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Abstract

Several deterministic and stochastic multi-variable global optimization algo-

rithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton, and Global) are

investigated in conjunction with energy minimization principle to resolve

the pressure and volumetric flow rate fields in single ducts and networks of

interconnected ducts. The algorithms are tested with seven types of fluid:

Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and

Casson. The results obtained from all those algorithms for all these types

of fluid agree very well with the analytically derived solutions as obtained

from the traditional methods which are based on the conservation principles

and fluid constitutive relations. The results confirm and generalize the find-

ings of our previous investigations that the energy minimization principle is

at the heart of the flow dynamics systems. The investigation also enriches

the methods of Computational Fluid Dynamics for solving the flow fields

in tubes and networks for various types of Newtonian and non-Newtonian

fluids.
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1 Introduction

The traditional method for resolving the pressure and volumetric flow rate fields in

fluid conducting devices is to use the conservation principles, which are normally

based on the mass continuity and momentum conservation, in conjunction with

the constitutive relations that link the stress to the rate of deformation and are

specific to the particular types of fluid employed to model the flow [1–4]. For

single conduits, this usually results in an analytical expression that correlates the

volumetric flow rate to the applied pressure drop as well as other dependencies on

the parameters of the conduits, such as the radius and length of the tube, and the

parameters of the fluid such as the shear viscosity and yield stress. For networks

of interconnected conduits, the analytical expression for the single conduit for the

particular fluid model can be exploited in a numeric solution scheme, which is

normally of iterative nature such as the widely used Newton-Raphson procedure

for solving a system of simultaneous non-linear equations, in conjunction with the

mass conservation principle and the given boundary conditions to obtain the flow

fields in the network.

Recently the energy minimization principle in the flow through single conduits

and networks of interconnected conduits was investigated [5, 6] as a possible un-

derlying rule for the flow phenomena that can be exploited to resolve the pressure

and volumetric flow rate fields. While in [5] the issue was investigated numerically

in relation to the flow of Newtonian fluids using a stochastic simulated annealing

[7–9] procedure, in [6] it was investigated analytically in relation to the flow of

Newtonian and power law fluids using standard analytical optimization methods

from Calculus.

In the present study we continue those investigations but this time the is-

sue is investigated numerically in relation to the flow of Newtonian and six non-

Newtonian fluid models using three deterministic and one stochastic global multi-
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variable optimization algorithms. The six non-Newtonian fluid models are: power

law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The three em-

ployed deterministic algorithms are: Conjugate Gradient, Nelder-Mead, and Quasi-

Newton, while the stochastic algorithm is the Stochastic Global. Several types

of network, which include one-dimensional (1D) two-dimensional (2D) and three-

dimensional (3D), of different geometries and topologies, such as fractals and irreg-

ulars based on cubic and orthorhombic lattices, are used to examine and validate

the energy minimization proposal.

All the results obtained in the current study support the generalization of the

energy optimization as a fundamental principle that underlies the flow phenomena

in the Newtonian and non-Newtonian fluid dynamics systems. The study also adds

more tools to the Computational Fluid Dynamics as these computational methods,

which are based on energy minimization, can be used for finding the pressure and

flow rate fields in tubes and networks.

The plan for this paper is as follow: in the next section § 2 we present a

general theoretical background about the energy minimization principle and its

use in association with the global multi-variable optimization algorithms to resolve

the flow fields in tubes and networks of interconnected tubes for different types

of fluid. This will be followed in section § 3 by discussing the implementation of

the energy minimization principle within global multi-variable optimization codes

and the results that have been obtained from different optimization algorithms

using various types of fluid and different kinds of network where we analyze the

results and compare them to the standard analytical solutions as obtained from and

verified by the traditional methods which are based on the conservation principles

and constitutive relations for solving the flow fields. Finally, in section § 4 the

paper is concluded by outlining the main issues that have been examined in this

study and their theoretical and practical significance.
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2 Theoretical Background

In this investigation, we assume an incompressible, laminar, pressure-driven, fully-

developed flow with minimal entry and exit effects and negligible viscous frictional

losses. We also assume minor effects from external body forces such as gravitational

attraction and electromagnetic interaction. The single conduits, as well as the

conduits in the interconnected networks, are assumed to be rigid of uniform and

circularly-shaped cross sections along their axial dimension.

As for the boundary conditions, we assume Dirichlet-type pressure boundary

conditions. The last assumption is imposed only for convenience and practical

considerations; otherwise the energy minimization argument, when established,

will not be restricted to such conditions which basically reflect the way used to

model and portray the flow system by the observer and hence the type of the

boundary conditions does not represent an inherent characteristic of the system

that is due to determine its final outcome.

