
Bell’s theorem refuted: EPR rule OK

Gordon Watson∗

Abstract: EPR (1935) famously argue that additional variables will bring locality and
causality to QM’s completion; we show that they are right. More famously, Bell (1964) cried
‘impossible’ against such variables; we give the shortest possible refutation of his theorem.
With EPR-based variables – and no QM – a thought-experiment delivers common-sense
locally-causal accounts of EPRB and GHZ in 3-space. We then find the flaw in Bell’s
theorem: Bell’s 1964:(14a) 6= Bell’s 1964:(14b). Thus, at odds with EPR (and us), Bell’s
unrealistic theorem and its many variants (eg, Mermin, Peres) miss their mark. In short,
mixing common-sense with undergrad math and physics in the classical way so favored by
Einstein, we interpret QM locally and realistically. Long may EPR rule OK we say.

Keywords: Bell’s error, causality, CLR, completeness, EPR, EPRB, equivalence, locality, realism

Notes to the Reader: (i) Paragraphs and equations are numbered to facilitate discussion, improve-
ment, correction. (ii) Texts freely available online – see References – are taken as read. (iii) In accord
with convention, the term particle here includes objects with a wavicle nature. (iv) Taking math to
be the best logic, we let it flow. (v) All results here accord with quantum theory and experiment.

1 Introduction

#1.0. “Einstein argued that the EPR correlations can be made intelligible only by com-
pleting the quantum mechanical account in a classical way,” Bell (2004:86). “In a complete
physical theory of the type envisioned by Einstein, the hidden variables would have dy-
namical significance and laws of motion; our λ can be thought of as initial values of these
variables at some suitable instant,” Bell (1964:196). We agree.

#1.1. Following Bell’s (1964) example – merging his valid formalisms with principles consistent with
EPR – we’ll be working with λ to account for EPRB correlations in a classical way. Our postulates
match Einstein’s passions (causality, completeness, locality, reality, separability; with no exceptions)
and EPR’s belief (see #3.0-3.1 below).

#1.2. Taking realism to be the view that external reality exists and has definite properties, our core
principle will be common-sense local realism (CLR), the union of local-causality (no causal influence
propagates superluminally) and physical-realism (some physical properties change interactively).

#1.3. Then, since CLR precludes nonlocal mechanisms, we’ll find erroneous parameters and unphysical
assumptions associated with Bellian conclusions like these:

Bell’s theorem: “In a theory in which parameters are added to [QM] to determine the results
of individual measurements, without changing the statistical predictions, there must be a
mechanism whereby the setting of one measuring device can influence the reading of another
instrument, however remote. Moreover, the signal involved must propagate instantaneously,
so that such a theory could not be Lorentz invariant,” Bell (1964:199). “Detailed analysis
[Bell’s theorem] shows that any classical account of these correlations has to contain just
such a ‘spooky action at a distance’ as Einstein could not believe in ... [rendering] Einstein’s
conception of the world untenable,” Bell (2004:86). We prove the contrary. [#7.1.]
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2 ANALYSIS

#1.4. Such errors – at odds with EPR/EPRB, and of his own making – void Bell’s impossibility
theorem and its kin. Against this, and at one with EPR/EPRB, we deliver a common-sense locally-
causal understanding of EPRB and GHZ in 3-space; all done in the classical way so favored by Einstein.

#1.5. Our theory, WM – dubbed wholistic mechanics in 1989, after a discussion with David Mermin
re his (1988) – seeks to unify QM and relativity. Accepting Einstein-separability (eg, Laudisa 1995),
our particles are presumed separable; rejecting ideas like inseparable entanglement (Feingold & Peres
1985), each pair being a single nonlocal indivisible entity (Mermin 1985), etc.

#1.6. The key to our analysis is a thought-experiment; developed in 1989, reading Mermin (1988).
But here we reverse the order. With Fig.1 capturing technical aspects of our study, Fig.2 presents the
thought-experiment that helps make sense of it all; our debt to Mermin (1988) clear.

2 Analysis

#2.0. In WM, with its precise math, the big and the small merge smoothly; after Bell (2004:190). You
learn by doing it; for though you think you know it, you have no certainty until you succeed; after
Sophocles (c. 496-406 BCE). Importantly: only the impossible is impossible.

A± ≡ ±1 = [â·â±] � q(â±)�∆±â �q(λi)�SE� q(µi) � ∆±
b̂
�q(b̂±) � [b̂·b̂±] = ±1 ≡ B±

T Alice’s locale U TSourceU T Bob’s locale U

Figure 1: Experiment E, based on the idealized EPRB experiment in Bell (1964).

#F1.1. In 3-space, and under Einstein-completeness, every relevant element of the
subject reality is shown. Since A and B are discrete, we employ discrete variables
λi, µi. This rigor accords with our take on EPRB and Bell’s (1964:195) indifference.

#F1.2. With pristine spin-related properties λi and µi, spin-12 particles q(λi) and
q(µi) emerge from SE via a spin-conserving decay such that λi+µi = 0. The particles
interact with dichotomic linear-polarizer-analyzers (∆±x̂ , x̂ any direction-vector in 3-
space) – freely and independently operated by Alice and Bob – built from polarizers
δ±x̂ and analyzers [x̂·x̂±]. These interactions/events are locally-causal and spacelike-
separated. Thus, under Einstein-causality – ie, elements in spacelike-separated locales
commute – the respective elements (though correlated) are physically independent.

