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ABSTRACT 
GabrielEigen is a simple deterministic imputation system without structural or distributional 
assumptions, which uses a mixture of regression and lower-rank approximation of a matrix 
based on its singular value decomposition. We provide multiple imputation alternatives (MI) 
based on this system, by adding random quantities and generating approximate confidence 
intervals with different widths to the imputations using cross-validation (CV). These methods 
are assessed by a simulation study using real data matrices in which values are deleted 
randomly at different rates, and also in a case where the missing observations have a 
systematic pattern. The quality of the imputations is evaluated by combining the variance 
between imputations (Vb) and their mean squared deviations from the deleted values (B) into 
an overall measure (Tacc). It is shown that the best performance occurs when the interval 
width matches the imputation error associated with GabrielEigen. 
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INTRODUCTION 

Imputation is a technique in which the missing elements of a matrix are replaced by 
plausible values, thereby making possible a valid analysis of the completed data matrix 
(observed + imputed). Recently, Arciniegas-Alarcón et al. (2010) proposed an imputation 
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algorithm without distributional or structural assumptions that uses a mixture of regression 
and lower-rank approximation of a matrix. 

The algorithm was called GabrielEigen and it is deterministic, so has the advantage over 
stochastic imputation methods (parametric multiple imputation) that the imputed values are 
uniquely determined, and if the process is repeated on the same data set it will always 
provide the same results. This characteristic is not necessarily true for stochastic imputation 
methods (Bello 1993, Arciniegas-Alarcón et al. 2013). 

As with any statistical methodology, GabrielEigen has limitations and one of them is 
that it provides simple imputation, therefore does not take into account the uncertainty 
produced by the imputations. Thus, if the parameters of a model are estimated from the 
imputed values, the standard errors will be underestimated, so that confidence intervals and 
tests may lose validity even if the imputation model is correct (Josse et al. 2011, Josse and 
Husson 2012a, Arciniegas-Alarcón et al. 2014a). 

Multiple imputation (MI, Rubin 1978, 1987) solves this problem. More recent 
descriptions of the technique can be found in Graham (2012), van Buuren (2012) and Räsler 
et al. (2013). According to van Ginkel and Kroonenberg (2014), the technique involves four 
steps: (i) The missing values are estimated M times according to a specified statistical model; 
(ii) These estimates are placed in turn in the data set, resulting in M plausible complete 
versions of the incomplete data set; (iii) Standard statistical procedures are applied to these 
M data sets; (iv) the results are combined to obtain parameter estimates and their variability. 

MI solves in a simple way the lack of balance that can affect experiments with genotype-
by-environment interaction (G×E), causing difficulties in the application of either additive 
main effects and multiplicative interaction models (AMMI) or genotype main effects and 
genotype-by-environment interaction models (GGE, Gauch 2013, Paderewski 2013, Forkman 
2015, Yan 2015). Therefore, the aim of this paper is to propose alternatives to the first step of 
MI using GabrielEigen and to evaluate them by a simulation study based on real matrices 
from G×E experiments.  

MATERIALS AND METHODS 

GABRIELEIGEN IMPUTATION ALGORITHM 

The algorithm initially replaces the missing cells by arbitrary values and subsequently 
the imputations are refined through an iterative scheme that defines a different partition of 
the matrix for each missing value and uses linear regression of columns (or rows) to obtain 
the new imputation. In this regression, the design matrix is approximated by a low-rank 
matrix using singular value decomposition (SVD) (Arciniegas-Alarcón et al. 2014b). The 
algorithm is now presented more formally. 

Consider the n×p matrix X with elements xij (i=1,...,n; j=1,...,p), some of which are 
missing. Note that this process requires n ≥ p and if this is not the case, then the matrix X 
should first be transposed. 
Step 1: The missing values are imputed initially by their respective column means, giving a 
completed matrix X. 

Step 2: The columns are standardised by subtracting jx  from each element and dividing the 

result by sj, where jx  and sj represent respectively the mean and the standard deviation of 

the j-th column. 
 Step 3: Using the standardised matrix, define the next partition 
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where the missing value in the (i,j) position is always in the (1,1) position of the defined 
partition. For each missing value xij, the components of the considered partition will be 
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different and that partition is obtained through elementary operations to the rows and 

columns of matrix X. Replace the submatrix 
11X  by its rank m approximation using the SVD:  
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Step 4: The imputation process depends on the value of m, and it is suggested that m should 
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Step 5: Finally, the imputed values must be returned to the original scale, ( )m

ijjjij xsmx ˆ+= , 

replacing them in the matrix X. This process is then iterated from Step 2 until the 
imputations achieve stability.  

