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Abstract

In reliability analysis, Fault Tree Analysis based on evidential networks is an important

research topic. However, the existing EN approaches still remain two issues: one is the

final results are expressed with interval numbers, which has a relatively high uncertainty

to make a final decision. The other is the combination rule is not used to fuse uncertain

information. These issues will greatly decrease the efficiency of EN to handle uncertain

information. To address these open issues, a new methodology, called Belief Reliability

Analysis, is presented in this paper. The combination methods to deal with series sys-

tem, parallel system, series-parallel system as well as parallel-series system are proposed

for reliability evaluation. Numerical examples and the real application in servo-actuation

system are used to show the efficiency of the proposed Belief Reliability Analysis method-

ology.
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1. Introduction

Probabilistic structural analysis [1] is the art of establishing mathematical models,

which can obtain the probability from a structure that behaves in a specified way, when

given that one or more of its material properties or geometric dimensions. The properties

are of a random or incompletely known nature. Through analyzing different known data,

the result can be got to predict the future behaviour and the possible outcomes [2]. Prob-

abilistic analysis can be classified into different types. One of that is Fault Tree Analysis

(FTA).

Fault Tree Analysis [3] was firstly developed in 1962 at Bell Laboratories by H.A. Wat-

son. It is a kind of logic causality diagram, which displays the state of the system accord-

ing to the component state. FTA attracts a large number of researchers to further develop

and is widely used in aerospace, nuclear power, chemical and process, pharmaceutical

and other areas. In 2002, Reay and Andrews [4] proposed an analytic strategy to increase

the likelihood of obtaining a Binary Decision Diagrams (BDD) for any given fault trees.

Contini and Matuzas [5] described a new method to analyze large coherent fault trees,

which can be advantageously applied when the working memory is not sufficient to con-

struct the BDD. Ferdous et al. [6] presented a revised methodology for computer-aided

Fault Tree Analysis. Ejlali and Miremadi [7] presented Time-to-Failure tree, which can be

used to accelerate the Monte Carlo simulation of fault trees.

However, it is inevitable to handle uncertain information in FTA [8]. Therefore, some

math tools, such as Dempster-Shafer (D-S) evidence theory and fuzzy sets theory, are

adopted in FTA. For example, In [9], Sun et al. used printed circuit board assembly (PC-

BA) to obtain the PCBA fault-tree, fault-tree nodes, and directly computed the intuitive

fuzzy fault-tree interval. Yang et al. [10], combined with Dempster-Shafer (D-S) evidence

theory [11] and FTA to evaluate different experts’ opinions, and generate basic belief as-

signment (BBA) to present the failure rate of components.

It should be pointed out that evidence theory has some open issues, such as conflict-
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ing management [12, 13, 14], generating basic probability assignment [15, 16, 17] and

dependence evidence combination[18, 19, 20]. However, evidence theory plays a promis-

ing role in FTA and is paid more and more attention. Compared to fuzzy set theory, it

can not only handle uncertain information, but also provide Dempster rule to combine

uncertain information from different sources. A number of methods based on evidence

theory were applied to to many real applications such as decision making under uncer-

tain environment[21, 22, 23, 24], pattern recognition [25, 26], failure analysis [27, 28, 29]

and sensor data fusion [30, 31]. Using basic belief assignment to express uncertain in-

formation, instead of probability, in the reliability analysis of complex system gradually

develops a new research topic: evidential network [8].

Some evidential networks are presented. For example, Simon et al. use bayesian

networks inference algorithms to compute complex system reliability, and extend it to

evidential networks. In addition, Simon and Weber use the evidential networks to solve

multi-state system [32] and compared the result with fuzzy fault tree [8]. Xu and Philippe

use conditional belief functions to deduce evidential networks [33]. Boukhris et al. intro-

duced the belief causal networks [34], which represents dependencies as uncertain causal

links and represents the uncertainty as belief masses. Yang et al. proposed the calcula-

tion method with Exclusive Or gate and Exclusive Nor gate in evidential networks [35].

