodal points on Sn (which is embedded in Rn+1)
project to the same point on Rn (which contains Sn-1) (see Figure 1B).  In other words, if a sphere is mapped continuously
into a plane set, there is at least one pair of antipodal points having the same image; that is, they are mapped in the same
point of the plane (Beyer; Borsuk 1958-1959).  Put simply, two opposite points on a sphere, when projected on a
circumference, give rise to a single point with a description that matches the description of both anipodes.  This means
that the projection from a higher dimension (equipped with two antipodal points) to a lower one gives rise to a single
point.  Conversely, we have pullback in which a point on Sn-1 (embedded in Rn) projects back to two antipodal points on
Rn+1 (which contains Sn).  As a result, this also means that the projection from a lower dimension (equipped with just one
point) to a higher dimensional space, leads us back to information-carriers in the form of antipodal points that explain the
origin of the single signal value predicted by the Borsuk-Ulam theorem.  Note that, in the classical formulation of BUT,
the functionf needs to be continuous and n must be a natural number (although we will see that this is not always the
case).  For other definitions of BUT and its many proofs, see (Matoušek).

Description of a signal through BUT.  In terms of activity, a feature vector x ∈ Rn models the description of a signal.
To elucidate the picture in the application of the BUT in signal analysis, we view the surface of a manifold as a n-sphere
and the feature space for signals as finite Euclidean topological spaces (Figure 1B).   The  BUT  states  that  for  the
description f (-x) for a signal x , we expect to find an antipodal feature vector f (-x) describing a signal on the opposite
(antipodal) side of the manifold Sn.  The pair of antipodal signals have matching descriptions on Sn.
Let Xdenote a nonempty set of points on the manifold’s surface.  A topological structure on X(called a topological space)
is a structure given by a set of subsets t  of X, equipped with the following properties:
 (Str.1) Every union of sets in t  is a set in t .
(Str.2) Every finite intersection of sets in t  is a set in t .
The pair (X, τ) is a topological space.  Usually, Xby itself is called a topological space, provided it has a topology t on it.
Let X,Y be topological spaces.  Recall that a function or map f : X → Y on a set X to a set Y is a subset X Y´ so that for
each x ∈ Xthere is a unique y∈Ysuch that (x,y) ∈f (usually written y =f (x)). The mapping f is defined by a rule that tells
us how to find f(x) (Willard).
Shapes and homotopies.  A  mapping  f  : X→Y is continuous, provided, when A YÌ  is  open,  that  the  inverse

1( )f A X- Ì  is also open (Krantz).  In such a view of continuous mappings from the signal topological space X  on

the manifold’s surface to the signal feature space Rn, we consider not just one signal feature vector nx RÎ , but also
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mappings from X to a set of signal feature vectors f(X).  This expanded view of signals is noteworthy, since every
connected set of feature vectors f(X) has a shape.  It means that signal shapes can be compared.

A consideration of f(X) (set of signal descriptions for a region X) instead of f(x) (description of a single signal x) leads to
a region-based view of signals. This region-based manifold’s view arises naturally in terms of a comparison of shapes
produced by different mappings from X (object space) to the feature space Rn.  Continuous mappings from object spaces
to feature spaces lead into homotopy theory and the study of shapes.
Let , :f g X Y®  be continuous mappings from X to Y.  The continuous map : [0,1]H X Y´ ®  is defined by:

( ,0) ( ),H x f x= ( ,1) ( ),H x g x=  for every x∈X.
The mapping H is  a homotopy, provided there is a continuous transformation (called a deformation) from f to g. The
continuous maps f, g are called homotopic maps, provided f(X) continuously deforms into g(X) (denoted by

( ) ( )f X g X® ).  The sets of points f(X),g(X) are called shapes (Manetti; Cohen).