MULTIPLE IMPUTATION - MI USING GABRIELEIGEN 

It is known that, whatever imputation method is used, there is a risk of underestimating 
variances and covariances from a completed matrix, since the imputed values do not allow 
natural sample variation. One way to circumvent this problem is add small random values to 
each imputation (Krzanowski and Marriott 1994). Using this idea, it is possible to generate an 
MI scheme from a simple imputation method, just by adding M random values to each 
imputation. 

Recently, following the same line, Srivastava and Dolatabadi (2009) proposed an MI 
scheme by using the simple residuals from a classic linear regression model, assuming the 
design matrix to be complete and the independent variable to be incomplete. The process 
consists of fitting a regression model to the observed data and calculating the residuals. M 
random samples, of size equal to the number of missing values, are then obtained with 
replacement from these residuals. The product of the design matrix of missing values by the 
vector of parameters from the fitted regression equation produces a vector containing the 
imputations. Finally, to produce MI, each of the M samples of simple residuals is added to 
the vector of imputations independently. A complete discussion of MI with linear models 
can be found in Di Ciaccio (2011) and van Buuren (2012). 

Taking all the above into account, we came up with two proposals for MI using 
GabrielEigen. Our first proposal is a two-stage procedure applied to the matrix X (n×p) with 
elements xij (i=1,...,n; j=1,...,p) that contain some missing values. In the first stage, the 
GabrielEigen algorithm is applied to obtain a completed matrix XG (n×p) 
(observed+imputed). In the second stage, random values are added to the imputations, i.e. 

( )tEWX
G

o+ , where W (n×p) is a indicator matrix of zeros and ones, with zero at the (i,j) 

position if that position corresponds to an observed value in X and one if the value is 
missing, “ o ” represent the Hadamard product and Et (n×p) is a matrix of random values 

with .,...,1 Mt =  

The options we considered for the matrix Et are as follows: 

i) Gnorm: Et is composed of random values from a )ˆ,0(
2

jN σ  distribution, where 2
ˆ jσ  is the 

estimated variance of column j of XG. This way of building Et was inspired by the work of 
Krzanowski (1988) who used, as initial imputations within an iterative scheme, the mean of 
the j-th column plus a random quantity having zero mean and variance equal to the 
estimated variance from only the observed values in j-th column. 
ii) Gadd: Et is composed of randomly chosen values with replacement from the set of 

residuals obtained after fitting an additive model ( )
ijjiij ebax +++= µ  to the matrix XG. 
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This way of building Et was inspired by the works of Denis and Baril (1992) and Arciniegas-
Alarcón et al. (2014b) who discussed the performance of imputed values from an additive 
model. 
iii) GLR: Et is composed of values chosen randomly with replacement from the set of 

residuals obtained from )(m
XX

G
− , where )(m

X corresponds to a lower-rank matrix, 

calculated by the SVD of XG using m components. This way of building Et was inspired by 
the work of Arciniegas-Alarcón et al. (2014a) who generalised for MI the simple imputation 
method based on the SVD for biplot analysis proposed by Yan (2013). 

Our second proposal consists of generating approximate confidence intervals for each 
missing value, calculating through cross-validation the associated imputation error using the 
GabrielEigen algorithm (Piepho 1995, Arciniegas-Alarcón et al. 2011, 2013). Once the 
confidence intervals have been obtained, M values within them are chosen randomly to 
produce MI. A formal statement of the method is as follows.  

Consider first the incomplete matrix X (n×p). One cell is deleted at a time from the 
observed elements in the matrix. The deleted value is imputed using GabrielEigen and the 
difference between the estimated and the actual value for the relevant cell is recorded. This is 
done for all the observed values and the average of the squared differences is denoted by D. 
D contains two components of variability, one due to predictive inaccuracy of the imputation 
and the other due to sampling error of the observed values. For this reason, D should be 

corrected by subtracting an estimate of the error of the mean (s2). The square root of (D–s2) 
may be taken as the imputation error (Ie) associated with GabrielEigen. 