Qiu et al. [36] applied evidential network to handle hazardous material transportation

problem and compared with beyesian network to show the efficiency of the evidential

network. Benavoli et al. constructed an evidential network model for threat assessment

[37]. A dynamic evidential network was proposed by Aguilar et al. [38] and Laâmari

[39].Jiang [40], Yaghlane and Mellouli [41], Laâmari et al. [42] proposed the reasoning

algorithms to solve problem in evidential networks. Yang et al. [43] indicated that the

mass belief table in series, parallel, series-parallel and parallel-series systems could be

expressed by formula and proposed their EN approach, which expresses the relationship

among components and sub-systems in servo-actuation system.
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However, the existing EN approaches still remain two issues: one is that the final

results are expressed with interval numbers, which has a relatively high uncertainty to

make a final decision. The other is that the combination rule is not used to fuse uncertain

information. These issues will greatly decrease the efficiency of EN to handle uncertain

information. To address these open issues, a new methodology, called Belief Reliability

Analysis (RBA), is presented in this paper. The combination methods to deal with se-

ries system, parallel system, series-parallel system as well as parallel-series system are

proposed for reliability evaluation.

This paper is organized as follows: In section 2, some preliminaries are briefly in-

troduced, including evidence theory, FTA and existing EN. In section 3, the proposed

method is detailed. In section 4, some numerical examples are used illustrate the ef-

ficiency of the proposed method. In section 5, the BRA methodology was applied in

servo-actuation system. The conclusion is given in Section 6 to end the paper.

2. Preliminaries

In this section, some preliminaries are briefly introduced, including evidence theory,

FTA and existing EN.

2.1. D-S Evidence Theory

Dempster-Shafer theory of evidence, is used to deal with uncertain information. Some

basic concepts of this theory are introduced as follows.

2.1.1. The frame of discernment

The frame of discernment (FD) is proposed to describe the whole circumstances in

the event. Θ is used to describe a set of mutually exclusive and collectively exhaustive

elements Ei, which is indicated by

Θ = {E1, E2, · · · , Ei, · · · , EN} (1)

4



Set Θ is called FD. The power set of Θ is denoted by 2Θ, and

2Θ = {∅, {E1}, · · · , {EN}, {E1, E2}, · · · , {E1, E2, · · · , Ei}, · · · , Θ} (2)

where ∅ is an empty set.

2.1.2. The basic mass assignment

A mass function m is a mapping from 2Θ to a probability interval [0, 1], formally de-

fined by:

m : 2Θ → [0, 1] (3)

which satisfies the following conditions:

m(∅) = 0 ∑
A∈2Θ

m(A) = 1 0 ≤ m(A) ≤ 1 A ∈ 2Θ (4)

2.1.3. Belief function and plausibility function

For an elementary proposition A ⊆ Θ, the belief function Bel is a mapping: 2Θ → [0, 1]

is defined as

Bel(A) = ∑
B⊆A

m(B) (5)

and satisfies the following conditions:

Bel(∅) = 0 Bel(Θ) = 1.

The plausibility function Pl : 2Θ → [0, 1] is defined as

Pl(A) = 1 − Bel(Ā) = ∑
B∩A 6=∅

m(B) (6)

In Fig.1, it is obvious that Pl(A) ≥ Bel(A), and functions Bel and Pl represent the

lower and upper limit mass functions of proposition A, respectively.
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Figure 1: Relationship between the belief and plausibility function

2.1.4. Dempster rule of combination

If m(A) > 0, A is a focal element, and the set of some focal elements is named a body

of evidence (BOE). When multiplying BOEs is available, the Dempster’s combination rule

can be used to obtain the combined evidence:

m(A) =

∑
B
⋂

C=A
m1(B)m2(C)

1 − K
(7)

where K = ∑
B
⋂

C=∅

m1(B)m2(C) is a normalization constant, which called conflict. The

combination rule establish if and only if when m(∅) 6= 1.