For the mapping : [0,1] nH X R´ ® , where H(X,0) and H(X,1) are homotopic, provided f(X) and g(X) and have the
same shape. That is, f(X) and g(X) are homotopic, if:

( ) ( ) ( )f X g X f X- <  , for allx∈X.
Borsuk first associated the geometric notion of shape and homotopies. The early work on n-spheres and antipodal points
led to the study of retraction and homotopic mappings (Borsuk 1958-59, Borsuk 1969, Borsuk 1980) and into the
geometry of shapes and shapes of space (Collins).  A pair of connected planar subsets in Euclidean space R2 have
equivalent shapes, provided the planer sets have the same number of holes.  In terms of signals, it means that the connected
graph for f (X) with, for example, an e shape, can be deformed into the 9 shape.  This suggests another useful application
of Borsuk’s view of the transformation of a shape into another, in terms of signal analysis (Schleicher; Su).  Sets of signals
not only will have similar descriptions, but also dynamic character and the deformation of one signal shape into another
occurs when they are descriptively near (Peters).  The nice thing about antipodal points is that the concept can be
generalized to countless types of systems’ signals (Peters 2014).  It is indeed worth of note that the two antipodal points
can be used not just for the description of simple topological points, but also of more complicated structures and systems,
such asshapes of space (spatial patterns), shapes of time (temporal patterns), movements and trajectories (Peters 2015;
Collins).  The two antipodal points on a Sn-sphere are characterized by the same function, have matching descriptions and
display similar features (Borsuk 1969; Borsuk 1980).  The collections of signals can be viewed as surface shapes, where
one shape maps to another antipodal one (Cohen).  It means that different phenomena can be studied in terms of opposite
points, if we only consider them embedded in just one dimension higher than the usual one.  If we simply evaluate
biological scale-free dynamics instead of “signals”, BUT leads naturally to the possibility of a region-based, not a simple
point-based, geometry of fractals.  When we apply BUT and its extensions to self-similar systems, we achieve interesting
results.  If we regard scale-free dynamics as embedded in a dimension different from the usual one, we are allowed to
study 1/fα behaviorin terms of opposite points on a n-sphere.

RESULTS

We proceeded as follows.  At first we enclosed fractal and power law structures, equipped with antipodal self-similar
points, into the abstract spaces of n-spheres.  In such a way, the 1/fα behavior – both in its spatial and temporal variants –
can be evaluated in guise of projections on Sn. Figure 2A illustrates an example of “spatial” fractals in the framework of
BUT.  The two antipodal points A and B stand for two self-similar fractal structures, assessed at different level of
observation: the point A displays the scale-free system’s macrostates, while the point B displays its microstates.  Although
BUT has been originally described as valid just in case of n being a natural number, in this context the value of n in Sn is
a fractional number: 1.3.  In such a framework, the n exponent is not a natural number, as it occurs in the “classical” BUT:
it is instead the scale-free dynamics’ fractal dimension - which is a rational number – which stands for the n exponent.
Are  we allowed to  modify  the  BUT’s  the  exponent  on  an n-sphere, changing a natural number into a rational one, to
describe n in a BUT fractal system equipped with two antipodal points?  We here demonstrate that the answer is positive,
by taking into account a Borsuk-Ulam theorem on d-spheres with Hausdorff dimension d, which is a fraction between 0
and 1.
We used the following terminology:

1) Metric space: Let X be a metric space with the metric μd(X) defined on it.  This means that μd(X) ≥ 0 and μd has
the usual symmetry and triangle inequality properties for all subsets of X.

2) Hausdorff measure: Let d be either 0 or a positive real number in ܴ
ା.  The Hausdorff measure μd(X) equals a

real number for each number d in X = Rd.
3) Hausdorff dimension (informal): The threshold value of d denoted by dimH(X) is the Hausdorff dimension of

X, provided μd(X) = 0, if d >dimH(X), and μd(X) = ∞, if d<dimH(X).
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Hausdorff Dimension- To arrive at the Hausdorff (fractional) dimension of a subset X in a metric space, we need to
consider the Hausdorff measure of X.
Definition 1.  Hausdorff measure.  Let X be a subset of a metric space M and let d any real number in ܴ

ା ε ∈ ܴ
ା(a real

number that is either positive or zero) a nonempty subset of X, Ui, i∈{1, .  .  .  ,n} is a cover of X, i.e., X is a subset of

iX CÍ  for all i (Schleicher 2007).  Here n is any positive integer.  Also, let diam(Ui) <ε be the diameter of the cover
Ui.  The d-dimensional Hausdorff measure μd(X) is defined by:

( ) ( )( )
0 1

.lim inf
i

dn

d
U X i

X n idiam U
e

m
® Ê =

é ù
= ê ú

ë û
å

The basic idea is to cover X with sets Ui with small diameters and estimate the d-measure of X as the sum of the (diam(Ui))d

, i.e., the sum of the Ui diameters raised to the power d.
Lemma 1.  Schleicher Lemma. Let d be any real number in ܴ

ା.  For every bounded set X in a metric space, there is a
unique value of d : = dimH(X) in ܴ

ା ∪ {∞} such that:
μௗ

ூ (X) = 0, if dI>d.
μௗ

ூ (X) = ∞, if dI<d.
Definition 2.  Hausdorff dimension. The value of d= dimH(X) in ܴ

ା called the Hausdorff dimension of X.  With d=
dimH(X), the Hausdorff measure μd(X) may be zero, positive or infinite.
Lemma 2.  Schleicher Boundedness Lemma. Let d be any real number in ܴ

ା and let Y be a metric space. If X YÌ ,
then:
dimH (X) ≤ dimH (Y).
Proof. Immediate from the definition of the Hausdorff dimension of a nonempty set.
Assume that X is a nonempty subset (inner sphere) of an n-sphere and having the same center as Sn with the Hausdorff
measure μd(X) defined on it and assume that μd(X) satisfies the Schleicher Lemma 1 conditions.  The inner sphere Sd of
an n-sphere Sn can be any sub-sphere in Sn, including Sn itself.  Then, the inner sphere Sd has dimension d= dimH (X), d≤
n. In addition, assume that Rd is a d-dimensional space which is a subset of the n-dimensional Euclidean space Rn, d<n.
This gives us new form of the Borsuk-Ulam Theorem (Borsuk 1933).
Theorem 1.  Hausdorff-Borsuk-Ulam Theorem. Let Sd with Hausdoff dimension d be an inner sphere of an n-sphere
and let f : S d®Rd be a continuous map. There exists a pair of antipodal points on Sd that are mapped to the same point
in Rd.
Proof. A direct proof of this theorem is symmetric with the proof of the Borsuk-Ulam Theorem is given by Su (1997),
since we assume that Sd is an inner sphere of Sn symmetric about the center of Sn and, from the Schleicher Boundedness
Lemma 2, dimH (Sd) ≤ dimH (Sn).

In mathematical words, we showed there that the Borsuk-Ulam theorem can be used for the description of antipodal points
on d-spheres equipped with Hausdorff dimension d.  Our results allow us to use the n parameter as a versatile tool not
just for the description of topological manifolds, but also of biological and physical systems.  It is thus suitable to make
use of a rational numbers, instead of integer ones, as n exponents in Sn.  The same mechanism described in Figure 2A for
“spatial” fractals is valid for “temporal” power laws’ plots, when they are equipped with a slope corresponding both to
the α exponent and the n-dimension. Figure 2B displays an example of the “temporal” variant of scale-free behavior, in
the framework of the BUT: if we take into account a system with, i.e., a fractal dimension D = 2.1, we may regard the
spatial 1/ fα structure (equipped with antipodal points A and B) as embedded in a sphere S2.1.
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Figure 2. Antipodal points on self-similar structures.
Figure 2A.  Spatial fractals embedded in a n-sphere equipped with n corresponding to a rational number.  The black
circles A and B depict fractals at lower and higher magnification, respectively.
Figure 2B.  The figure, modified from our Figure 1A, illustrates an example of temporal power laws embedded in a n-
sphere. The n-sphere, in this case, is equipped with a value of n corresponding to the fractal dimension α.  Note that the
Borsuk-Ulam theorem with its antipodal points is not valid at the slope’s tails, where the α exponent is lost (dotted lines).
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CONCLUSION