So, if the imputation in the (i,j) position with GabrielEigen is denoted by ijx̂ , an 

approximate imputation interval is given by eij Izx α−±
1ˆ , where α−1z  is the appropriate point 

of the normal distribution for a confidence level of ( )%1 α− . In order to produce MI, M 

values are chosen randomly within the interval. 

For a 95% interval 96.11 =−αz , and the width of the interval is approximately 4Ie. We 

also wished to study the effect of decreasing the interval width to Ie and 2Ie, or equivalently 

with 5.01 =−αz  and 11 =−αz  representing 38% and 68% intervals respectively. The decrease 

in width reduces variability in the imputations, but may increase the risk of low quality in 
the multiple imputations. The methodology will be denoted GCV1, GCV2 and GCV4 
depending on the interval width producing MI. 

MI with GabrielEigen also requires specification of the number (m) of components to be 
retained in the SVD, and the number (M) of completed versions of the matrix X. Cross-
validation, rather than the criterion described in Step 3 of the original algorithm, was used to 
determine m by applying the process explained in Garcia-Peña et al. (2014) based on the 
cv.SVDImpute function from the imputation package of software R (Wong 2013, R Core Team 
2015). Typically, a small number of imputations (3 ≤ M ≤ 10) is necessary to obtain a good 
performance of MI (Ounpraseuth et al. 2012), so we decided to fix M=5 since this number 
achieves high statistical efficiency in many practical applications (van Buuren 2012).  

Note that the proposals Gnorm, Gadd, GLR, GCV1, GCV2 and GCV4 are, by 
construction, computationally less intensive than the MI proposal for GabrielEigen by 
Arciniegas-Alarcón et al. (2014c), which essentially consists of inserting multiplicative 
weights in the imputation equation. The selection of these weights requires double cross-
validation, so we did not include the method in our simulations on grounds of 
computational cost and efficiency. 

SIMULATION STUDY 

In order to develop a realistic simulation study we followed the protocol proposed by 
Yan (2013) to assess new imputation methods for (G×E) matrices. The steps are: 
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i) Choose real balanced data sets, or extract balanced subsets from incomplete G×E 
experiments. 
ii) In each set delete values randomly at different percentages. 
iii) Repeat the process for each percentage a large number of times (e.g. 1000). 
iv) Calculate in each repetition of the process a statistic to compare the imputations with the 
real values deleted. 

Three data sets were used in our simulation study. The first data set (Lavoranti et al. 
2007, Wright 2012), is a 20×7 matrix giving the mean tree heights (m) of 20 Eucalyptus grandis 
progenies assessed in 7 locations in the south and southeast regions of Brazil. The second 
data set (Yang 2007), is a 6×18 matrix giving the yield (Mg há-1) of 6 barley genotypes 
assessed in 18 environments in Alberta, Canada. The third data set (Rad et al. 2013) is a 36×6 
matrix giving the mean plant grain yield (gr) of 36 wheat genotypes assessed in 6 
environments under normal and drought stress conditions, in Experiments Farm of 
University Putra, Malaysia.  

The choice of data sets was based on a previous study that determined the number of 
multiplicative components necessary to explain the G×E interaction through an AMMI 
model (Gauch 1992, 2013). In each set the generalised cross-validation method proposed by 
Josse and Husson (2012b) and available in the FactoMineR package of the software R (Husson 
et al. 2014, R Core Team 2015) was applied. Table 1 presents the mean square error of 
prediction (MSEP) to choose the multiplicative components of the model. The best model is 
the one with lowest MSEP, so the best models for the eucalyptus data, for the barley data, 
and for the wheat data are AMMI1, AMMI2 and AMMI3 respectively. 
 
Table 1. Values of Mean Square Error of Prediction (MSEP) using generalised cross-
validation in choosing the AMMI model to explain the interaction in the original (complete) 
data matrices. 

  MSEP 

Model Eucalyptus Barley  Wheat 

AMMI1 0.5744 0.0502 5.08E-01 

AMMI2 0.5834 0.0463 1.21E-01 

AMMI3 0.6964 0.0584 6.85E-06 

AMMI4 0.8123 0.0853 9.03E-06 

AMMI5 1.1937 0.1565 1.50E-05 

AMMI6 1.8987     

 
The three data sets have different sizes and interaction structures, and are broadly 

representative of G×E experiments. For this reason, the conclusions that are derived from 
them should also be relevant to most other matrices of multienvironmental data. 