#F1.3. If the output of the interaction δ±â q(λi) is q(â
+), then q(λi)∼ q(â+) where

∼ denotes has the same output under δ±â (a dichotomic operator that dyadically
partitions its domain); etc. The polarized particle q(â+) goes to an analyzer which
reports – via its inner-product function [a·â+] – the â-related spin-projection A+

i =
+1 in units of s~; with intrinsic spin s = 1

2 here. Elements in Bob’s locale similarly.

#F1.4. Under E, to confirm related probabilities – including our generalization of
Malus’ Law at #2.8 – we allow experiments like δ±b q(â

+) � q(â+)⊕q(b̂−). We also
control enough dichotomic-polarizers (and single-channel variants δ+ˆ̂x , δ

−
ˆ̂x
), to conduct

any combination of experiments. Moreover, having good internet connections, these
experiments may be organized by any subset of the team {us, Alice, Bob}.

#2.1. From Fig.1: two spin-12 particles q(λi) and q(µi) with pristine spin-related properties λi and µi
– multivectors in 3-space, each incorporating spin s – emerge from a spin-conserving decay such that

λi + µi = 0; ie, µi = −λi ≡ λ−i for notational convenience. (1)

#2.2. (1) shows the correlation of λi and µi, the EPR-based variables we use to form a more complete
locally-causal specification of E. Since one pristine property may be pairwise represented in terms of
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2 ANALYSIS

the other, let’s first focus on λi and call it the primary random variable for now (for the choice and
the name matter not). Then µi becomes the secondary variable (for now) with µi = λ−i . [#7.2.]

[G|R] � q(â±)�∆±â �q(λi)�SF � q(µi) � ∆±
b̂
�q(b̂±) � [G|R]

[G|R] � q(â±)�∆±â � q(â±)�δ±â �q(λi)�SF � q(µi) � ∆±
b̂
�q(b̂±) � [G|R]

[G|R] � q(â±)�∆±â � q(â±)�δ±â �q(λi)�SF � q(µi) � δ±â �q(â±) � ∆±
b̂
�q(b̂±) � [G|R]

T Alice’s locale U TSourceU T Bob’s locale U

Figure 2: Experiment F – F for Fantasy – the essence of experiment E in Fig.1.

#F2.1. See Fig.1 for operating protocols, etc. Apart from new analyzers, the main
change to E is the new source SF ; F being a thought-experiment.

#F2.2. To resolve alleged mysteries in Fig.1, we build three equivalent experiments
(shown above) around a fantasy-source SF . SF delivers identical particle-pairs on
demand; each pair identically tagged q(λi), q(µi). Differing from E in Fig.1, each
analyzer now reports its results via green (G = +1) or red (R = −1) lights. The
following paired-results are observed over any fair run of the experiment:

If the detectors have the same setting, the lights flash different colors. (2)

In all runs of the experiment, same and different colors flash equally. (3)

#F2.3. Recalling that Alice’s and Bob’s direction-vectors (â, b̂) can take any orien-
tation in 3-space whereas, under F, q(λi)andq(µi) are always the same, the following
relation captures the observations in (2)-(3):

〈AB |E〉 = 〈AB |F 〉 = 1
2(GG+RR) sin2 1

2(â, b̂) + 1
2(GR+RG) cos2 1

2(â, b̂) (4)

= sin2 1
2(â, b̂)− cos2 1

2(â, b̂) = −â·b̂ ∵ G = +1, R = −1. QED.� (5)

#F2.4. The clue to (4), from highschool, is that the required probability relations
come thus: convert Malus’ classical cos2 Law for the relative intensity of beams of
polarized photons (spin s = 1) to a law for spin-12 particles (spin s = 1

2). We can
then derive an exact solution for two of the above experiments: at the same time
satisfying the results for the topmost experiment, which is essentially E in Fig.1.

#F2.5. We then see that q(µi) 6= q(â+) or q(b+) – not even by magic – because, in
breach of (2), the lights might not flash different colors when the detectors have the
same settings. Reason: per #F2.2, q(µi) = q(µj) = q(µk) and so on, but â and b̂ are
arbitrary; within a run or from run to run. (Bell and d’Espagnat reason contrariwise
at #7.3, and into trouble as we’ll see.)

#F2.6. However, weaker than an equality relation (=), an equivalence relation (∼)
meets all our needs: if the output of δ±â q(λi) is q(â+), then q(λi)∼ q(â+) where ∼
denotes has the same output under δ±â ; etc. So we return to Fig.1 with new insights
and work to do. [#7.4.]