Our study elucidates how (spatial) fractals and (temporal) power laws are produced, both in physical and biological
systems.  The Borsuk-Ulam theorem displays two very useful general featureswhich help us to explain a wide-range of
phenomena, including fractals.  First, when a single point is embedded in just one dimension higher, it gives rise to two
antipodal points: it means that, by adding just a further dimension (in our case, the fractal one) to a biological or physical
system, we are allowed to study it in terms of antipodal points.  Second, if we evaluate scale-free dynamics instead of
“signals”, a collections of fractal signals could be viewed as surface shapes (or signals) where one shape maps to another
antipodal one.  Although BUT has been originally described as valid just in case of n being a natural number, recent
studies investigated the theorem in the framework of more general conditions.  In particular, it has been shown that this
extension holds for the case of rationally independent numbers (Kim).  We demonstrated here that BUT holds also for n-
sphere with a fractional n, and thus for scale-free systems.  What does a topologic reformulation brings on the table, in
the evaluation of 1/fα behaviors?  The opportunity to treat fractals as topological structures gives us the unvaluable chance
to describe them through the powerful analytical tools of homology theory and functional analysis (Matoušek; Yang;
Dol’nikov).  The BUT perspective allows a symmetry property located in the real space (the environment) to be translated
to an abstract space and vice-versa, enabling us to achieve a map from one dynamical system to another.  Embracing self-
similarityin the framework of BUT means that scale-free’ symmetry transformations (the antipodal points) can be
described as paths or trajectories on “abstract” structures (called topological configuration spacemanifolds).  It takes us
into the powerful realm of algebraic topology, where the abstract metric space (a projection of the physical and biological
melieu’s real geometric space) is able to elucidate countless relationships of large scale structures, through
correspondences from topological spaces to algebraic groups (Willard; Dodson).  In conclusion, we provided a general
topological mechanism which explains the elusive phenomenon of fractals and power laws, casted in a physical/biological
fashion which has the potential of being operazionalized.
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THE BORSUK-ULAM THEOREM ELUCIDATES CHAOTIC SYSTEMS

Nonlinear chaotic dynamics are widespread, both in physical and biological systems. This form of dynamics is frequently
studied through logistic maps equipped with bifurcations, where intervals are dictated by the Feigenbaum constants.  In
such a multifaceted framework, a concept from the far-flung branch of topology, namely the Borsuk-Ulam theorem,
comes into play. The theorem tells us that a continuous mapping from antipodal points with matching feature values on
an n-sphere to the same real value can always be found.  Here we demonstrate that embracing nonlinearity in the
framework of the Borsuk-Ulam theorem means that bifurcation transformations (the antipodal points) can be described
as paths or trajectories on abstract spheres equipped with a Feigenbaum dimension.  Such an approach allows the
evaluation of nonlinear systems through linear techniques.  In conclusion, we provide a general topological mechanism
which explains the elusive chaotic phenomena, cast in a physical/biological fashion which has the potential of being
operationalized.

Open systems maintain a non-equilibrium steady-state (i.e., homoeostasis or allostasis) in the face of environmental
fluctuations (Friston).  Such systems, widespread in physics and biology, have been described for countless phenomena,
from population dynamics (Newman) to evolution (Tozzi), from diseases spread to brain function (Van de Ville).
Complex, non-linear systems with non-equilibrium dynamics occur everywhere, characterized by a large number of
interacting and inter-dependent components, random walks (Perkins) and circular causality (Fraiman), spontaneous self-
organization and self-organized criticality (Bak) and emergent properties.

Some of these open systems are said to operate at the edge of chaos – a chaotic system displays dependence from initial
conditions, positive Lyapunov exponents, and attractors –while others tend to live near a metastable state of second-phase
transition - i.e., displaying infinite correlation length, countless dimensions (Afrahimovich), spontaneous avalanches and
universal power laws (de Arcangelis; Beggs).  Sequential, hierarchical self-organization on an increasing scale and with
constitutional dynamics in non-equilibrium systems can lead to the emergence of novel features and properties at each
level, organized in space as well as in time and passage beyond reversibility (Foffi).  Crowding-induced changes in the
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structure and dynamics of physical and biological phenomena describe a scenario of systems capable of generating well-
defined functional architectures, by self-assembling from their components, thus behaving as programmed systems
(Taylor).   To make an example, the recent idea of “supramolecular chemistry” suggests that complex chemical entities
can be reversibly constructed from molecular components bound together by labile non-covalent interactions (Lehn).  The
novel concept involves the storage of information at the molecular level and its retrieval, transfer and processing at the
supramolecular level, via transitory processes that are self-organized, self-assembled and dynamic.
In such a multifaceted framework, a concept from the far flung branch of algebraic topology, namely the Borsuk-Ulam
theory, is able to elucidate (at least some) of the dynamics underlying nonlinear systems and to shed new light on the
puzzling phenomenon of the occurrence of chaos.  This paper is an effort to explain some aspects of dynamic systems
theory in terms of algebraic topology, and to evaluate the consequences of this strategy.