2.2. The Evaluation of Fault Tree

2.2.1. Probability interval in Fault Tree

Since the occurrence rate can not be measured exactly, it is hard to express the prob-

ability weather event will occur. Combining D-S theory, the occurrence rate of event

expresses as:

P(A) = Bel(A) P(A) = Bel(A) (8)

Where P(A) represents the upper limit of the rate of occurrence, and P(A) means the

lower limit of the rate of occurrence.

In the traditional FT, the event contains two basic states: {up} and {down}. {up}

means the occurrence of the event, while {down} means the non-occurrence of the event.

Combining FT with EN, the corresponding event contains four states: ∅, {up}, {down}

and {up, down}.
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2.2.2. The evaluation information

In FTA, it is difficult to measure the occurrence probability of basic event exactly at

first, because the data is uncertain. In order to compensate for the lack of data caused by

occurrence probability inaccuracy, D-S evidence theory is adopted to aggregate different

experts’ evaluation information, which may be uncertain and imprecise. At the same

time, the corresponding model is constructed gradually.

Suppose there are L experts and K basic events, which are expressed as:

E = (E1, E2, ..., EL) C = (C1, C2, ..., CK) (9)

Evaluation information set from i experts (1 ≤ i ≤ K) on the occurrence probability

event can be defined as follows:

Pi = {[Pi
1({up}), Pi

1({up})], ..., [Pi
L({up}), [Pi

L({up})]} (10)

2.2.3. The evaluation opinion

According to Eq.(5), Eq.(6) and Fig.1, for the evaluation opinion of k (1 ≤ k ≤ L) to

every single event i (1 ≤ i ≤ K), the formula can be deduced:

mi
k({up}) = Beli

k({up})

mi
k({down}) = 1 − Pli

k({up})

mi
k({up, down}) = Pli

k({up}) − Beli
k({up})

(11)

Applying Eq.(11) to Eq.(10), the result can be expressed as:

Pi = {[Beli
1({up}), Pli

1({up})], ..., [Beli
L({up}), [Pli

L({up})]} (12)

2.2.4. The vector of evaluation opinion

Construct the whole states mentioned in Eq.(11), the collection:

mi
k = (mi

k({∅}), mi
k({up}), mi

k({down}), mi
k({up, down}))

= (0, Beli
k({up}), 1 − Pli

k({up}), Pli
k({up}) − Beli

k({up}))
(13)

7



In CWA, the empty set ∅ is always satisfied with m(∅) = 0. Therefore we ignore ∅ :

mi
k = (mi

k({up}), mi
k({down}), mi

k({up, down}))

= (Beli
k({up}), 1 − Pli

k({up}), Pli
k({up}) − Beli

k({up}))
(14)

2.3. The Fusion Model Using Evidence Theory with Evidence Theory

2.3.1. The directed acyclic graph in evidential network

Evidential network, which is also called belief network, is a directed acyclic graph

(DAG) from probabilistic reasoning [32]. Probabilistic reasoning is a process getting other

probabilistic information through some variables. With probabilistic reasoning, eviden-

tial network, could use for solving uncertain and incomplete problems from network,

such as events contact and associated state. In these paper, evidential network could

represent the relationship among source, actuator and controller.

Evidential network contains variable nodes and directed edges, which connect these

nodes [44]. The nodes represent random variables, and the directed edges between nodes

represent the relationships among inter nodes. Node variables can be used for solving

abstract problems, such as testing values, conducting probability. Through the relation

among nodes and edges, evidential networks could express and analyse uncertainty and

probability of the event, and finally derive results from incomplete, imprecise or uncer-

tain information.

2.3.2. Series system

The sub-system or components connecting end to end constructs series system. A

series system, corresponding to ’AND’ gate in logic gate circuit, fails if any of the sub-

systems or components fails. A typical series system configuration and corresponding to

equivalent evidential are shown in Fig.2.