In each data set we deleted randomly 10%, 20% and 35% of values; the process was 
repeated 1000 times, giving a total of 9000 different incomplete data sets; for each one, the 6 
MI proposed methodologies were applied using code in the software R (R Core Team 2015). 

The chosen percentages and the value deletion mechanism have been fully justified in 
the literature. In (G×E) practice, generally the number of missing values is lower than 40% 
(Yan 2013) but anything under 10% would not benefit much from MI because simple 
imputation can provide fairly good results (Schafer 1999). Moreover, the value deletion 
mechanism represents common situations in agricultural experiments as, for example, the 
plants can be destroyed by animals, floods or during the harvest, and the yield 
measurements may be erroneously performed and introduced in the data base (Rodrigues et 
al. 2011). A discussion about the different mechanisms that can be simulated in (G×E) can be 
found in Paderewski and Rodrigues (2014) and Arciniegas-Alarcón et al. (2014c). 
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In Yan's protocol, the chosen statistic to compare the imputations with the deleted 

values was the prediction error ( eP ), defined as: 
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where MV is the true value, PV is the predicted value and NM is the total number of missing 
values. Pe is very useful in assessing simple imputation methods, but to assess the accuracy 
of MI strategies it is preferable to use the statistics Tacc, Vb and B introduced by Penny and 
Jolliffe (1999) and recently used by Bergamo et al. (2008) and Arciniegas-Alarcón et al. 
(2014a). 
 

Tacc is a measure of overall accuracy formed from the sum of the pooled variance 
between imputations within positions (Vb) and the mean squared deviation between the 
mean of the imputations and the corresponding original value deleted in the simulation 
study (B). These statistics are given by:  
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Here “na” is the total number of deleted values from the G× E matrix, and deleted  

value l  has position (i, j) in the matrix, i.e. in the i-th row and the j-th column. M is the 

number of imputations for the missing value l , ( )qijx̂  is the q-th imputation for that value 

according to the proposed methods, lX  is the mean of the imputations produced for the 

missing value l  and lVO is the original value l  in the complete original data set.  

In this study, all three statistics will be analysed, but the final decision to choose the best 
MI system will be based on Tacc. If Vb is too large, then the method may not be very reliable, 
but a small value for this variance does not necessarily mean that the imputation method is 
good, because the imputation may be biased. A good imputation method will be one with 
small B, as otherwise the imputations differ substantially from the observed data set. Ideally, 
an imputation method is required with small values for both Vb and B, which together imply 
a low value for Tacc (Penny and Jolliffe 1999). 

RESULTS 

EUCALYPTUS DATA 

Table 2 shows the mean and median of Vb, B and Tacc for the different percentage of 
values deleted randomly (10, 20 and 35%) for the eucalyptus data set. The smallest variance 
at all percentages was always obtained with GCV1, which was as expected within the 
schemes that involved the calculation of approximate confidence intervals for the 
imputations. GCV1 was also better than all methodologies which added random error to the 
imputation initially produced by GabrielEigen, namely Gnorm, Gadd and GLR. On the other 
hand, the algorithm that maximised Vb in all the cases was Gnorm. It is worth noting the 
performance of GLR, because it provided, at all percentages, smaller variances than GCV4, 
i.e. using 95% confidence intervals. 

In the same data set, the lowest bias (B) was obtained with GCV1 at all the percentages. 
This is an interesting result, because it was expected that decreasing the width of imputation 
intervals would increase the value of the B statistic. Thus simple imputations with 
GabrielEigen are of high quality, as incorporating variability to produce MI does not require 



García-Peña et al. – Mult iple imputat ion procedures us ing the GabrielE igen algor ithm 

 

155

a very large interval width. The algorithms with more biased imputations, maximizing B, 
were Gnorm and GCV4. The GCV2 algorithm was less biased than GLR and Gadd at low 
rates of missing values (10 and 20%), but when imputing 35% of the data, the situation 
changed and the GLR algorithm had a lower bias than Gadd and GCV2 respectively (Table 2). 
 