MATERIALS AND METHODS

Logistic maps and the Feigenbaum constant. A logistic map is a one-dimensional nonlinear difference equation widely
used to study equations in the field of dynamic systems theory. To make an example, take into account the coupled
equations (Richardson):
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where x is a generic variable representing some observable behaviour, r is a fixed behavioral parameter (the phase
parameter) and t equals time from step 0 to step n.  A logistic map may be simply plotted and visualized on a one-
parameter bifurcation diagram, as a function of the scaled parameter r (Figure A).  It can be clearly observed that, at the
edge of criticality, a Hopf bifurcation occurs.
In bifurcation theory, the first universal Feigenbaum constant is a trascendental number which expresses a ratio in a
bifurcation diagram for a non-linear map (Smith).  In general, every chaotic system that corresponds to a one-dimensional
map with a single quadratic maximum will bifurcate at the same rate (Alligood).

The first Feigenbaum constant is the limiting ratio of each bifurcation interval to the next between every period doubling,
of a one-parameter map:

1 ( ),i ix f x+ =

Where f(x) is a function parameterized by the bifurcation parameter a.  The constant is given by the limit (Jordan):
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Where an are discrete values of variable a at the nth period doubling.  The ratio 1 2
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converges to the

Feigenbaum constant.  The same number arises for the following logistic maps:

( )( ) 1 ,f x ax x= -

and
2( ) .f x a x= -

n-spheres. The notation Sn denotes an n-sphere, which is a generalization of the circle (Weeks).  An n-sphere, also called
Sn,  is a n-dimensional structure embedded in a n+1 Euclidean space (Moura).   For  example,  a  2-sphere  (S2)  is  the  2-
dimensional surface of a 3-dimensional space (a beach ball’s surface is a good illustration).  An n-sphere is formed by
points which are constant distance from the origin in (n+1)-dimensions (Marsaglia).  For example, a 2-sphere (also called
glome or hypersphere) of radius r (where r may be any positive real number) is defined as the set of points in a 3D
Euclidean space at distance r from some fixed center point c (which may be any point in the 3D space) (Moura).  A2-
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sphere is a simply connected 2-dimensional manifold of constant, positive curvature, which is enclosed in an Euclidean
3-dimensional space called a 3-ball.  From a geometer’s perspective, we have different n-spheres, starting with the
perimeter of a circle (S1) and advancing to S3, which is the smallest hypersphere, embedded in a 4-ball.

The Borsuk-Ulam theorem. The Borsuk-Ulam Theorem (BUT) is a finding by K. Borsuk (Borsuk 1933) about
Euclidean n-spheres and antipodal points.  It states that (Dodson):
Every continuous map f  :  Sn → Rn must identify a pair of antipodal points on Sn map to same point in Rn.
This means that diametrically opposite points (antipodes) on Sn are mapped to a single point in n-dimensional Euclidean
space Rn. Points on Sn are antipodal, provided they are diametrically opposite (Krantz).  Examples of antipodal points
are the opposite points along the circumference of a circle, or the poles of a sphere.  A point embedded in an Rn manifold
is projected to a pair of diametrically opposite points on a Sn+1-sphere, and vice versa.  In effect, the Borsuk-Ulam theorem
tells us that we can always find antipodal points on Sn (which is embedded in Rn+1) project to the same point on Rn (which
contains Sn-1).  In other words, if a sphere is mapped continuously into a plane set, there is at least one pair of antipodal
points having the same image; that is, they are mapped in the same point of the plane (Beyer; Borsuk 1958-1959).  Put
simply, two opposite points on a sphere, when projected on a circumference, give rise to a single point with a description
that matches the description of both antipodes.  This means that the projection from a higher dimension (equipped with
two antipodal points) to a lower one gives rise to a single point.  Conversely, we have pullback in which a point on Sn-1

(embedded in Rn) projects back to two antipodal points on Rn+1 (which contains Sn).  As a result, this also means that the
projection from a lower dimension (equipped with just one point) to a higher dimensional space, leads us back to
information-carriers in the form of antipodal points that explain the origin of the single signal value predicted by BUT.
Note that, in the classical formulation of BUT, n must be a natural number (although we will see that this is not always
the case).  For other definitions of BUT and its countless proofs, see (Matoušek).

