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Abstract— The purpose of this study is to build machine learning 
models to predict the band gap of binary compounds, using its 
known properties like molecular weight, electronegativity, 
atomic fraction and the group of the constituent elements in the 
periodic table. Regression techniques like Linear, Ridge 
regression and Random Forest were used to build the model. 
This model can be used by students and researchers in 
experiments involving unknown band gaps or new compounds.  
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I. INTRODUCTION 
Since the late 20th century the exponential growth of the 
electronics and communication sector has led to numerous 
innovations in the semiconductor industry. Everyday newer 
and more efficient semiconductors are being discovered. The 
main property the scientists are targeting is the conductivity of 
the material this is directly related to the band gap of the 
underlying material. 

The concept of band gap pertains to solid state physics: it 
generally refers to the energy difference in electron volts 
between the top of the valence band and the bottom of the 
conduction band in insulators and semiconductors. It helps us 
understanding characteristics of conductors, semiconductors 
and insulators. The band gap is the minimum amount of 
energy required for an electron to break free of its bound state. 

When the band gap energy is met, the electron is excited 
into a free state, and can therefore participate in conduction. 
The band gap being an intrinsic property, is calculated using 
experiments like UV spectroscopy or differential and cyclic 
voltammetry. These experiments require large, expensive 
equipment and are tedious to perform. Some materials are 
difficult to handle and require special environments to 
perform these experiments. Calculating band gaps accurately 
is still one of the unsolved problems in solid state physics. 
There is no equation or direct solution to calculate band gaps 
accurately.  

To help overcome these difficulties we propose and 
compare machine learning models to recognize meaningful 
patterns in band gap values across thousands of compounds 
and their chemical properties. Predicting the band gap, or 
more specifically predicting the range in which the band gap 
of a new material would lie between would give researchers 
and students a good idea of what to expect in the experiments 
before going for more elaborate ways of band gap calculation. 

II. RELATED WORK 
Machine learning tools and data science have been here for 

decades, but it’s use in fields like material science is yet to 
come. A study was conducted at Kyoto University [1] to come 
up with a prediction model of band-gap for AX binary 
compounds by combination of density functional theory 
calculations and machine learning techniques.  

This study used Ordinary least square regression (OLSR), 
least absolute shrinkage and selection operator (LASSO) and 
non-linear support vector regression (SVR) methods are 
applied with several levels of predictor sets. When the Kohn-
Sham band-gap by GGA (PBE) or modified Becke-Johnson 
(mBJ) is used as a single predictor, OLSR model predicts the 
G0W0 band-gap of a randomly selected test data with the root 
mean square error (RMSE) of 0.54 eV. 

III.  FEATURES 
We target building a model using basic physical and 

chemical attributes of compounds. An important factor in the 
selection of features is the availability of reliable and 
consistent data. In order to train a dataset of over 4000 binary 
compounds which also includes many rare compounds, it is 
important that we can obtain features for all of them. We have 
considered only the basic intrinsic properties like 
electronegativity, molecular weight, atomic fraction and the 
group of the constituent elements in the periodic table. The 
crystal structure of the compounds is a viable feature for band 
gap prediction, but unfortunately there is no reliable dataset 
available for binary compounds of all sorts. 

A. Electronegativity Difference 
We find an interesting correlation between the 

electronegativity difference of the constituent elements and 
the band gap of the compound.  

This is quite intuitive: the electronegativity is the power of 
an atom to attract the electrons towards itself, hence it is 
difficult for the electrons in the valance band to move into the 
conduction band when the electronegativity of the compound 
is high.  

As the electronegativity difference increases, the 
corresponding band gaps also increases [2]. 

The plot of electronegativity against band gap is 
represented in the graph below: 



 
Fig. 1  Band gap vs Electronegativity difference 

B. Molecular Weight 
The molecular weight of the compound also contributes to 

the band gap. As the molecular weight increases, the number 
orbitals increases, and thus the force attraction on the valance 
shells is relatively smaller. Some cases (polymers) exhibit the 
opposite, and this is explained due to their alternating single-
double bond structure, which gives rise to their semiconductor 
properties [3]. 

The plot of molecular weight against band gap is 
represented in the graph below: 

 

 
Fig. 2  Band gap vs Molecular Weight 

C. Atomic Fraction 
There is no clear correlation between the atomic fraction 

and the band gap energies. But when used in combination 
with the other features, the results obtained are more accurate. 