To compute the marginal belief mass of connecting node of series system in EN, Si-

mon’s conditional belief mass table is adopted. Ignore state {∅}, two components or
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C1 C2 C3 Cn

Bel(system=up) Pl(system=up)

System

AND

C1 C2

Cn C3

Figure 2: Series system

sub-systems make up nine different state:

{{up}, {up}} {{up}, {down}} {{up}, {up, down}}

{{down}, {up}} {{down}, {down}} {{down}, {up, down}}

{{up, down}, {up}} {{up, down}, {down}} {{up, down}, {up, down}}

Eq.(15) expresses the way to calculate the states after connecting two components or

sub-systems in series:

mij(system = C) = (mi ⊙ mj)(C) =


































mi({C}) · mj({C}) C = {up}

mi({C}) + mj({C})− mi({C}) · mj({C}) C = {down}

mi({X}) · mj({C}) + mi({C}) · mj({X}) +mi({C}) · mj({C})

X = {up}, C = {up, down}

(15)

where mi and mj express the belief mass of the two components i and j in series system,

and mij expresses the marginal belief mass in the series system.
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C1 C2 C3 Cn

Bel(system=up) Pl(system=up)

System

OR

C1

C2

Cn

C3

Figure 3: Parallel system

When there are n (n ≥ 2) components or sub-systems connecting in series end to end,

the marginal belief mass in series system is generalized to Eq.(16):

m(system) = m1 ⊙ m2 ⊙ m3 ⊙ ... ⊙ mn = ((((m1 ⊙ m2)⊙ m3)⊙ ...)⊙ mn). (16)

where, mi( i = 1, 2, ... , n ) represents the belief mass of every single components or

sub-systems. m is the belief mass of the series system.

2.3.3. Parallel system

Parallel connection, which is another way to connect components and corresponds

to ’OR’ gate, fails if and only if all the units in the system fail. A typical series system

configuration corresponding to EN is shown in Fig.3. The detailed processing conversion

can be referred to paper [32].

Similar to the series system, according to the conditional belief mass table, the states

is shown in Eq.(17):
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mij(system = C) = (mi ⊗ mj)(C) =


































mi({C}) + mj({C})− mi({C}) · mj({C}) C = {up}

mi({C}) · mj({C}) C = {down}

mi({C}) + mj({C})− mi({X}) · mj({C}) −mi({C}) · mj({X})− mi({C}) · mj({C})

X = {up}, C = {up, down}

(17)

Also, when there are more than two components or sub-systems in parallel system,

the marginal belief mass of system or the top node of parallel system is shown as follow-

ing:

m(system) = m1 ⊗ m2 ⊗ m3 ⊗ ... ⊗ mn = ((((m1 ⊗ m2)⊗ m3)⊗ ...)⊗ mn) (18)

2.3.4. Series-parallel system and parallel-series system

Series-parallel system (shown in Fig.4) and parallel-series system (shown in Fig.5)

indicate sub-systems in which several components are connected in parallel, and then

in series or sub-systems that several components are connected in series, and then in

parallel.

In traditional series-parallel system, Chern [45] indicated that it is very difficult to

find out an optimal solution under multiple constraint conditions for the framework of

series-parallel system. Misra and Sharma’s algorithm [46], solved problems by integer

programming, which serves as an algorithm searching for nearby boundary of the do-

main of feasible solution. Prasad and Kuo [47] pointed out that Misra algorithm some-

times cannot yield an optimal solution, and suggested a method of searching for the

upper limit of reliability’s objective function.