Description of a signal through BUT.  In terms of activity, a feature vector nx RÎ models the description of a signal.
To elucidate the picture in the application of the BUT in signal analysis, we view the surface of a manifold as an n-sphere
and the feature space for signals as a finite Euclidean topological space.  The BUT states that for the description f (-x) for
a signal x , we expect to find an antipodal feature vector f (-x) describing a signal on the opposite (antipodal) side of the
manifold Sn.  The pair of antipodal signals have matching descriptions on Sn.
Let X denote a nonempty set of points on the manifold’s surface.  A topological structure on a nonempty set X is defined
by a family of sets t on X, having the following properties:
(Str.1) Every union of sets in t  is a set in t .
(Str.2) Every finite intersection of sets in t  is a set in t .
The pair (X, τ) is a topological space.  Usually, X by itself is also called a topological space, provided it has a topology t
on it.  Let X,Y be topological spaces.  Recall that a function or map f : X → Y on a set X to a set Y is a subset X Y´  so
that for each x ∈ X there is a unique y ∈ Y such that (x,y) ∈ f (usually written y =f (x)). The mapping f is defined by a rule
that tells us how to find f(x) (Willard).
Shapes and homotopies.  A mapping :f X Y® is continuous, provided, when A YÌ  is open, then the inverse

1( )f A X- Ì  is also open (Krantz).  In such a view of continuous mappings from the signal topological space X  on

the manifold’s surface to the signal feature space Rn, we consider not just one signal feature vector nx RÎ , but also
mappings from X to a set of signal feature vectors f(X).  This expanded view of signals is noteworthy, since every
connected set of feature vectors f(X) has a shape.  It means that signal shapes can be compared.

A consideration of f(X) (set of signal descriptions for a region X) instead of f(x) (description of a single signal x) leads to
a region-based view of signals. This region-based view of signals (and manifolds) arises naturally in terms of a comparison
of shapes produced by different mappings from X (object space) to the feature space Rn.  Continuous mappings from
object spaces to feature spaces lead into homotopy theory and the study of shapes.
Let , :f g X Y®  be continuous mappings from X to Y.  The continuous map : [0,1]H X Y´ ®  is defined by:

( ,0) ( ),H x f x= ( ,1) ( ),H x g x=  for every x∈X.
The mapping H is  a homotopy, provided there is a continuous transformation (called a deformation) from f to g. The
continuous maps f, g are called homotopic maps, provided f(X) continuously deforms into g(X) (denoted by

( ) ( )f X g X® ).  The sets of points f(X), g(X) are called shapes (Manetti; Cohen).

For the mapping : [0,1] nH X R´ ® , where H(X,0) and H(X,1) are homotopic, provided f(X) and g(X) and have the
same shape. That is, f(X) and g(X) are homotopic, if:

( ) ( ) ( )f X g X f X- <  , for allx∈X.
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K. Borsuk first associated the geometric notion of shape and homotopies during the 1950s.  The early work on n-spheres
and antipodal points led to the study of retraction and homotopic mappings (Borsuk 1969) and to the geometry of shapes
and shapes of space (Collins).  A pair of connected planar subsets in Euclidean space R2 have equivalent shapes, provided
the planer sets have the same number of holes.  In terms of signals, this means that the connected graph for f (X) with, for
example, an e shape, can be deformed into the 9 shape.  A pair of antipodal points on a Sn-sphere are characterized by the
same function, have matching descriptions and display similar features (Borsuk 1980). This suggests a useful application,
in terms of signal analysis, of Borsuk’s view of the transformation of a shape into another (Schleicher; Su).  Sets of signals
not only will have similar descriptions, but also dynamic character; further, the deformation of one signal shape into
another occurs when they are descriptively near (Collins).  In sum, the concept of antipodal points can be generalized to
countless types of systems’ signals (Peters 2014).  Two antipodal points can be used not just for the description of simple
topological points, but also of more complicated structures and systems, such as shapes of space (spatial patterns), shapes
of time (temporal patterns), movements and trajectories (Peters 2015).  If the collections of signals can be viewed as
surface shapes, where one shape maps to another antipodal shape (Cohen), then different phenomena can be studied in
terms of opposite points, when we consider them embedded in just one dimension higher than the usual one.