The plot of atomic fraction against band gap is represented 
in the graph below: 

 
Fig. 3  Band gap vs Atomic Fraction 

    D.    Periodic Group 
The band gap decreases as we go down the group. This 

trend can be explained: the band gap is related to the 
energy splitting between bonding and anti bonding orbitals, 
and this difference decreases (and bonds become weaker) 
as the principal quantum number increases [4]. 

 

IV.  DATASET PREPARATION  
The data regarding the binary system and its bandage 

energy is obtained from an REST API of 
https://materialsproject.org [5]. The obtained subset data has 
4096 rows of different binary systems. The data of binary 
compound systems and its band gap energy is collected in a 
csv format for further processing and usage. The generated 
csv file contains 4096 binary compound systems and its band 
gap energy. 

To derive the features for each single binary compound, 
Pymatgen is used. Pymatgen (Python Materials Genomics) is 
a robust, open-source Python library for materials analysis. 

The data is vectorized for easier processing. Python’s 
numpy  is used to read the csv data file for analysis and pre-
processing. Before vectorizing the data, the dataset is cleaned 
by removing fields containing null values or noisy data.  

V. MODELS 
Before building machine learning models for prediction, we 

found the MASE (Mean Absolute Scaled Error) of a model 
which always predicts the average band gap energy of the 
4096 compounds as the required band gap is 1.077 eV. Thus 
any model build must preform far better than the average 
prediction model. 

 
A. Linear Ridge Regression 

 
A Linear Ridge Regression model was developed using the 4 
physical features: molecular weight, atomic fraction, 
electronegativity and group number. After training it with 



90% of the dataset and using remaining 10% of the dataset for 
testing it, the MASE of the model is 0.8 eV. 

 
B. Non Linear Random Forest 

 
Random Forest is an ensemble method that operate by 
constructing a multitude of decision trees at training time and 
outputting the class that is the mode of the classes 
(classification) or mean prediction (regression) of the 
individual trees. Random decision forests correct for decision 
trees’ habit of over fitting to their training set. 
 
Using the same features for non linear random forest, we 
achieved a MASE of 0.265 eV. 

 

VI.  RESULTS 
TABLE I 

PREDICTED BAND GAP VALUES COMPARED WITH THE ACTUAL VALUES 

Binary 
Compound 

Band Gap 

Ridge 
Regression Random Forest Actual 

LiH 2.18 eV 2.62 2.981 

HF 5.91 eV 6.36 6.781 

H3N 3.52 3.96 4.32 
 

SiC 1.34 1.85 2.023 

CO2 5.92 6.38 6.633 

BeS 2.62 2.85 3.143 

Mg3N2 1.28 1.53 1.68 

Li2Te 1.73 2.24 2.498 

 

VII. CONCLUSIONS 
The results obtained from each model is very interesting and 
we can learn a lot about he features and their variance from 
the error rates obtained. 

The above table lists the predicted band gap of 8 binary 
compounds of varying band gap ranges. 
Linear Ridge regression gives surprisingly good results, given 
that the features used are quite basic. We also have to consider 
the possibility of over fitting. The dataset contains a mere 
4096 entries of binary compounds, and linear regression 
without any kernel could cause over fitting of the weights. It 
would be interesting to see how it would perform when a new 
binary compound is fed in, containing a element that is not 
present in the data set. 

Linear Ridge regression shows a MASE of 0.8 eV. It 
appears that five degrees of freedom (four coefficients plus a 

constant) are too few to reasonably model band gaps with a 
linear model.  

The Random Forest being an ensemble method performs 
better than the regression models. We observe that a random 
forest-based approach outperforms linear ridge regression 
model. The random forest trained on the physical features is 
actually decent at estimating band gaps of materials. While a 
single decision tree is often a poor classifier, a collection of 
many decision trees trained on different subsets of data can be 
very powerful for modeling data. Random forests have a 
number of tuning parameters but here we highlight only the 
number of trees in the forest; we chose 50 for computational 
expediency. Our code will thus constructed 50 independent 
decision trees and average the band gap predictions from each 
of them. 

The MASE of the Random Forest model is 0.265 eV. This 
result quite comparable to the research done [1] by Joowi Lee 
et al., although our model is not just constrained to AX binary 
compounds. This error can easily be diminished by the use of 
more features. Features like crystal structure and co-efficient 
of conductivity would definitely improve the accuracy of the 
model.  

However, predicting the band gap to 2 decimal points 
accuracy is a complicated task. Multiple researches [6] 
suggest and point out that band gaps when calculated at 
different temperatures, pressures, methods differ by up to +- 
1eV. The next step in this research would be to model this as a 
classification problem, and predict a range instead of a single 
value as the result. 
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