Simon and Weber [32] then formalized the evidential networks for the handling of

imprecise probabilities, and proposed belief mass table to express the states for com-

ponents and sub-systems. According to Eq.(16) and Eq.(18), equations for calculating
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series-parallel system and parallel-series system were also put forward by Yang:

When there are m sub-systems and n components in the ith sub-system, the marginal

belief mass of system is indicated in Eq.(20). It is both commutative and associative:

m(system) =mC1 ⊗ mC2 ⊗ mC3 ⊗ ... ⊗ mCn

=(m11 ⊙ m12 ⊙ m13 ⊙ ... ⊙ m1n)⊗ (m21 ⊙ m22 ⊙ m23 ⊙ ... ⊙ m2n)

⊗ (m31 ⊙ m32 ⊙ m33 ⊙ ... ⊙ m3n)⊗ ... ⊗ (mm1 ⊙ mm2 ⊙ mm3 ⊙ ... ⊙ mmn)

(19)

where mCi ( i = 1, 2, ... , m ) represents the belief mass of the child nodes in each of

the sub-system. Cij
( i = 1, 2, ... , m; j = 1, 2, ... , n ) represents the belief mass of the ith

sub-system. m is the belief mass of the whole system.

The same as the series-parallel system, the marginal belief mass of parallel-series sys-

tem can be generalized in:

m(system) =mC1 ⊙ mC2 ⊙ mC3 ⊙ ... ⊙ mCn

=(m11 ⊗ m12 ⊗ m13 ⊗ ... ⊗ m1n)⊙ (m21 ⊗ m22 ⊗ m23 ⊗ ... ⊗ m2n)

⊙ (m31 ⊗ m32 ⊗ m33 ⊗ ... ⊗ m3n)⊙ ... ⊙ (mm1 ⊗ mm2 ⊗ mm3 ⊗ ... ⊗ mmn)

(20)

Also, mCi ( i = 1, 2, ... , m ) is the belief mass of the sub-system. Cij ( i = 1, 2, ... , m; j

= 1, 2, ... , n ) represents the belief mass of the ith sub-system. m is the belief mass of the

whole system.

3. A New Evidential Network

Yang et al.’s EN approach [43] remains the uncertain circumstance mij({up, down}).

The result is expressed by a probability interval numbers (the upper limit is Pl(system=up),
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Bel(system=up) Pl(system=up)

System

C11 C12

C21 C22

Cm1 Cm2

C1n1

C2n2

Cmnm

Cm1 CmnmC11 C1n1

AND1 AND2

Figure 4: Series-parallel system

Bel(system=up) Pl(system=up)

System

C11 C12

C21 C22

Cm1 Cm2

C1n1

C2n2

Cmnm

Cm1 CmnmC11 C1n1

OR1 OR2

Figure 5: Parallel-series system

and the lower limit is Bel(system=up). Thus, the new methodology is produced for belief

reliability analysis.

3.1. Belief Relief Analysis under series system

In Eq.(15), mij(C) = mi(X) · mj(C) + mi(C) · mj(X) + mi(C) · mj(C), (X = {up}, C =

{up, down}) can not accurately represent neither system is up nor system is down. It can

be regarded as useless information. On the contrary,

mij = mi(C) · mj(C), (C = {up})

mij = mi(C) + mj(C)− mi(C) · mj(C), (C = {down})

can determine the state of components. Combining Eq.(11) and Eq.(15), the equation:

mij(system = C) = (mi ◦ mi)(C) =



























Belk({C}) · Belj({C})

1 − K

1 − Plk({C}) · Plj({C})

1 − K

(21)
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where K = Plk({C}) · Plj({C})− Belk({C}) · Belj({C})

Eq.(21) can also be generalized to n (n ≥ 2) components connected in series:

m(system) = m1 ◦ m2 ◦ m3 ◦ ... ◦ mn = (((m1 ◦ m2) ◦ m3) ◦ ... ◦ mn) (22)

where mi ( i = 1, 2, 3, ... ,n ) expresses the belief mass of the series system.