RESULTS

We applied BUT and its extensions to chaotic logistic maps.  The procedure we followed is shown in figure A.  At first,
we embedded nonlinear dynamics in a n-sphere, in order to be allowed to study chaotic behavior in terms of opposite
topological points.  However, this time the n number of the n-sphere did not stand for a spatial dimension or for a natural
number as usual in Borsuk-Ulam theorem, but for the first Feigenbaum constant.  Thus, our n number was a constant (not
anymore a spatial dimension) and an irrational number (not anymore a natural one).  Are we allowed to modify the BUT’s
“classical” exponent on an n-sphere, changing a natural number into an irrational one, to achieve a chaotic system
equipped with two antipodal points?  We here demonstrate that the answer is positive, by taking into account a Borsuk-
Ulam theorem on d-spheres with the Hausdorff dimension d, which is a fraction between 0 and 1.
We used the following terminology:

4) Metric space: Let X be a metric space with the metric μd(X) defined on it.  This means that μd(X) ≥ 0 and μd has
the usual symmetry and triangle inequality properties for all subsets of X.

5) Hausdorff measure: Let d be either 0 or a positive real number in ܴ
ା.  The Hausdorff measure μd(X) equals a

real number for each number d in X = Rd.
6) Hausdorff dimension (informal): The threshold value of d denoted by dimH(X) is the Hausdorff dimension of

X, provided μd(X) = 0, if d >dimH(X), and μd(X) = ∞, if d<dimH(X).

Hausdorff Dimension- To arrive at the Hausdorff (fractional) dimension of a subset X in a metric space, we need to
consider the Hausdorff measure of X.
Definition 1.  Hausdorff measure.  Let X be a subset of a metric space M and let d any real number in ܴ

ା ε ∈ ܴ
ା(a real

number that is either positive or zero) a nonempty subset of X, Ui, i∈{1, .  .  .  ,n} is a cover of X, i.e., X is a subset of

iX CÍ  for all i (Schleicher 2007).  Here n is any positive integer.  Also, let diam(Ui) <ε be the diameter of the cover
Ui.  The d-dimensional Hausdorff measure μd(X) is defined by:
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The basic idea is to cover X with sets Ui with small diameters and estimate the d-measure of X as the sum of the (diam(Ui))d

, i.e., the sum of the Ui diameters raised to the power d.
Lemma 1.  Schleicher Lemma. Let d be any real number in ܴ

ା.  For every bounded set X in a metric space, there is a
unique value of d : = dimH(X) in ܴ

ା ∪ {∞} such that:
μௗ

ூ (X) = 0, if dI>d.
μௗ

ூ (X) = ∞, if dI<d.
Definition 2.  Hausdorff dimension. The value of d= dimH(X) in ܴ

ା called the Hausdorff dimension of X.  With d=
dimH(X), the Hausdorff measure μd(X) may be zero, positive or infinite.
Lemma 2.  Schleicher Boundedness Lemma. Let d be any real number in ܴ

ା and let Y be a metric space. If X YÌ ,
then:
dimH (X) ≤ dimH (Y).
Proof. Immediate from the definition of the Hausdorff dimension of a nonempty set.
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Assume that X is a nonempty subset (inner sphere) of an n-sphere and having the same center as Sn with the Hausdorff
measure μd(X) defined on it and assume that μd(X) satisfies the Schleicher Lemma 1 conditions.  The inner sphere Sd of
an n-sphere Sn can be any sub-sphere in Sn, including Sn itself.  Then, the inner sphere Sd has dimension d= dimH (X), d≤
n. In addition, assume that Rd is a d-dimensional space which is a subset of the n-dimensional Euclidean space Rn, d<n.
This gives us new form of the Borsuk-Ulam Theorem (Borsuk 1933).
Theorem 1.  Hausdorff-Borsuk-Ulam Theorem. Let Sd with Hausdoff dimension d be an inner sphere of an n-sphere
and let f : S d®Rd be a continuous map. There exists a pair of antipodal points on Sd that are mapped to the same point
in Rd.
Proof. A direct proof of this theorem is symmetric with the proof of the Borsuk-Ulam Theorem is given by Su (1997),
since we assume that Sd is an inner sphere of Sn symmetric about the center of Sn and, from the Schleicher Boundedness
Lemma 2, dimH (Sd) ≤ dimH (Sn).