#2.3. Under E, Fig.1, from the well-known action of a linear-polarizer δ±â on polarized particles q(â+),
we can match a laboratory operation δ±â q(â

+) � q(â+) with the interaction δ±â q(λi) � q(â+); etc. We
also know that δ±â is a dichotomic operator that dyadically partitions its domain. So let ∼ be the
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2 ANALYSIS

equivalence relation has the same output under δ±â . Then, for the i-th and j-th particles:

If δ±â q(λi) � q(â+) then q(λi)∼q(â+) ∵ δ±â q(â
+) � q(â+) exclusively. (6)

If δ±â q(λj) � q(â−) then q(λj)∼q(â−) ∵ δ±â q(â
−) � q(â−) exclusively. (7)

#2.4. That is, from (6): polarizing-operator δ±â delivers q(λi) and q(â+) to the same codomain, and
it is impossible for δ±â to deliver q(λi) and q(â+) to two different codomains. An equivalence relation
∼ thus holds between q(λi) and q(â+) under δ±â ; etc. So, consistent with our acceptance of Bell’s
1964:(1), the analyzer-functions and outputs in Fig.1 (and their expectations) can be written:

A(â, λ) = A± = cos(â, λ |λ∼ â±) = ±1; 〈A |E〉 = 0 ∵ P (λ∼ â+ |E) = P (λ∼ â− |E) = 1
2 . (8)

B(b̂, µ) = B± = cos(b̂, µ |µ∼ b̂±) = ±1; 〈B |E〉 = 0 ∵ P (µ∼ b̂+ |E) = P (µ∼ b̂− |E) = 1
2 . (9)

#2.5. In words, LHS (8) reads: given q(λ) equivalent to q(â+), cos(â, λ |λ∼ â+) denotes the cosine of
the angle (â, â+): so the outcome is A+ = +1; etc. Thus, from (8)-(9) and Fig.1, WM is locally-causal:
A± and B± are locally-caused by precedent local events δ±â q(λi) and δ±b q(µi) which are spacelike-
separated; etc.

#2.6. Now, given hidden random variables λ and µ, the expectations in (8) and (9) are zero. But (1)
invokes P (XY ) = P (X)P (Y |X) = P (Y )P (X |Y ); the probability relation that cannot fail. Under E,
A+
i and B+

i are pairwise correlated via the pairwise correlation of λi and µi in (1); etc.

#2.7. So we now move to derive 〈AB |E〉, the expectation for experiment E, via the probabilities for
the conjunction of the outcomes in (8) and (9). [See discussion at #7.5-7.6.] Since primacy is arbitrary,
(#2.2), and given the correlation in (1), the following string of probability relations holds:

P (λ∼ â+ |E,µ∼ b̂+) = P (µ∼ b̂+ |E, λ∼ â+) = P (λ−∼ b̂+ |E, λ∼ â+) = P (λ∼ b̂− |E, λ∼ â+) (10)

= P (δ±
b̂
q(λ∼ â+) � q(λ∼ b̂−) |E) = P (δ±

b̂
q(â+) � q(b̂−) |E) = cos2s (â+, b̂−) = sin2 1

2(â, b̂). (11)

#2.8. The probability relation LHS (11) is, we see, equivalent to a classical test on spin-12 particles of
known polarization. So, per RHS (11), this probability relation is given by Malus’ cos2s (â+, b̂−) Law
for the relative intensity of beams of polarized spin-s particles. Then, since our equivalence relations
hold under probability functions P , we say that P is well-defined under ∼ and is thus a law. That is,
P under ∼ is Malus’ Law generalized to entangled particles as follows:

P (δ±
b̂
q(λ∼ â+) � q(b̂+) |E) = P (δ±

b̂
q(â+) � q(b̂+) |E) = cos2 1

2(â+, b̂+) = cos2 1
2(â, b̂); (12)

P (δ±
b̂
q(λ∼ â−) � q(b̂+) |E) = P (δ±

b̂
q(â−) � q(b̂+) |E) = cos2 1

2(â−, b̂+) = sin2 1
2(â, b̂); etc. (13)

#2.9. Given the experimentally validated (and QM-supported) relations in (12)-(13) – [see #7.7 for
their direct relevance to QM via WM] – we now derive 〈AB |E〉 using (8)-(13):〈

A+B+ |E
〉

= P (λ∼ â+ |E) cos(â, λ |λ∼ â+)P (µ∼ b̂+ |E, λ∼ â+) cos(b̂, µ |µ∼ b̂+) (14)

= 1
2P (µ∼ b̂+ |E, λ∼ â+) = 1

2 sin2 1
2(â, b̂); from(10)-(11). (15)

Similarly:
〈
A+B− |E

〉
=
〈
A−B+ |E

〉
= −1

2 cos2 1
2(â, b̂);

〈
A−B− |E

〉
= 1

2 sin2 1
2(â, b̂). (16)

∴ 〈AB |E〉 =
〈
A+B+ |E

〉
+
〈
A+B− |E

〉
+
〈
A−B+ |E

〉
+
〈
A−B− |E

〉
= −â·b̂. QED.� (17)

Finally: P (AB = +1 |E) = sin2 1
2(â, b̂). P (AB = −1 |E) = cos2 1

2(â, b̂). (18)

#2.10. (17) thus reproduces the results of quantum theory in full accord with EPR and EPRB (a
2-particle setting). So we next show the validity and utility of (1)-(18) in a 3-particle setting.

