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Abstract

We investigate the possibility that the spatial dependency of stress in general-

ized Newtonian flow systems is a function of the applied pressure field and

the conduit geometry but not of the fluid rheology. This possibility is well

established for the case of a one-dimensional flow through simply connected

regions, specifically tubes of circular uniform cross sections and plane thin

slits. If it can also be established for the more general case of generalized

Newtonian flow through non-circular or multiply connected geometries, such

as the two-dimensional flow through conduits of rectangular or elliptical

cross sections or the flow through annular circular pipes, then analytical or

semi-analytical or highly accurate numerical solutions; regarding stress, rate

of strain, velocity profile and volumetric flow rate; for these geometries can

be obtained from the stress function, which can be easily obtained from the

Newtonian case, in combination with the constitutive rheological relation for

the particular non-Newtonian fluid, as done previously for the case of the

one-dimensional flow through simply connected regions.
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Newtonian fluid; conduit with non-circular cross section; multiply connected

flow region; universal stress function.
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1 Introduction

The flow of generalized Newtonian fluids through conduits with circular and non-

circular simply connected cross sections, such as those of elliptical or rectangular

or triangular shape, and multiply connected cross sections like circular annulus, is

commonplace in many biological systems and technological applications such as the

transport of biological fluids in living organisms, the shipping of industrial liquids

and the distribution of coolants in temperature regulating devices.

There are many investigations related to the flow of Newtonian fluids through

conduits with non-circular cross sections or with multiple connectivity (e.g. [1–13]),

and less on the flow of non-Newtonian fluids through such conduits (e.g. [14–19]).

Several methods have been used in these investigations such as direct application of

Laplace and Poisson equations, complex analysis, conformal mapping, variational

methods, and numerical discretization techniques [3, 5, 7, 8, 14, 15, 20] as well as

experimental examination [18].

In this paper we investigate the possibility that the stress function for generalized

Newtonian fluids in multi-dimensional and multiple connectivity flow is universal,

i.e. it is the same for Newtonian and non-Newtonian fluids, and hence the flow

fields of generalized Newtonian fluids of non-Newtonian rheology through conduits

with non-circular or multiply connected cross sections can be obtained by acquiring

the stress, as a function of the spatial coordinates of the conduit cross section,

from the Newtonian case. The stress function can then be utilized in combination

with the rheological constitutive relation of the particular non-Newtonian fluid to

obtain the flow field parameters which include the shear rate, as a function of the

spatial coordinates of the cross section, and thereby the flow velocity profile and

subsequently the volumetric flow rate. If this method is established, through the

establishment of the universality of the stress function, it will be simple, general,

reliable and easy to implement; moreover it can produce highly accurate solutions
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for the flow of generalized Newtonian fluids of non-Newtonian rheology in those

geometries.

The plan for this paper is that in section 2 we explain the method and the

supporting argument for the universality of the stress function in general terms

stating the relevant assumptions and restrictions. This will be followed in section 3

by a few examples of the stress function for conduits of non-circular or multiply

connected cross sections which are obtained from the Newtonian flow case. The

study will be concluded in section 4 with general briefing and discussion.

2 Method

Here, we assume a laminar, incompressible, steady state, rectilinear, isothermal,

pressure-driven, fully-developed, creeping flow of a purely-viscous, time-independent

generalized Newtonian fluid and hence history-dependent fluids, like viscoelastic

and thixotropic, are excluded. We also exclude viscoplastic fluids, even if they are

classified as generalized Newtonian fluids, due to the complications introduced by

the presence of yield stress and the failure of the available viscoplastic models to

account for these complications. The effect of any potential secondary flow under

these conditions is negligible.

The effects of external body forces, such as gravity, as well as the edge effects at

the entry and exit zones of the conduit are assumed insignificant. Dependencies on

physical factors like temperature, which are not related to deformation, are also

ignored assuming fixed conditions or negligible contribution from these factors. The

flow is also assumed to be in shear mode with no significant extensional contributions.

Moreover, the pressure is assumed to be a sole function of the axial dimension in

the flow direction.

Concerning the type of conduit, we consider cylindrical ducts of uniform cross

sections (i.e. having constant shape and size in the flow axial direction) with non-
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circular simply or/and multiply connected cross section geometry. Rigid mechanical

properties of the conduit wall are assumed and hence the conduit wall is not

deformable under the considered range of pressure. As for the boundary conditions,

no-slip at the conduit wall is assumed and hence a zero velocity condition at the

fluid-solid interface is maintained.