In sum, we achieved a n-sphere with a n exponent corresponding to the Feigenbaum number.  The next step was to locate
the n-sphere on a logistic map, in order to embed the topological antipodal points into the bifurcation diagram of a chaotic
phenomenon (Figure A).  Once achieved two antipodal points for every bifurcation, we were allowed to map them in the
concentric layers of another n-sphere (Figure B).  We obtained a topological structure which summarizes the whole
behaviour of a nonlinear, chaotic system.  Note that the center of the sphere stands for a completely linear system, while,
when we move along the circumference towards the sphere surface, we achieve antipodal points which represent a
progressively more chaotic system.   In such a vein, the knowledge of just the single central point and the first Feigenbaum
constant leads to predictions about the temporal developement of otherwise chaotic phenomena.
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FigureA.  Bifurcation diagram of a logistic map’s nonlinear dynamical equation.  The axis x displays the phase parameter.
At the first Hopf bifurcation, the exponent n of the n-sphere corresponds to the first Feigenbaum constant.  The same
operation can be repeated at each of the following bifurcations: just the first and the second ones are displayed in Figure.
Each sphere is equipped with two antipodal points which intersect the curves of the corresponding bifurcation and which
display the same value on the axis x.
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Figure B.  The antipodal points described in Figure A are projected onto a single sphere, which stands for the Figure A’s
spheres casted in a concentric way, so that the center is the same for all of them.

CONCLUSION

In conclusion, we demonstrated a close link between topological mappings and nonlinear chaotic systems. The Borsuk-
Ulam theorem is a versatile tool displaying a very useful general feature which helps us explain a wide-range of
phenomena: in our case, if we evaluate nonlinear dynamics instead of “signals”, a collection of chaotic signals can be
viewed as surface shapes (or sets of region signals) where one shape maps to another antipodal shape.  When assessing
physical and biological nonlinear dynamics as an alternative to “signals”, the BUT leads naturally to the possibility of a
region-based, not a simple point-based, geometry of logistic maps.  Furthermore, the BUT can be used for the description
of antipodal points on n-spheres equipped with a dimension d different from a natural number.  Although BUT has been
originally described as valid just in case of a natural number n, recent studies have shown that this theorem is also valid
in the framework of more general conditions.  In particular, it has been shown that this extension holds for the case of
rationally independent numbers (Kim).  Here we demonstrated that the n value in Sn can be an irrational number, in this
case the Feigenbaum constant.  BUT is thus suitable to make use of irrational numbers, instead of integer ones, as n
exponents in Sn.  This suggests that the n parameter can be used as a versatile tool not just for the description of topological
manifolds, but also for biological and physical chaotic systems.
What does a topologic reformulation bring to the table, in the evaluation of nonlinear chaotic systems?  The opportunity
to treat chaos as a topological structure gives us the invaluable chance to describe it through the powerful analytical tools
of homology theory and functional analysis (Matoušek; Yang; Dol’nikov).  The BUT perspective gives us a symmetry
property located in the real space (the environment) to be translated to an abstract space and vice-versa, enabling us to
achieve a map from one dynamical system to another (Figure B).  Embracing nonlinearity in the framework of BUT
means that bifurcation transformations (the antipodal points) can be described as paths or trajectories on “abstract”
structures (called topological configuration space manifolds).  Indeed, BUT makes it possible for us to evaluate a
nonlinear system through linear techniques.  It takes us into the powerful realm of algebraic topology, where the abstract
metric space (a projection of the physical and biological melieu’s real geometric space) is able to elucidate countless
relationships of large scale structures, through correspondences from topological spaces to algebraic groups (Willard;
Dodson).
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