4



3 MERMIN’S “ALWAYS-VS-NEVER REFUTATION OF EPR” REFUTED

#2.11. To that end – beginning at #3.1 with a small refinement of EPR to fully accord with (1)-(18)
– we reproduce the results of quantum theory in the context of a 3-particle experiment, Mermin (1990;
1990a). With its supposed ‘always-vs-never refutation’ of EPR, Mermin’s Bell-based analysis is (for
us) a crucial all-or-nothing test of our perception of EPR against that of Bell and Mermin.

3 Mermin’s “always-vs-never refutation of EPR” refuted

#3.0. EPR’s belief: “We shall be satisfied with the following criterion, which we regard as
reasonable. If, without any way disturbing a system, we can predict with certainty (ie, with
probability equal to unity) the value of a physical quantity, then there exists an element of
physical reality corresponding to this physical quantity,” EPR (1935:777). “While we have
thus shown that the wave function does not provide a complete description of the physical
reality, we left open the question of whether or not such a description exists. We believe,
however, that such a theory is possible,” EPR (1935:780); emphasis added.

#3.1. EPR’s belief delivered : “If, without in any way disturbing q(µi), Alice can predict with certainty
that Bob’s result will be Bi = −1 when he tests q(µi) with ∆±â (which may be a disturbance), then
elements of reality ∆±â and q(µi∼ â−) mediate Bob’s result. Thus the element of reality corresponding
to Bob’s Bi = −1 result will be q(â−),” after Watson (1998:417; 1999). So here’s how Alice predicts
Bob’s result after observing the outcome of her test ∆±â q(λi)⇒ Ai = +1:

Ai = +1 ∵ δ±â q(λi)→q(â+)→ [â·â+] = +1. ∴ q(λi)=q(λi∼ â+). ∴ q(µi)=q(µi∼ â−). (19)

∴ δ±â q(µi) = δ±â q(µi∼ â−)→ q(â−)→ [â·â−] = −1 = Bi. QED.�And vice-versa. (20)

#3.2. Thus showing that EPR is valid in the context of (1)-(18), we now consider experiment M ,
Mermin’s (1990; 1990a) 3-particle variant of GHZ (1989). Respectively, consistent with our notation
for the polarizer orientations: Three spin-12 particles with spin-related properties λ, µ, ν emerge from
a spin-conserving decay such that (taking ν to be the tertiary variable; see #2.2),

λ+ µ+ ν = π. ∴ ν = π − λ− µ. (21)

#3.3. The particles separate in the y-z plane and interact with spin-12 polarizers that are orthogonal
to the related line of flight. Let a, b, c denote the angle of each polarizer’s principal-axis relative to the
positive x-axis; let the test results be A,B,C. Then, as in (8)-(9) with two particles, let

A(a, λ) = A± = cos(a−λ |λ∼a±) = ±1, (22)

B(b, µ) = B± = cos(b−µ |µ∼b±) = ±1, (23)

C(c, ν) = C± = cos(c−ν |ν∼c±) = ±1. (24)

#3.4. Via the principles in (1)-(18) – and nothing more – we now derive 〈ABC |M〉, the expectation
for experiment M . (The qualifier M is missing from (21) to limit its length; explanatory notes follow.)〈

A+B+C+ |M
〉

= P (λ∼a+)cos(a−λ |λ∼a+)P (µ∼b+) cos(b−µ |µ∼b+)P (ν∼c+ |λ∼a+, µ∼b+) cos(c−ν |ν∼c+) (25)

= 1
4P (ν∼c+ |M,λ∼a+, µ∼b+) = 1

4P ((π − λ− µ)∼c+ |M,λ∼a+, µ∼b+) (26)

= 1
4P ((π −a+ − b+)∼c+ |M) = 1

4 cos2 1
2(π −a+ − b+−c+) = 1

4 sin2 1
2(a+ b+ c). (27)

Similarly:
〈
A+B−C− |M

〉
=
〈
A−B+C− |M

〉
=
〈
A−B−C+ |M

〉
= 1

4 sin2 1
2(a+ b+ c), and (28)〈

A+B+C− |M
〉

=
〈
A+B−C+ |M

〉
=
〈
A−B+C+ |M

〉
=
〈
A−B−C− |M

〉
= −1

4 cos2 1
2(a+ b+ c). (29)

∴ 〈ABC |M〉 ≡ Σ
〈
A±B±C± |M

〉
(30)

= sin2 1
2(a+ b+ c)− cos2 1

2(a+ b+ c) = − cos(a+ b+ c). QED.� (31)

Finally: P (ABC = +1 |M) = sin2 1
2(a+ b+ c). P (ABC = −1 |M) = cos2 1

2(a+ b+ c). (32)

#3.5. (27) follows from (26) via the allocation of the equivalence relations in the conditioning space
to the related variables. Thus, in words, LHS (27) is one-quarter the probability that ν — ie, ν ∼
(π −a+ − b+) — will be equivalent to c+ under δ±c .
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4 BELL’S THEOREM MISSES ITS TARGET

#3.6. In other words: LHS (27) = 1
4P (δ±c q(ν ∼ π −a+ − b+) → q(c+)) = RHS (27) via Malus’ (now

generalized) Law; as in (15) in the two-particle EPRB example above.

#3.7. (31) is the correct result for experimentM : delivering Mermin’s (1990a:733) crucial minus sign.
That is, from (32): 〈ABC |M〉 = −1 when (a + b + c) = 0. Thus, consistent with CLR and classical
rules for operators and functions in 3-space, we again deliver classically-intelligible EPR correlations.

