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Abstract

Shannon entropy is the mathematical foundation of information theory, Tsal-

lis entropy is the roots of nonextensive statistical mechanics, Deng entropy

was proposed to measure the uncertainty degree of belief function very re-

cently. In this paper, A new entropy H was proposed to generalize Deng

entropy, Tsallis entropy and Shannon entropy. The new entropy H can be

degenerated to Deng entropy, Tsallis entropy, and Shannon entropy under

different conditions, and also can maintains the mathematical properity of

Deng entropy, Tsallis entropy and Shannon entropy.
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1. Introduction

How to measure the uncertainty has attracted much attention [1, 2]. A lot

of theories has been developed, such as probability theory [3], fuzzy set the-

ory [4], possibility theory [5], Dempster-Shafer evidence theory [6, 7], rough

sets[8], DSmT[9, 10], generalized evidence theory [11] and D numbers[12, 13].

Since firstly proposed by Clausius in 1865 for thermodynamics [14], vari-

ous types of entropies are presented, such as information entropy [15], Tsallis

entropy [16], nonadditive entropy [17, 18, 19]. Information entropy [15], de-

rived from the Boltzmann-Gibbs (BG) entropy [20] in thermodynamics and

statistical mechanics, has been an indicator to measures uncertainty which

is associated with the probability density function (PDF).

Dempster-Shafer theory evidence theory[6, 7] is mainly proposed to han-

dle such uncertainty. In Dempster-Shafer evidence theory, the epistemic un-

certainty simultaneously contains nonspecificity and discord [21] which are

coexisting in a basic probability assignment function (BPA). Several uncer-

tainty measures, such as AU [22, 23], AM [21], have been proposed to quantify

such uncertainty in Dempster-Shafer theory. What’s more, five axiomatic re-

quirements have been further built in order to develop a justifiable measure.

These five axiomatic requirements are range, probabilistic consistency, set

consistency, additivity, subadditivity, respectively [24]. Existing methods

are not efficient to measure uncertain degree of BPA. To address this issue, a

new entropy, named as Deng entropy [25], is proposed to measure the uncer-

tainty of basic probability assignment for the evidence theory. In this paper,
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a discussin of the maximal value of Deng entropy has been discussed and

proofed, which is useful for the real application of Deng entropy.

The paper is organized as follows. The preliminaries Dempster-Shafer ev-

idence theory and Deng entropy and Tsallis entropy are briefly introduced in

Section 2. Section 3 makes some discussions about the new entropy. Finally,

this paper is concluded in Section 4.

2. Preliminaries

In this section, some preliminaries are briefly introduced.

2.1. Dempster-Shafer evidence theory

Dempster-Shafer theory (short for D-S theory) is presented by Dempster

and Shafer [6, 7]. This theory is widely applied to uncertainty modeling

[26, 27, 28, 29, 30], decision making [31, 32, 33, 34, 35, 36, 37, 38], information

fusion [39, 40] and uncertain information processing [41, 42]. D-S theory has

many advantages to handle uncertain information. First, D-S theory can

handle more uncertainty in real world. In contrast to the probability theory

in which probability masses can be only assigned to singleton subsets, in

D-S theory the belief can be assigned to both singletons and compound sets.

Second, in D-S theory, prior distribution is not needed before the combination

of information from individual information sources. Third, D-S theory allows

one to specify a degree of ignorance in some situations instead of being forced

to be assigned for probabilities. Some basic concepts in D-S theory are

introduced.
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Let X be a set of mutually exclusive and collectively exhaustive events,

indicated by

X = {θ1, θ2, · · · , θi, · · · , θ|X|} (1)

where set X is called a frame of discernment. The power set of X is indicated

by 2X , namely

2X = {∅, {θ1}, · · · , {θ|X|}, {θ1, θ2}, · · · , {θ1, θ2, · · · , θi}, · · · , X} (2)

For a frame of discernment X = {θ1, θ2, · · · , θ|X|}, a mass function is a

mapping m from 2X to [0, 1], formally defined by:

m : 2X → [0, 1] (3)

which satisfies the following condition:

m(∅) = 0 and
∑
A∈2X

m(A) = 1 (4)

In D-S theory, a mass function is also called a basic probability assignment

(BPA). Assume there are two BPAs indicated by m1 and m2, the Dempster’s

rule of combination is used to combine them as follows:

m(A) =


1

1−K
∑

B∩C=A

m1(B)m2(C) , A 6= ∅;

0 , A = ∅.
(5)

with

K =
∑

B∩C=∅

m1(B)m2(C) (6)

Note that the Dempster’s rule of combination is only applicable to such two

BPAs which satisfy the condition K < 1.
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2.2. Deng entropy

With the range of uncertainty mentioned above, Deng entropy [25] can

be presented as follows

Ed = −
∑
i

m(Fi) log
m(Fi)

2|Fi| − 1
(7)

where, Fi is a proposition in mass function m, and |Fi| is the cardinality

of Fi. As shown in the above definition, Deng entropy, formally, is similar

with the classical Shannon entropy, but the belief for each proposition Fi is

divided by a term (2|Fi| − 1) which represents the potential number of states

in Fi (of course, the empty set is not included).