Concerning the type of fluid, we assume a generalized Newtonian fluid which

in this investigation includes Newtonian, Ostwald-de Waele, Bingham, Herschel-

Bulkley, Ellis, Ree-Eyring and Casson models. The constitutive relations for these

models, as well as the analytical expressions for their volumetric flow rate through

rigid uniform pipes of circular cross sections, are given in Table 1.

The time rate of energy consumption, I, for transporting a certain amount of

fluid through a single conducting device, considering the pre-stated flow assump-

tions, is given by

I = ∆pQ (1)

where ∆p is the pressure drop across the conducting device and Q is the volumetric

flow rate of the transported fluid through the device. For a flow conducting device
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that consists of or discretized into m conducting elements indexed by l, the total

energy consumption rate, It, is given by

It(p1, . . . , pN) =
m∑
l=1

∆plQl (2)

where N is the number of the boundary and internal nodes. For a single duct,

the conducting elements are the discretized sections, while for a network they

represent the conducting ducts as well as their discretized sections if discretization

is employed.

Starting from randomly selected values for the internal nodal pressure, with the

given pressure values for the inlet and outlet boundary nodes, the role of the global

multi-variable optimization algorithms in the above-described energy consumption

model is to minimize the cost function, which is the time rate of the total energy

consumption for fluid transportation It as given by Equation 2, by varying the

values of the internal nodal pressure while holding the pressure values at the inlet

and outlet boundary nodes as constants. The volumetric flow rates, Q, that have

to be used in Equation 2 for the employed fluid models are given by the expressions

in Table 1.

3 Implementation, Results and Analysis

The above-explained energy minimization method was implemented using three

deterministic global multi-variable optimization algorithms and one stochastic.

The deterministic algorithms are: Conjugate Gradient, Nelder-Mead, and Quasi-

Newton, while the stochastic is the Global algorithm of Boender et al. For more

details about the three employed deterministic algorithms we refer to standard

textbooks that discuss these algorithms such as the Numerical Recipes of Press et
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Table 1: The constitutive relations and the volumetric flow rates, Q, for the seven
fluid models used in this investigation. These volumetric flow rates are derived for
rigid uniform pipes of circular cross sections. The meanings of the symbols are
given in Nomenclature § 5.

Model Constitutive Q

Newtonian τ = µγ πR4∆p
8Lµ

Power Law τ = kγn πR4

8L
n

√
∆p
k

(
4n

3n+1

) (
2L
R

)1−1/n

Bingham τ = Cγ + τ0
πR4∆p

8LC

[
1
3

(
τ0
τw

)4

− 4
3

(
τ0
τw

)
+ 1

]
Herschel-Bulkley τ = Cγn + τ0

8π
n√
C

(
L

∆p

)3

(τw − τ0)
1+1/n

[
(τw−τ0)2

3+1/n + 2τ0(τw−τ0)
2+1/n +

τ2
0

1+1/n

]
Ellis γ = τ

µ0

[
1 +

(
τ

τ
1/2

)α−1
]

πR3τw
4µ0

[
1 + 4

α+3

(
τw
τ
1/2

)α−1
]

Ree-Eyring τ = τc arcsinh
(
µ0γ
τc

)
πR3τc
τ3
wµ0

[(
τcτ

2
w + 2τ3

c

)
cosh

(
τw
τc

)
− 2τ2

c τw sinh
(
τw
τc

)
− 2τ3

c

]
Casson τ1/2 = (Kγ)

1/2
+ τ

1/2
0

πR3

τ3
wK

(
τ4
w

4 −
4
√
τ0τ

7/2
w

7 +
τ0τ

3
w

3

)

al [10], while for the Stochastic Global algorithm we refer to [11]1.

As for single tubes, it is a special case of the forthcoming linear networks of

serially connected pipes where all the pipes in the ensemble have the same radius; in

this regard all the implemented optimization algorithms produced results which are

virtually identical to the analytical solutions for all the seven types of fluid as given

in Table 1. Regarding the networks, due to the difficulty of presenting the results

graphically for the two-dimensional and three-dimensional networks, we present

in Figures 2–6 a sample of the results obtained from a range of one-dimensional

networks presented in Table 2. Similar results were obtained from representative

samples of two-dimensional and three-dimensional networks although the numerical

errors for the two-dimensional and three-dimensional networks are generally larger

than those of the one-dimensional. Also some algorithms failed to converge in the

case of large networks due to shortcomings of the employed algorithms and codes

or restrictions on the affordable CPU time or the number of iterations of their

1See also: http://jblevins.org/mirror/amiller/global.txt web page.
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execution.