3.2. Belief Reliability Analysis under parallel system

Similarly, we could get the rate of occurrence in system by Eq.(11) and Eq.(17):

mij(system = C) = (mi • mi)(C) =



























Belk({C}) + Belj({C})− Belk({C}) · Belj({C})

1 − K

[1 − Plk({C})] · [1 − Plj({C})]

1 − K
(23)

where K = [1 − Belk({C})] · [1 − Belj({C})] − [1 − Plk({C})] · [1 − Plj({C})]

Similarly, when more than two (n) components connect in parallel:

m(system) = m1 • m2 • m3 • ... • mn = (((m1 • m2) • m3) • ... • mn) (24)

3.3. Series-parallel system and parallel-series system under evidential network

The method to calculate different components connect in serial and parallel is similar

to the Yang et al.’s EN approach [43]. In Fig.4, the result can be expressed as:

mseries−parallel(system) =mC1 • mC2 • mC3 • ... • mCn

=(m11 ◦ m12 ◦ m13 ◦ ... ◦ m1n) • (m21 ◦ m22 ◦ m23 ◦ ... ◦ m2n)

• (m31 ◦ m32 ◦ m33 ◦ ... ◦ m3n) • ... • (mm1 ◦ mm2 ◦ mm3 ◦ ... ◦ mmn)
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C1 C2

Figure 6: series system calculation

At the same time, the parallel-series system, shown in Fig.5 can be represented as:

mparallel−series(system) =mC1 ◦ mC2 ◦ mC3 ◦ ... ◦ mCn

=(m11 • m12 • m13 • ... • m1n) ◦ (m21 • m22 • m23 • ... • m2n)

◦ (m31 • m32 • m33 • ... • m3n) ◦ ... ◦ (mm1 • mm2 • mm3 • ... • mmn)

It can be seen from the equation above, although there are some differences in cal-

culation method between the new method and the Yang et al.’s EN approach [43], they

have the similar characteristics, which means that many characters in the Yang et al.’s EN

approach [43] can be inherited by this new combining method.

3.4. Other special circumstances

It should be noted when Beli(system) = Pli(system), the BRA methodology, both in se-

ries and in parallel, degenerates into classical probability calculation in series and in par-

allel. The way to calculate is the same as Eq.(15) and Eq.(17).

4. Numerical Examples

4.1. Probability networks

As can be seen in Fig.6. When Beli(system)=Pli(system), two components connect in

series. Suppose: and the corresponding probability calculation degenerates from com-

{up} {down}

C1 70.00% 30.00%

C2 80.00% 20.00%

bining belief function to classical probability calculation.
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{up} 56.00%

{down} 44.00%

4.2. Series networks

Fig.6 is also suitable for basic belief assignment calculation, and their corresponding

belief mass distribution is: Through BRA methodology under series, the reliability of

{up} {up}, {down} {down}

C1 70.00% 20.00% 10.00%

C2 80.00% 10.00% 10.00%

system is shown below, and the result from traditional EN approach is also displayed:

Traditional EN approach BRA methodology

{up} 56.00% 66.67%

{up}, {down} 19.00% 0

{down} 25.00% 33.33%

4.3. Parallel networks

As is shown in Fig.7, the priori belief mass distribution of the each node is:

{up} {up}, {down} {down}

C1 70.00% 20.00% 10.00%

C2 80.00% 10.00% 10.00%

The compared results is shown below:
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C1

C2

Figure 7: parallel system calculation

Traditional EN approach BRA methodology

{up} 94.00% 98.95%

{up}, {down} 1.00% 0

{down} 5.00% 1.05%

5. Application in Three-redundancy servo-actuation system

Servo-actuation technology is one of the key technologies of computational numerical

control (CNC), industrial robots and other industrial machines [48]. This technology has

received high attention all over the world. With the development of the servo-actuation

technology, higher speed, precision and efficiency of the servo-actuation system are in

need. However, servo-actuation system, which is long-running and lack in reliability but

important to operate normally, needs to estimate its rate of occurrence.