Table 2. Means and medians of pooled variance between imputations (Vb), mean square 
deviation (B) and measure of overall accuracy (Tacc) at different percentages of values deleted 
randomly in 1000 simulations from eucalyptus data set. 

Method 10% 20% 35% 

  Mean Median Mean Median Mean Median 

Vb 

Gnorm 1.2208 1.1908 1.1318 1.1162 0.9752 0.9668 

Gadd 0.4107 0.4033 0.3665 0.3604 0.3025 0.3003 

GLR 0.3966 0.3895 0.3543 0.3488 0.2929 0.2905 

GCV4 0.8606 0.8627 0.8831 0.8808 0.9665 0.9647 

GCV2 0.2241 0.2246 0.2299 0.2293 0.2516 0.2511 

GCV1 0.0560 0.0561 0.0575 0.0573 0.0629 0.0628 

 
B 

Gnorm 1.2700 1.1868 1.2800 1.2464 1.3343 1.3169 

Gadd 1.0640 1.0203 1.0908 1.0607 1.1612 1.1391 

GLR 1.0591 1.0184 1.0892 1.0656 1.1594 1.1404 

GCV4 1.1779 1.1115 1.2326 1.2068 1.3493 1.3172 

GCV2 1.0240 0.9577 1.0665 1.0378 1.1732 1.1468 

GCV1 0.9843 0.9237 1.0217 1.0022 1.1272 1.1080 

 
Tacc 

Gnorm 2.4908 2.3993 2.4119 2.3917 2.3095 2.2950 

Gadd 1.4747 1.4331 1.4573 1.4236 1.4637 1.4370 

GLR 1.4556 1.4081 1.4435 1.4161 1.4523 1.4267 

GCV4 2.0385 1.9977 2.1157 2.0921 2.3158 2.2871 

GCV2 1.2480 1.1843 1.2964 1.2787 1.4248 1.3942 

GCV1 1.0403 0.9822 1.0792 1.0585 1.1901 1.1669 

 
Finally, turning to the statistic Tacc (Table 2 and Figure 1), the best method in all the cases 

was clearly GCV1, followed by GCV2. At all percentages, the algorithms with lowest 
performance (maximizing Tacc) were Gnorm and GCV4, while the Gadd and GLR methods 
were poorer than GCV1 or GCV2 but better than Gnorm and GCV4.  
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Figure 1. Box plot of the measure of overall accuracy Tacc distribution for the six algorithms 
in eucalyptus data set. 
 

BARLEY DATA 

Table 3 shows the mean and median of Vb, B and Tacc for the different percentages of 
values deleted randomly (10, 20 and 35%) for the barley matrix. In the same way as for the 
eucalyptus data simulations, Vb was always minimised by GCV1 and maximised with 
Gnorm and GCV4. The main difference from the eucalyptus data was shown by the GLR and 
GCV2 methods at 35% imputation, where GLR had an average variance equal to 0.0824 
while with GCV2 the value was 0.0975. This means that in terms of variation between 
imputations, GLR was better at the higher missing percentages than the algorithms using 
intervals of width 2Ie (68% confidence) and 4Ie (95% confidence).  

As regards similarity with the original data, the least biased method was again GCV1, 
while the most biased imputations were produced by Gnorm and GCV4. It is worth noting 
that in the case of the B statistic at 35% imputation, Gadd and GLR had better performance 
than GCV2 and GCV4. 

To make a definite decision about the MI algorithms we used the measure Tacc. The 
distributions shown in Figure 2, clearly identify the poorest methods, Gnorm and GCV4, but 
the box plot does not show efficiently the differences between the others. Therefore, to 
choose the best method, we used the means and medians of the distributions (Table 3). 

These statistics establish that Tacc was minimised at all the imputation percentages by 
GCV1 but GLR, Gadd and GCV2 give different results depending on the imputation 
percentage: for 10 and 20%, GCV2 is better than GLR and Gadd, but when the imputation 
increases to 35%, the opposite occurs. 
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Table 3. Means and medians of pooled variance between imputations (Vb), mean square 
deviation (B) and measure of overall accuracy (Tacc) at different percentages of values deleted 
randomly in 1000 simulations from barley data set. 