We start from the momentum equation for the fluid flow which is given by

[21, 22]

ρ
Dv

Dt
= −∇p−∇.τ + ρg (1)

where ρ is the fluid mass density, D
Dt

is the material derivative, v is the fluid velocity

vector, t is the time, ∇ is the gradient operator, p is the pressure, τ is the deviatoric

or extra stress tensor, and g is the gravitational acceleration vector. Now, for a

steady state creeping flow with negligible body forces we can neglect the time rate,

convection and gravitational terms, and hence Equation 1 becomes

∇.τ = −∇p (2)

This equation can be simplified for two dimensional flow in a Cartesian coordinates

system, where the pressure gradient is in the stress-invariant z direction, into the

following form of the z-component

∂τxz
∂x

+
∂τyz
∂y

= −∂p
∂z

(3)

The stress in the last equation is dependent on the conduit spatial dimensions

(geometry) and the applied pressure but is independent of the fluid rheology since

the equation does not contain any rheological parameter. The independence of the

stress function from the fluid rheology is clearly demonstrated by the absence of

such dependency in the expressions of the stress function in the Newtonian flow
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case; examples of which are given in section 3.

For a given set of stress boundary conditions the solution of this equation should

be unique. All we need to establish then is that the stress boundary conditions for

generalized Newtonian fluids of non-Newtonian rheology are the same as those for

the Newtonian rheology to conclude that the stress function (i.e. spatial dependency

of stress over the conduit cross sectional region under steady flow conditions) for non-

Newtonian rheology is the same as for Newtonian rheology. Now, the indifference

of the stress boundary conditions between the non-Newtonian fluids and Newtonian

fluids is well established for the case of one-dimensional simply connected flow

which is represented by the case of circular cylindrical tubes and thin plane slits, as

discussed in [23]. If the stress boundary conditions should depend on the rheology,

the indifference cannot be established even in the case of one-dimensional simply

connected flow. Hence, since we cannot see any particular consideration that can

justify the restriction of such an indifference to the one-dimensional simply connected

flow, we can assume that the indifference in the stress boundary conditions, and

hence in the stress function as a whole, is applicable in general to multi-dimensional

and multiply connected flows of the assumed type.

If the assumption that the stress function is the same for the Newtonian and

non-Newtonian fluids is established, we can then obtain the stress function from the

Newtonian flow case and use it for the non-Newtonian flow cases. In most circum-

stances, the stress function for the Newtonian flow is easily obtained analytically

or semi-analytically (e.g. from infinite series solutions). As soon as the stress, τ ,

as a function of the spatial coordinates of the cross section is obtained, the rate of

strain, γ, as a function of the spatial coordinates can be easily obtained from the

fluid rheological constitutive relation which correlates the rate of shear strain to

the shear stress as long as the relation can be put in the form γ = γ(τ) where the

dependency of γ on τ can be explicit or implicit. If γ is an explicit function of τ , as
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it is the case for example in the Ellis fluid (refer to Table 1), then γ can be obtained

directly by a simple substitution in the rheological relation. If, on the other hand, γ

is an implicit function of τ , as it is the case for example in the Cross fluid (refer to

Table 1), then γ can be obtained numerically using a simple numerical solver based

for instance on a bisection method. In both cases, the obtained rate of strain as a

function of the spatial coordinates can be used to obtain the fluid velocity profile

and subsequently the volumetric flow rate by consecutive integrations, as detailed

in [23].

In Table 1 we present a few examples of the rheological constitutive relations for

fluid models that can be used in conjunction with the stress function to obtain the

flow field parameters. As indicated, for Carreau and Cross models, γ is given as an

implicit function of τ and hence a simple numerical solver like bisection is required

to obtain γ as a function of τ and hence as a function of the spatial coordinates of

the conduit cross section. In the following section, we present some examples of

analytical and semi-analytical stress functions obtained from the Newtonian flow

case for some types of conduit geometry with non-circular or multiply connected

cross sections.

3 Examples of Stress Functions for non-Circular

and Multiply Connected Cross Sections

Here, we present some examples of non-circular and multiply connected cross

sectional shapes of the flow conduits whose stress function can be obtained from

their Newtonian flow case in the form of analytical or infinite series solutions (refer

for instance to [5, 8, 20, 28–30]). Similar expressions of stress functions related to

other cross sectional geometries, which can be derived from the Newtonian flow

case, can also be obtained from references like the above.
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Table 1: The rate of shear strain, γ, as a function of shear stress, τ , for a sample of
five non-Newtonian fluids [21, 24–27] that can be employed in the investigated stress
function approach for generalized Newtonian flow in conduits with non-circular or
multiply connected cross sectional geometries. For Carreau and Cross models, γ
is given as an implicit function of τ . The meanings of the symbols are given in
Nomenclature § 5.