The basic reliability diagram of three-redundancy servo-actuation system and the cor-

responding mission reliability diagram of system is shown in Fig.8. Assuming there is no

external factors to interfere with the system. The uncertain data of the servo controller is

also shown in Fig.8.

According to Yang et al.’s EN approach [43], the belief function and the plausibility

function can be calculated:

the failure rate of the servo controller is adopted as an interval:[10.61%,28.22%], and

the reliability of the servo system is: [71.78%,89.39%].
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Bel(system = up) 71.78%

Pl(system = up) 89.39%

The new combining approach gets the result:

Bel(system = up) 87.34%

Pl(system = up) 12.66%

Meanwhile, the result is also shown in Fig.8: Compared with Yang et al.’s EN ap-

Figure 8: Parallel-series system diagram

proach [43], the proposed BRA methodology decrease the uncertainty of the results sig-

nificantly. The main reason is that Dempster rule is applied to efficiently combine the

data in the proposed BRA methodology. What’s more, the support degree of status up is

88.40%, while the result is from 71.78% to 89.39% in Yang et al.’s EN approach [43].

Besides, if we change C1’s value, the failure rate of this servo-actuation will also

change simultaneously. For instance, if we firstly set the rate to the state {down} in C1 is
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10%, the state {up} increase from 90% to 0. Correspondingly, the state {up, down} change

from 0 to 90%. Some part of corresponding rate of occurrence is shown in Tab.1, Fig.9 and

10 can display the state of change more intuitively.

Table 1: Comparison about Rate of Occurrence

Rate of {up} in C1

Traditional EN Approach BRA Methodology

{up} {up}, {down} {down} {up} {down}

1% 56.28% 35.30% 8.41% 12.81% 87.19%

10% 57.65% 33.91% 8.44% 12.79% 87.21%

20% 59.18% 32.36% 8.46% 12.77% 87.23%

30% 60.70% 30.81% 8.49% 12.75% 87.25%

40% 62.22% 29.26% 8.52% 12.73% 87.27%

50% 63.75% 27.71% 8.54% 12.71% 87.29%

60% 65.27% 26.16% 8.57% 12.70% 87.30%

70% 66.79% 24.61% 8.59% 12.68% 87.32%

80% 68.32% 23.06% 8.62% 12.67% 87.33%

90% 69.84% 21.51% 8.65% 12.65% 87.35%
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Figure 9: Result of EN Approach
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Figure 10: Result of BRA Methodology

This experiment also indicate the traditional EN approach sometimes show low-precision
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result, especially when we set the rate of {up} to 1%, the confidence interval is [56.29%,91.59%]

which will increase difficulty to follow-up operation. On the contrary, the result from

BRA methodology is simpler and less uncertain. It means that the proposed BRA method-

ology provides a higher confidence in the reliability evaluation of the servo-actuation

system than Yang et al.’s EN approach [43] in the final result.

6. Conclusion

Evidential network has a promising aspect in reliability analysis. However, exist-

ing methods still remain some issues. For example, the data fusion technology is not

fully used. In this paper, a new methodology, called RBA, is proposed. The combina-

tion methods to deal with series system, parallel system, series-parallel system as well

as parallel-series system are developed for reliability evaluation. The real application in

servo-actuation system is illustrated to show the efficiency of the proposed Belief Relia-

bility Analysis methodology.
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[39] W. Laâmari, B. B. Yaghlane, C. Simon, On the use of a mixed binary join tree for exact inference

in dynamic directed evidential networks with conditional belief functions, in: Knowledge Science,

Engineering and Management, Springer, 2013, pp. 310–324.

[40] J. Jiang, Evidential network model and reasoning approach, Systems Engineering-Theory & Practice

4 (2015) 019.

[41] B. B. Yaghlane, K. Mellouli, Inference in directed evidential networks based on the transferable belief

model, International Journal of Approximate Reasoning 48 (2) (2008) 399–418.
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