The size of the networks used in the investigation ranges between a small num-

ber to several hundreds, and even thousands in some cases, of nodes and segments.

The multi-dimensional networks used in this investigation are of two main types:

two-dimensional of fractal and rectangular morphology, and three-dimensional built

on cubic and orthorhombic lattice structures. The fractals are based on fractal

branching patterns where each generation of the branching tubes in the network

has a specific number of branches related to the number of branches in the parent

generation, such as 3:1, as well as specific branching angle, radius branching ratio

and length to radius ratio. The cubic and orthorhombic networks are based on cubic

and orthorhombic three-dimensional lattice structures respectively where the radii

of the tubes in the network are subjected to random statistical distributions such as

the uniform or the normal distributions. Similar statistical distributions were also

applied to the two-dimensional rectangular networks. A graphic demonstration

of three main types of network; namely one-dimensional linear, two-dimensional

fractal and three-dimensional orthorhombic; is given in Figure 1.

The size of the difference between the numerical optimization solutions and

the analytical solutions depends mainly on the particular algorithm, the type and

parameters of the fluid and the size and type (1D, 2D or 3D and fractal or or-

thorhombic) of the network. A typical size of the average percentage relative dif-

ference between the numerical optimization solutions and the analytical solutions is

less than 0.5% for the one-dimensional networks, about 1% for the two-dimensional

networks, and 2-3% for the three-dimensional networks. In most cases, the best

optimization algorithm with regard to the agreement of its solution with the ana-

lytical solution is the Global while the worst is the Nelder-Mead. The latter has

also failed to converge in some cases.

In our view, the observed discrepancy between the numerical optimization so-
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(a) One-dimensional Linear Network.

(b) Two-dimensional Fractal Network.

(c) Three-dimensional Orthorhombic Network.

Figure 1: A graphic demonstration of three main types of network used in the
current investigation.
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lutions and the analytical solutions in all the investigated cases can be justified

by premature convergence of the optimization algorithms due to practical limits

on their convergence criteria as well as numerical errors arising from limitations of

the employed optimization algorithms and codes plus non-linearities, especially in

some cases of non-Newtonian models with extreme non-linear characteristics such

as high shear thinning and yield stress.

There are many computational issues related to the performance and conver-

gence behavior of these algorithms and their relation to the type and parameters

of the fluids and the size and type of the networks. However, these technical de-

tails are irrelevant to the current study whose main objective is to provide further

validation and demonstration for the use of energy minimization principle in re-

solving the flow fields in tubes and networks, rather than investigating numerical

and computational issues.

Table 2: A sample of the one-dimensional linear networks of serially connected
rigid uniform tubes of circular cross sections with the given number of segments
(NS) that have been used in the current investigation to compare the analytical
solutions to the solutions of the global optimization algorithms.

Network NS Lengths (cm) Radii (cm)
1 7 80,60,70,90,90,50,60 2.5,2.1,1.8,1.3,1.7,2.6,1.6
2 8 4.8,4,4.8,4,5.6,7.2,5.6,4 1,1.3,0.75,0.6,0.5,0.85,1.1,1.2
3 8 2.4,2,2.4,2,2.8,3.6,2.8,2 0.6,0.5,0.44,0.28,0.38,0.49,0.57,0.51
4 6 14,8,8,14,14,17 2.4,2,1.76,2.232,1.52,1.8
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(a) Conjugate Gradient.
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Figure 2: Comparison between the analytical solution and the solutions obtained
from the indicated global optimization algorithms which are based on the energy
minimization principle for a shear thickening power law fluid with n = 1.2 and k =
0.05 Pa.sn. The computations were carried out using the first network of Table 2
with inlet and outlet pressure boundary conditions of 3000 Pa and 0 Pa respectively.
The volumetric flow rate through the network is Q = 1.690 × 10−4 m3.s−1. In all
four sub-figures, the vertical axis represents the network axial pressure in Pa while
the horizontal axis represents the network axial coordinate in m. Similar results
were obtained for the Newtonian model which is a special case of the power law
model with n = 1.
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(a) Conjugate Gradient.
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Figure 3: Comparison between the analytical solution and the solutions obtained
from the indicated global optimization algorithms which are based on the energy
minimization principle for a shear thinning yield stress Herschel-Bulkley fluid with
n = 0.6, C = 0.008 Pa.sn and τ0 = 1.0 Pa. The computations were carried out using
the second network of Table 2 with inlet and outlet pressure boundary conditions
of 2000 Pa and 0 Pa respectively. The volumetric flow rate through the network
is Q = 1.022× 10−1 m3.s−1. In all four sub-figures, the vertical axis represents the
network axial pressure in Pa while the horizontal axis represents the network axial
coordinate in m. Similar results were obtained for the Bingham model which is a
special case of the Herschel-Bulkley model with n = 1.
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(a) Conjugate Gradient.
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Figure 4: Comparison between the analytical solution and the solutions obtained
from the indicated global optimization algorithms which are based on the energy
minimization principle for an Ellis fluid with µ0 = 0.18 Pa.s, α = 2.4 and τ