#3.8. With (17), (20), and now (31) – as one with EPR but so clearly in conflict with the Bellian
conclusions cited at #1.3 above – we turn to Bell’s work to find our differences.

4 Bell’s theorem misses its target

#4.0. Bell’s dictum: “We are not at all concerned with sequences of measurements on a
given particle, or of pairs of measurements on a given particle. We are concerned with
experiments in which for each pair the ‘spin’ of each particle is measured once only,” Bell
(2004:65); from 1975. “It is a matter of indifference . . . whether λ denotes a single variable
or a set, or even a set of functions, and whether the variables are discrete or continuous.
However, [Bell writes] as if λ were a single continuous parameter,” Bell (1964:195). λ may
denote “any number of hypothetical additional complementary variables needed to complete
QM in the way envisaged by EPR,” Bell (2004:242). NB: we work with discrete variables.

#4.1. To establish the famed inequality in Bell 1964:(3), Bell (1964:197) takes us to his proof via
‘Contradiction – The main result will now be proved.’ That is, we are taken to Bell 1964:(15) via Bell
1964:(14), vector c, and three unnumbered equations.

#4.2. Numbering them (14a)-(14c), and using the principles that rightly deliver (17), (20), (31), we
now audit Bell’s derivation of his Bell 1964:(15). In our terms, ?

= denotes a questionable Bellian
relation; each one false, as we’ll see next.

#4.3. In E (ie, EPRB per Fig.1 above), let 3n random particle-pairs be equally distributed over three
randomized polarizer-pairings (â,b), (â, c), (b, c). With each particle-pair uniquely indexed, let n be
such that (for convenience in presentation and to an adequate accuracy hereafter; but see #7.8):

Bell 1964:(14a) = 〈AB |E〉 − 〈AC |E〉 = − 1

n

n∑
i=1

[A(â, λi)A(b̂, λi)−A(â, λn+i)A(ĉ, λn+i)] (33)

= − 1

n

n∑
i=1

A(â, λi)A(b̂, λi)[A(â, λi)A(b̂, λi)A(â, λn+i)A(ĉ, λn+i)− 1]
?
= Bell 1964:(14b). (34)

∴ | 〈AB |E〉 − 〈AC |E〉 | ≤ 1− 1

n

n∑
i=1

A(â, λi)A(b̂, λi)A(â, λn+i)A(ĉ, λn+i)
?
= Bell 1964:(14c).� (35)

∴ | 〈AB |E〉 − 〈AC |E〉 | ≤ 1− 〈AB |E〉〈AC |E〉 ?
= LHS Bell 1964:(15) ≤ 1 + 〈BC |E〉 . (36)

#4.4. In (34)-(35), we use A(â, λi)A(b, λi) = ±1 from (8)-(9). The central term in (35) is the correct
discrete form of LHS (35), which equals LHS (36) as follows: the random variables (RVs) generated
by λi and λn+i are independent, and the expectation over the product of two independent RVs is the
product of their individual expectations.

#4.5. So we now study the physical significance of Bell’s mathematical reductions – now made clear
in the line below his (14c) – that the rightmost term in (36) is 〈BC |E〉. To that end (in anticipation
and protected by our ?

=), 〈BC |E〉 is already there, the rightmost term in RHS (36). With all terms
in (33)-(36) known to us from (17), we can readily decipher and test each reduction. Testing particles
2n+ i to 3n over the polarizer-pairing (b̂, ĉ), we confirm 〈BC |E〉 = −b̂ · ĉ; as predicted from (17).
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4 BELL’S THEOREM MISSES ITS TARGET

#4.6. Consistent with Bell’s dictum (#4.0), and given (17), (35) is decisive. Under our assumption
that the likes of λ and µ are random variables (multivectors incorporating spin s) in 3-space, it is
probability zero that any particle-pairs are the same in our analysis. If this assumption is relaxed to
satisfy (35) – that crucial test that Bell’s theorem fails – then Bell’s theorem goes through under

λi = λn+1 = λ2n+1. (37)

#4.7. Alas for Bell, (37) – unrealistic, in our terms, and against the spirit of EPR – crashes at the
next hurdle. For (37) delivers Bell’s 1964:(15), which falls at (39); or (42) if you prefer. In that (37)
appears to be the basis for many variants of Bell’s theorem, they fall too.

#4.8. Many combinations of direction-vectors in 3-space yield interesting truisms; honoring an old
friend and tutor, we call them Bourne relations. They relate to ‘scalar-angles’ (in 3-space for now),
where the scalar-angle β between two direction-vectors â, b̂ is β = â · b̂). Thus, given three direction
vectors (â, b̂, ĉ) in 3-space, here are two such Bourne relations with their consequents:

|(â · b̂)− (â · ĉ) | +(â · b̂)(â · ĉ) ≤ 1. ∴ |(â · b̂)− (â · ĉ) | ≤ 1− (â · b̂)(â · ĉ). (38)

|(â · b̂)− (â · ĉ) | +(b̂ · ĉ) ≤ 3
2 . ∴ |(â · b̂)− (â · ĉ) |� 1− (b̂ · ĉ).� (39)

#4.9. RHS (38) is a consequent truism: confirming the result we derived at LHS (36). RHS (39) is
a consequent truism: the shortest refutation of Bell’s 1964:(15) – and hence of his theorem – that we
know.