Model Rate of Shear Strain
Power Law γ = n

√
τ
k

Ellis γ = τ
µe

[
1 +

(
τ
τh

)α−1]
Ree-Eyring γ = τc

µr
sinh

(
τ
τc

)
Carreau γ

[
µi + (µ0 − µi) (1 + λ2γ2)

(n−1)/2
]
= τ

Cross γ
[
µi +

µ0−µi
1+λmγm

]
= τ

x

y

a

b
a

a

a

x

y

x

y

a

b

a

b

Figure 1: Schematics of the given examples of cross sectional shapes of non-circular
and multiply connected conduits.

For a conduit centered on the origin of coordinates with an elliptical cross section

of semi-major axis a along the x axis and semi-minor axis b along the y axis (refer

to Figure 1) we have

τxz = −
∂p

∂z

b2x

a2 + b2
(4)
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τyz = −
∂p

∂z

a2y

a2 + b2
(5)

For a conduit with an equilateral triangular cross section of side a in the

coordinates system given in Figure 1 we have

τxz = −
∂p

∂z

√
3

a

(
a
√
3

2
− y

)
x (6)

τyz = −
∂p

∂z

1

2
√
3a

(
−3x2 + 3y2 − a

√
3y
)

(7)

For a conduit centered on the origin of coordinates with a rectangular cross

section of half length a along the x axis and half width b along the y axis (refer to

Figure 1) we have

τxz = −
∂p

∂z

8b

π2

∞∑
i=1,3,5,...

(−1)(i−1)/2

i2
sinh (iπx/2b)

cosh (iπa/2b)
cos (iπy/2b) (8)

τyz = −
∂p

∂z

[
y − 8b

π2

∞∑
i=1,3,5,...

(−1)(i−1)/2

i2
cosh (iπx/2b)

cosh (iπa/2b)
sin (iπy/2b)

]
(9)

All these equations can be verified by substituting these expressions into Equation

3 which produces an identity in all cases.

Similarly, for a concentric circular annulus with an inner radius b and an outer

radius a (refer to Figure 1), using a cylindrical coordinates system whose z-axis is

oriented along the annulus axis of symmetry, we have

τrz = −
∂p

∂z

1

4

[
2r +

(a2 − b2)
ln (b/a)

1

r

]
(10)

τθz = 0 (11)
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The latter can be verified by substitution in the z-component of the cylindrical

form of Equation 2, that is

1

r

∂ (rτrz)

∂r
+

1

r

∂τθz
∂θ

= −∂p
∂z

(12)
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4 Conclusions

In this study we propose extending the stress function approach, which was estab-

lished previously [23] for the case of one-dimensional simply connected flows, to

obtain analytical or semi-analytical or highly accurate numerical solutions for the

flow of generalized Newtonian fluids in conduits with non-circular or with multiply

connected cross sections. The investigation is based on the assumption that the

stress function for generalized Newtonian fluids is the same for Newtonian and

non-Newtonian rheologies.

If this assumption, which is established for the one-dimensional simply connected

flow geometries such as circular pipes and plane slits, can be established for the cases

of non-circular and multiply connected flow geometries then the stress function,

which normally can be easily obtained from the Newtonian flow case analytically

or by series solutions or by other means, can be employed in combination with

the non-Newtonian rheological constitutive relations that correlate, explicitly or

implicitly, the rate of strain to the shear stress to obtain the rate of strain as

a function of the spatial coordinates and hence the flow velocity profile and the

volumetric flow rate.

In previous studies we investigated the optimization of total stress [31–34] and

the minimization of transport energy [35–37] in the fluid flow phenomena. If these

principles can be established for the flow through conduits with non-circular or with

multiply connected cross sections then this will add more support to the proposal

presented in the current study of the universality of the stress function since these

principles are indifferent to the fluid rheology.
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5 Nomenclature

a, b conduit geometric parameters

D
Dt

material derivative

g gravitational acceleration vector

k viscosity coefficient in power law model

m indicial parameter in Cross model

n flow behavior index in power law and Carreau models

p pressure

r radius

t time

v fluid velocity vector

x, y, z spatial coordinates

∇ gradient operator

α indicial parameter in Ellis model

γ rate of shear strain

θ azimuthal angle in cylindrical coordinates system

λ characteristic time constant in Carreau and Cross models

µ0 zero-shear viscosity in Carreau and Cross models

µe low-shear viscosity in Ellis model

µi infinite-shear viscosity in Carreau and Cross models

µr characteristic viscosity in Ree-Eyring model

ρ fluid mass density

τ shear stress

τ extra stress tensor
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τc characteristic shear stress in Ree-Eyring model

τh shear stress when viscosity equals µe
2

in Ellis model

τxz, τyz shear stress components
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