1/2
=

1025 Pa. The computations were carried out using the third network of Table 2
with inlet and outlet pressure boundary conditions of 1000 Pa and 0 Pa respectively.
The volumetric flow rate through the network is Q = 3.160 × 10−6 m3.s−1. In all
four sub-figures, the vertical axis represents the network axial pressure in Pa while
the horizontal axis represents the network axial coordinate in m.
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Figure 5: Comparison between the analytical solution and the solutions obtained
from the indicated global optimization algorithms which are based on the energy
minimization principle for a Ree-Eyring fluid with µ0 = 0.018 Pa.s and τc = 300 Pa.
The computations were carried out using the fourth network of Table 2 with inlet
and outlet pressure boundary conditions of 1500 Pa and 0 Pa respectively. The
volumetric flow rate through the network is Q = 4.991 × 10−3 m3.s−1. In all four
sub-figures, the vertical axis represents the network axial pressure in Pa while the
horizontal axis represents the network axial coordinate in m.
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Figure 6: Comparison between the analytical solution and the solutions obtained
from the indicated global optimization algorithms which are based on the energy
minimization principle for a Casson fluid with µ0 = 0.01 Pa.s and τ0 = 1.0 Pa.
The computations were carried out using the fourth network of Table 2 with inlet
and outlet pressure boundary conditions of 2500 Pa and 0 Pa respectively. The
volumetric flow rate through the network is Q = 9.627 × 10−3 m3.s−1. In all four
sub-figures, the vertical axis represents the network axial pressure in Pa while the
horizontal axis represents the network axial coordinate in m.
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4 Conclusions

In this study, energy minimization was examined as a principle that underlies

the flow phenomena in single tubes and networks of interconnected tubes. This

was demonstrated by using three deterministic (Conjugate Gradient, Nelder-Mead

and Quasi-Newton) and one stochastic (Global) multi-variable global optimization

algorithms. Seven fluid models (Newtonian, power law, Bingham, Herschel-Bulkley,

Ellis, Ree-Eyring and Casson) with different types of network (1D linear, 2D fractal,

2D rectangular, 3D cubic and 3D orthorhombic) were used in this investigation. All

the obtained results support the validity and generality of the energy minimization

principle. The outcome of this investigation lends more credibility to the previous

findings in [5, 6] about this issue; moreover it generalizes the validity of the principle

by extending its applicability to more types of fluid which include several widely

used non-Newtonian models.

Apart from the obvious theoretical significance of the findings of the previous

and current investigations, the optimization algorithms can be used to resolve the

pressure and volumetric flow rate fields. Although these algorithms may not be

the best in performance, and even in accuracy in some cases, they could have

practical applications in the case of very large networks where the use of the tra-

ditional methods, which are based on the conservation principles and constitutive

relations, is prohibitive due to the requirement of using very large matrices. The

role and justification of the use of the optimization algorithms in resolving the flow

fields is similar to the role and justification of their use in solving large combina-

torial problems, like the Traveling Salesman Problem, where other analytical or

conceptually-based methods that rely on direct combinatorial enumeration are not

viable or available in those circumstances.
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5 Nomenclature

α indicial parameter in Ellis model

γ rate of shear strain

µ Newtonian viscosity

µ0 low-shear viscosity in Ellis and Ree-Eyring models

τ shear stress

τ0 yield stress in Herschel-Bulkley and Casson models

τ
1/2

shear stress when the viscosity equals µ0
2

in Ellis model

τc characteristic shear stress in Ree-Eyring model

τw shear stress at tube wall (= R∆p
2L

)

C viscosity consistency coefficient in Bingham and Herschel-Bulkley models

I time rate of energy consumption for fluid transport

It time rate of total energy consumption for fluid transport

k viscosity consistency coefficient in power law model

K viscosity consistency coefficient in Casson model

L tube length

m number of discrete elements in the fluid conducting device

n index of power law and Herschel-Bulkley models

N number of nodal junctions in the fluid conducting device

p pressure

∆p pressure drop across flow conduit

Q volumetric flow rate

R tube radius
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