#4.10. For those who prefer more conventional tests as proof that Bell’s work here is in error, let our
polarizer direction-angles be such that (â,b̂) = (b̂,ĉ), (â,ĉ) = 2(â,b̂), with an inanity-index I (I > 0

revealing absurdity; denoted N). Then, using (17) and suppressing our now-proven doubt ( ?=) in favor
of two Bellian claims — (i) for equality (=) in (36); (ii) that LHS Bell 1964:(15) ≥ RHS Bell 1964:(15)
— we have:

(i) IBell 1964:(15)=LHS(36) ≡
LHS(36)
RHS(36) − 1 =

|1− (â·b̂)(â · ĉ)|
1− b̂ · ĉ

− 1; (40)

whence, for − π
2 < (â,b̂) < +π

2 : IBell 1964:(15)=LHS(36) > 0. N Lim
(â,b̂)→0

IBell 1964:(15)=LHS(36) = 4. N (41)

(ii) IBell 1964:(15)=LHS(36) ≡
RHS Bell 1964(15)
LHS Bell 1964(15) − 1 =

|(â·b̂)− (â · ĉ)|
1− b̂ · ĉ

− 1; (42)

whence, for − π
2 < (â,b̂) < +π

2 : IBell 1964:(15) > 0. N Lim
(â,b̂)→0

IBell 1964:(15) = 2. N (43)

#4.11. We thus identify the tacit inequality in Bell’s (14a)-(14b) to reveal Bell’s consequent error:

Bell’s error: Bell 1964:(14a) 6= Bell 1964:(14b)⇒ LHS 1964:(15)≯ RHS 1964:(15). (44)

#4.12. With Bell’s theorem thus doubly refuted, similar anomalies attach to Bell-inequalities in
general. Peres’ version of the CHSH (1969) inequality is an example. In our terms Peres (1995:164)
has, “If several [particle-pairs] are tested, we have for the j-th pair”

Aj(Bj −Dj) + Cj(Bj +Dj) ≡ ±2. (45)

#4.13. So, by observation, the average of (45) over many pairs should not exceed two; a result known
as the CHSH (1969) inequality. To prove that Peres and CHSH are in error: let our polarizer direction-
angles be such that (a,b) = (b,c) = (c,d), (a,d) = 3(a,b); let {k} = {i = 1, 2, ..., n}, similar to #4.3;
and let I be an appropriate inanity-index. Then Peres 1995:(6.30) leads to this:

| 〈AB〉{k} + 〈BC〉{n+k} + 〈CD〉{2n+k} − 〈DA〉{3n+k} |≤ 2. (46)

IPeres 1995:(6.30) ≡
LHS (46)
RHS (46) − 1 =

|(â · b̂) + (b̂ · ĉ) + (ĉ · d̂)− (d̂ · â) |
2

− 1; (47)

7
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whence, for − π < (â,b̂) < +π : IPeres 1995:(6.30) > 0 for more than 75% of that range. N (48)

#4.14. So, thanks to the q(λwn+i) ⊆ Q particle-family – with no two particles necessarily the same –
most Bell inequalities fall to the same analysis. Indeed, for us – but against Bell himself, Goldstein,
Maudlin, Mermin, Peres, and many others – it’s worth repeating Bell’s dictum:

“We are not at all concerned with sequences of measurements on a given particle, or of
pairs of measurements on a given particle. We are concerned with experiments in which
for each pair the ‘spin’ of each particle is measured once only,” Bell (2004:65); from 1975.

#4.15. So where do we differ? We who operate under EPR, versus Bell with his stated aim to do the
same? We who never once doubted that every one of Einstein’s demands [#1.1.] were true.

#4.16. For now, with our math still doing the talking, we rest our case. Confident that WM meets
EPR’s belief (#3.0), we endorse Bell’s (1990:9) hope – so similar to EPR’s – and move to conclude:

“Now, it’s my feeling that all this [AAD] and no [AAD] business will go the same way [eg,
as the ether]. But someone will come up with the answer, with a reasonable way of looking
at these things. If we are lucky it will be to some big new development like the theory of
relativity. Maybe someone will just point out that we were being rather silly, and it won’t
lead to a big new development. But anyway, I believe the questions will be resolved.”

5 Conclusions

#5.1. Under CLR – and endorsing Einstein-separability – we’ve here advanced many missions: Ein-
stein’s, EPR’s, John Bell’s, our own. That is, relying on EPR – ie, using parameters λ, and accepting
locality without question – our more complete specification of EPRB’s physics has succeeded; Bell’s
rejection of Einstein’s worldview is quashed; Bell’s ambivalence re AAD is resolved.

#5.2. Given no hint and finding no evidence that Bell (1964) is based on the likes of a d’Espagnat-style
inference to classicality, we still find that Bell misses his target, EPR. For – as shown at (33)-(36) –
Bell’s theorem and its variants are based on an error: Bell’s mathematical-reduction of his (14a) to
(14b) is inappropriate in the circumstances. Thus, under EPR and EPRB, Bell’s famous duo –1964:(3)
and 1964:(15), with many variants – are false and therefore inadmissible as critiques of EPR.