Method 10% 20% 35% 

  Mean Median Mean Median Mean Median 

Vb 

Gnorm 4.1148 4.0170 4.0525 4.0235 3.9476 3.9362 

Gadd 0.1287 0.1248 0.1166 0.1140 0.1036 0.1005 

GLR 0.1094 0.1072 0.0966 0.0944 0.0824 0.0799 

GCV4 0.2528 0.2525 0.2717 0.2681 0.3747 0.3444 

GCV2 0.0658 0.0657 0.0707 0.0698 0.0975 0.0897 

GCV1 0.0165 0.0164 0.0177 0.0174 0.0244 0.0224 

B 

Gnorm 1.3578 1.2488 1.3401 1.2910 1.4156 1.3751 

Gadd 0.3262 0.2952 0.3420 0.3304 0.4435 0.3906 

GLR 0.3216 0.2909 0.3366 0.3240 0.4379 0.3849 

GCV4 0.3585 0.3326 0.3838 0.3696 0.5241 0.4657 

GCV2 0.3109 0.2881 0.3331 0.3220 0.4527 0.3947 

GCV1 0.2982 0.2740 0.3195 0.3098 0.4332 0.3753 

 
Tacc 

Gnorm 5.4725 5.3720 5.3926 5.3543 5.3632 5.3310 

Gadd 0.4550 0.4246 0.4586 0.4474 0.5471 0.4857 

GLR 0.4310 0.3996 0.4332 0.4202 0.5204 0.4632 

GCV4 0.6113 0.5960 0.6555 0.6458 0.8988 0.8037 

GCV2 0.3767 0.3562 0.4038 0.3940 0.5503 0.4835 

GCV1 0.3147 0.2926 0.3372 0.3276 0.4576 0.3988 

 

 
Figure 2. Box plot of the measure of overall accuracy Tacc distribution for the six algorithms 
in barley data set. 
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WHEAT DATA  

Table 4 shows the mean and median of Vb, B and Tacc for the different percentages of 
values deleted randomly (10, 20 and 35%) for the wheat data. The mean and median of 
variances between imputations was maximised in all the cases by Gnorm and Gadd, and 
minimised by GCV1. Of the remaining methods we can highlight GLR, because although it 
always had average variances higher than GCV1, it had smaller values of Vb when compared 
with GCV4 and GCV2 at 20 and 35% imputation.  

The greatest similarity between imputations and the artificially deleted data (B) was 
again obtained with GCV1, while the most biased imputations were produced by Gnorm 
and Gadd. At 10 and 20% imputation GCV2 was less biased than GLR and GCV4, but at 35% 
GLR had a smaller bias than GCV2 and GCV4 (Table 4). 
 
Table 4. Means and medians of pooled variance between imputations (Vb), mean square 
deviation (B) and measure of overall accuracy (Tacc) at different percentages of values deleted 
randomly in 1000 simulations from wheat data set. 

Method 10% 20% 35% 

  Mean Median Mean Median Mean Median 

Vb 

Gnorm 3.4515 3.3803 3.3063 3.2894 2.9553 2.9420 

Gadd 1.1222 1.1121 1.0705 1.0711 0.8622 0.8418 

GLR 0.1569 0.1538 0.1775 0.1371 0.3830 0.4643 

GCV4 0.5291 0.5262 0.7875 0.6495 1.9316 2.1086 

GCV2 0.1396 0.1382 0.2092 0.1725 0.5044 0.5477 

GCV1 0.0349 0.0345 0.0523 0.0431 0.1261 0.1369 

B 

Gnorm 1.4275 1.3556 1.6873 1.5333 2.6444 2.7064 

Gadd 0.8454 0.8056 1.1299 0.9427 2.1137 2.2425 

GLR 0.6149 0.5760 0.9051 0.7087 1.9978 2.1813 

GCV4 0.6882 0.6658 0.9964 0.8255 2.3452 2.4887 

GCV2 0.6015 0.5644 0.8773 0.7015 2.0075 2.1847 

GCV1 0.5756 0.5361 0.8375 0.6676 1.9188 2.0821 

 
Tacc 

Gnorm 4.8789 4.8259 4.9936 4.9257 5.5997 5.5426 

Gadd 1.9676 1.9389 2.2004 2.0546 2.9759 3.0199 

GLR 0.7719 0.7333 1.0827 0.8406 2.3808 2.7326 

GCV4 1.2173 1.1888 1.7839 1.4787 4.2767 4.7226 

GCV2 0.7411 0.7068 1.0865 0.8880 2.5119 2.7580 

GCV1 0.6105 0.5681 0.8898 0.7189 2.0449 2.2325 
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 Figure 3. Box plot of the measure of overall accuracy Tacc distribution for the six algorithms 
in wheat data set. 
 