Specially, Deng entropy can definitely degenerate to the Shannon entropy

if the belief is only assigned to single elements. Namely,

Ed = −
∑
i

m(θi) log
m(θi)

2|θi| − 1
= −

∑
i

m(θi) logm(θi)

2.3. Tsallis entropy

For a discrete random variable X = {Xi, i = 1, 2, ..., N} that has a prob-

ability distribution P = {pi, i = 1, 2, ..., N}[pi is the probability of X = xi].

Scaling pi to pi
m, where m is any real number, Tsallis Entropy [16] Hm can

be denoted as

Hm = k
1−

∑N
i=1 p

m
i

m− 1
=

k

m− 1

N∑
i=1

[pi − pmi ] (8)

where k is often taken as unity. For m → 1, the Tsallis entropy reduces to

Shannon entropy
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3. Proposed new Entropy: possible generalization of Deng entropy,

Tsallis Entropy, Shannon entropy

Assume Fi is the focal element and m(Fi) is the basic probability assign-

ment for Fi, then the possible generalization of Deng entropy and Tsallis

entropy can be defined as H

H =

1−
∑
i

[m (Fi)]
m

m− 1
+
∑
i

m (Fi) log
(
2|Fi| − 1

)
(9)

where i = 1, 2, ..., 2X − 1, and X is the scale of the frame of discernment.

(1) For m→ 1, the new entropy H reduces to Deng entropy, namely

Ed = −
∑
i

m(Fi) log
m(Fi)

2|Fi| − 1
(10)

Proof. For m→ 1, the new entropy can be shown as

Hm→1 = lim
m→1


1−

∑
i

[m (Fi)]
m

m− 1
+
∑
i

m (Fi) log
(
2|Fi| − 1

) (11)

Then

Hm→1 = lim
m→1


1−

∑
i

[m (Fi)]
m

m− 1

+
∑
i

m (Fi) log
(
2|Fi| − 1

)
(12)

Because

lim
m→1

{
1−
∑
i
[m(Fi)]

m

m−1

}
= lim

m→1

∂
∂m

{
1−
∑
i
[m(Fi)]

m

}
∂

∂m
(m−1)

= − lim
m→1

∑
i

[m (Fi)]
m log [m (Fi)]

= −
∑
i

m (Fi) log [m (Fi)]

(13)
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Then

Hm→1 = −
∑
i

m (Fi) log [m (Fi)] +
∑
i

m (Fi) log
(
2|Fi| − 1

)
= −

∑
i

{
m (Fi) log [m (Fi)]−m (Fi) log

(
2|Fi| − 1

)}
= −

∑
i

m (Fi) log m(Fi)

2|Fi|−1

(14)

Hence

Hm→1 = Ed = −
∑
i

m (Fi) log
m (Fi)

2|Fi| − 1
(15)

End proof

(2) For the belief is only assigned to single elements, the new entropy H

reduces to Tsallis entropy, namely

Hm = k
1−

∑N
i=1 p

m
i

m− 1
=

k

m− 1

N∑
i=1

[pi − pmi ] (16)

Proof. For the belief is only assigned to single elements, the |Fi| = 1, we can

easily get that ∑
i

m (Fi) log
(
2|Fi| − 1

)
= 0 (17)

Hence

H =
1−
∑
i
[m(Fi)]

m

m−1 +
∑
i

m (Fi) log
(
2|Fi| − 1

)
=

1−
∑
i
[m(Fi)]

m

m−1 =
1−
∑
i
[m(θi)]

m

m−1 = Hs

(18)

End proof

(3) For m→ 1 and the belief is only assigned to single elements, the new

entropy H reduces to Shannon entropy, namely

H = −
∑
i

m(θi) log
m(θi)

2|θi| − 1
= −

∑
i

m(θi) logm(θi) (19)
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Proof. When m→ 1, from Eq. (15), we can get

Hm→1 = Ed = −
∑
i

m (Fi) log
m (Fi)

2|Fi| − 1
(20)

When the belief is only assigned to single elements, the |Fi| = 1, we can

easily get that

H = −
∑
i

m(Fi) log
m(Fi)

2|Fi| − 1
= −

∑
i

m(θi) logm(θi) (21)

End proof
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4. Conclusion

Shannon entropy is the mathematical foundation of information theory,

Tsallis entropy is the roots of nonextensive statistical mechanics, Deng en-

tropy was proposed to measure the uncertainty degree of belief function very

recently. In this paper, A new entropy H was proposed to generalize Deng

entropy, Tsallis entropy and Shannon entropy. The new entropy H can be

degenerated to Deng entropy, Tsallis entropy, and Shannon entropy under

different conditions, and also can maintains the mathematical properity of

Deng entropy, Tsallis entropy and Shannon entropy.
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