#5.3. We remain open to evidence that supports an alternative proposal: that Bell (1964), contrary
to initially targeting EPR and Einstein’s views, began with a d’Espagnat-style inference. Expecting
none, Bells oversight – 1964:(14a) 6= 1964:(14b) – remains for us an error of judgment; but an error
nevertheless. And, with so little Bellian discussion about the nature of λ, what then of his claim, #1.3,
“In a theory in which parameters [unrelated to EPR] are added ... .”

#5.4. We began on the right track: starting with (1), an ironclad fact, then adding a function to Bell’s
1964:(1) to give (8)-(9). We thus arrived at (17), (20), (31), etc, via facts associated with equivalence
relations and probability theory. In that these equations yield the same result as QM, we deliver
Einstein’s hope that EPR-style correlations might be understood in a classical way.

#5.5. Under CLR – and contrary to Bell’s (1980) view at #7.3 – we were right to allow that polar-
izer/particle interaction may perturb a particle. Bell – in bypassing such perturbation in line with
d’Espagnat’s analysis – limits the validity of his theorem to systems consistent with this error. Un-
der CLR, the consequent strong classicality in Bell’s theorem is replaced by the weaker reality of
equivalence relations. WM thus reaches beyond the classical.
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#5.6. Based on the rightness of CLR and equivalence relations, WM readily refutes the important
all-or-nothing test of Bell’s ideas in Mermin (1990a). And WM is Lorentz invariant, for Bell (1964:199)
– at #1.3 – missed the following fact and its association with the broad reach of equivalence relations:
similar tests on similar things produce similar results, and correlated test on correlated things produce
correlated results, without mystery.

#5.7. We are thus able to correctly analyze multi-particle experiments via real operators in 3-space;
without recourse to AAD, Hilbert-space, non-locality; nor the impossible requirement to fully specify
a hidden variable in a given spacetime region, per Bell (2004:242); etc.

#5.8. Given our successful endorsement of EPR, further considerations for a wholesale reinterpretation
of QM remain: ‘collapse’ as the Bayesian updating of an equivalence class via prior correlations; ‘states’
as multivectors in 3-space; ‘measurements’ as tests; ‘wave-particle duality’ as an equivalence relation?

#5.9. Finally, though Bell (1990:13) insists ‘you cannot get away with locality ’ — we do just that:
thanks to EPR and John Bell.

6 Acknowledgments

#6.1. To be done elsewhere if this has merit.

7 Notes

#7.1. In the spirit of Einstein/EPR, we come to QM and Bell bearing gifts: we bring realistic param-
eters that bypass Bell’s (1964:199) strange mechanisms; and ‘we determine the results of individual
measurements, without changing the statistical predictions’. As we’ll show, we succeed because the
poorly-defined variables that Bell tests are unrealistic under both EPR and EPRB. Thus, in that we
too add parameters to QM – though more akin to EPR than Bell – so too are we licensed to test our
‘added-variable theory’ against Bell and his theorem. Let’s return to #1.3 and see.

#7.2. Under an ironclad conservation law, (1) immediately resolves Bell’s dilemma re action-at-a-
distance (AAD) and locality. Edited excerpts from Bell (1990) follow, with emphasis added :

I cannot say that AAD is required in physics. I can say that you cannot get away with no
AAD. You cannot separate off what happens in one place and what happens in another.
Somehow they have to be described and explained jointly. That’s the fact of the situation;
Einstein’s program fails, that’s too bad for Einstein, but should we worry about that?
Maybe we have to learn to accept not so much AAD, but the inadequacy of no AAD. That’s the
dilemma. We are led by analyzing this situation to admit that, somehow, distant things are
connected, or at least not disconnected. I don’t know any conception of locality that works
with QM. So I think we’re stuck with nonlocality. There’s no energy transfer and there’s no
information transfer either. That’s why I’m always embarrassed by the word action; so I
step back from asserting that there is AAD and I say only that you cannot get away with
locality. You cannot explain things by events in their neighbourhood. But, I am careful
not to assert that there is AAD.

Others, following Bell and not helping, vary from surprised to certain: eg, Goldstein et
al. (2011), “In light of Bell’s theorem, [many] experiments ... establish that our world is
non-local. This conclusion is very surprising, since non-locality is normally taken to be
prohibited by the theory of relativity.” Maudlin (2014), “Non-locality is here to stay ... the
world we live in is non-local.” [Please return to #2.2.]
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#7.3. #7.2 shows our early departure from Bellian ways of thinking. Another follows; ie, in our terms
and in the context of EPR/EPRB – though seemingly motivated by a shared desire for a return to
classicality – Bell invokes an over-strength and unfit equivalence-relation (that of equality):

Here’s Bell (1980:7): “To explain this dénouement [of Bell’s theorem] without mathematics
I cannot do better than follow d’Espagnat (1979; 1979a).”

And here’s d’Espagnat (1979:166), recast for EPRB with added emphasis: ‘A physicist can
infer that in every pair, one particle has the property A+ and the other has the property
A−. Similarly, he can conclude that in every pair one particle has the property B+ and
one B−, and one has property C+ and one C−. These conclusions require a subtle but
important extension of the meaning assigned to our notation A+. Whereas previously A+

was merely one possible outcome of a measurement made on a particle, it is converted by
this argument into an attribute of the particle itself. To be explicit, if some unmeasured
particle has the property that a measurement along the axis A would give the definite result
A+, then that particle is said to have the property A+. In other words, the physicist has
been led to the conclusion that both particles in each pair have definite spin components at
all times. ... This view is contrary to the conventional interpretation of QM, but it is not
contradicted by any fact that has yet been introduced.’

Against Bell’s view we have Bohr’s insight to bolster our case: “... the result of a ‘measure-
ment’ does not in general reveal some preexisting property of the ‘system’, but is a product
of both ‘system’ and ‘apparatus’,” Bell (2004: xi-xii). CLR’s physical-realism – some phys-
ical properties change interactively – is consistent with Bohr’s insight: “It seems to me that
full appreciation of [Bohr’s insight] would have aborted most of the ‘impossibility proofs’
[[like Bell’s impossibility theorem]], and most of ‘quantum logic’,” Bell (2004: xi-xii). We
agree. [Return to #F2.5.]

#7.4. Early ideas on equivalence relations, classes, dynamics:

[q(â+)] ≡ {q(λ) ∈ Q : q(λ)∼q(â+)}, [q(â−) ≡ {q(λ) ∈ Q : q(λ)∼ q(â−)}; (49)

where q(â±) denotes a dynamic equivalence class (DEC): termed dynamic because subject to dynamic
transformations like δ±

b̂
q(â±) → q(b̂±), with relevant probabilities given by Malus’ Law. (49) thus

shows that Q is partitioned dyadically under the mapping δ±â q(λ) → q(â±). So ∼ on the elements of
δ±â ’s domain denotes: has the same output/image under δ±â ; etc. The quotient set S is thus a set of two
diametrically-opposed extremes: S/∼= {q(â+), q(â−)}, a maximal antipodean discrimination; a pow-
erful dynamic push-pull duo, consistent with our trigonometric arguments being dynamical processes.
Note that direction-vectors like â, vectors under geometry, are operators under WM when representing
the physical action of polarizers in the arguments of trig-functions. [Return to #F2.6.]

#7.5. The slightest correlation calls forth that never-can-be-false probability relation in #2.6. And
Bell recognizes the centrality of correlation (which is by no means slight) in EPRB:

Recasting Bell (2004:208) in line with experiment E: “There are no ‘messages’ in one system
from the other. The inexplicable [sic] correlations of quantum mechanics do not give rise to
signalling between noninteracting systems. Of course, however, there may be correlations
(eg, those of EPRB) and if something about the second system is given (eg, that it is
the other side of an EPRB setup) and something about the overall state (eg, that it is
the EPRB singlet state) then inferences from events in one system [eg, A+ from Alice’s
detector] to events in the other [eg, B+ from Bob’s detector] are possible.”

#7.6. Further, when outcomes are highly correlated – as in EPRB, via (1) – stochastic independence
is no proxy for local-causality: a view most gardeners with adjoining crops accept. So via our return
to fundamentals, the following issue is resolved.
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“One general issue raised by the debates over locality is to understand the connection
between stochastic independence (probabilities multiply) [ie, P (XY ) = P (X)P (Y )] and
genuine physical independence (no mutual influence) [ie, there is no mutual influence be-
tween A+

i (â, λi) and B+
i (b̂, µi)]. It is the latter that is at issue in ‘locality,’ but it is the

former that goes proxy for it in the Bell-like calculations. We need to press harder and
deeper in our analysis here,” Arthur Fine, in Schlosshauer (2011:45).

The later Bell’s fares no better. For he begins to rely “for example, on a full specification
of local beables in a given space-time region,” Bell (2004:240). How would such be supplied
for q(λj), yet to be tested by δ±x̂ or δ±ŷ ?

Factorizability is often “taken as the starting point of the analysis. Here we preferred to see
it not as the formulation of ‘local causality’, but as a consequence thereof,” Bell (2014:243).
Our (10)-(13) show the way through Bell’s factorization dilemma; thereby confirming Bell’s
(2004:239) ‘utmost suspicion’ – he did throw the baby out with the bathwater. [Return to
#2.7.]

#7.7. See Aspect (2002:5-7) for a troubled (but, in our case, helpful) discussion of Malus’ Law in the
context of QM and photons (s = 1). Then read it in our terms, trouble-free dynamically and consistent
with Aspect’s experimental results. Further, though not developed here, our trigonometric arguments
are dynamical processes. For example, let the dynamics relate to the interaction in δ±â q(λi)→ q(â+).
This may be viewed as the operator composition ∆±â · δ(â)◦q(λi)→ ∆±â ·q(â

+) ' â·â+ = +1 = A+
i —

now the output of the [now integrated] analyzer-function; a green light, say. [Return to #2.9.]

#7.8. Knowing from prior study that Bell’s error starts with (14b) – but cautious here re the totality of
Bell’s poor or unstated assumptions in the context of EPR/EPRB – we defer discussion of (14a)-(14b)
until he commits at his (15). Our results are the same under either option. [Return to #4.3.]
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