As before we present summaries for Tacc in Figure 3 and Table 4. Based on the box plot it 
is possible to place the algorithms into low and high performance groups. The high 
performance group contains GCV1, GCV2 and GLR and in the low performance group are 
GCV4, Gadd and Gnorm. In the high performance group, GCV1 always had the best results 
minimising Tacc. On the other hand, although never better than GCV1, the performances of 
GCV2 and GLR depended on the imputation percentage. For instance, GCV2 had lower Tacc 
values than GLR with 10% randomly deleted values, but GLR had better performance than 
GCV2 at 20% and 35% imputation. 

A DIFFERENT SITUATION: MISSING VALUES NOT AT RANDOM 

The MI systems proposed in this study do not depend on any structural assumptions 
but Bello (1993) warns that this lack of assumptions does not imply robustness and in some 
cases may produce unexpected results. The different structures can be caused by different 
mechanisms of missing data (Little and Rubin 2002, Paderewski and Rodrigues 2014) and in 
G×E experiments it is possible to find situations with missing values not at random 
(MNAR). For example, incomplete matrices with systematic patterns can arise because over 
the years new reference genotypes are included and some others are disregarded (Denis and 
Baril 1992). 

To assess how missing values not at random affect the MI methodologies here proposed, 
we considered again the complete matrices of eucalyptus, barley and wheat, but differently 
from the previous simulation study as missing values were created systematically once only. 

For each of the matrices, a third of the genotypes were deleted in each environment. The 
genotypes belonging to the third with least height were deleted in the eucalyptus data and 
the third with lowest yield were deleted in the barley and wheat data sets (personal 
communication of W. Yan 2014). Therefore, in the eucalyptus data we had 49 missing values 
(35%), resulting in a total loss of a genotype, while in the barley matrix there were 36 missing 
values (33.33%) and 72 missing values in the wheat matrix (33.33%). In the case of the wheat 
matrix, the arbitrary deletion resulted in the total loss of five genotypes. Once we had the 
incomplete matrices, the MI methods were applied and the corresponding statistics Vb, B and 
Tacc were calculated. The results are shown in Table 5. 
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Table 5. Vb, B and Tacc statistics after one deletion not at random in the eucalyptus, barley and 
wheat matrices. 

  Eucalyptus 

Method Vb B Tacc 

Gnorm 0.3141 4.7464 5.0606 

Gadd 0.1647 4.7218 4.8864 

GLR 0.1628 4.7136 4.8764 

GCV4 0.4269 4.7016 5.1284 

GCV2 0.1172 4.6887 4.8059 

GCV1 0.0271 4.7077 4.7348 

 
Barley 

Method Vb B Tacc 

Gnorm 3.9782 1.5779 5.5561 

Gadd 0.0879 0.4797 0.5676 

GLR 0.0862 0.4302 0.5163 

GCV4 0.2576 0.5354 0.7930 

GCV2 0.0806 0.4437 0.5244 

GCV1 0.0184 0.4454 0.4638 

 
Wheat 

Method Vb B Tacc 

Gnorm 0.6643 14.2154 14.8797 

Gadd 0.5055 13.7940 14.2996 

GLR 0.0021 14.0732 14.0753 

GCV4 0.3224 13.9020 14.2244 

GCV2 0.0845 13.9838 14.0683 

GCV1 0.0187 14.0694 14.0881 

 
In the eucalyptus data set, the least biased imputations (B) were produced by GCV2, 

while the most biased imputation system was Gnorm. However, the smallest variance 
between imputations (Vb) was obtained with GCV1 and the biggest with Gnorm. The 
measure of overall accuracy Tacc indicates that the best method was GCV1 and to explain this 
result note that although GCV1 did not have the best performance in terms of similarity with 
the original values deleted, it offset this situation by having high accuracy (minimising Vb). 

In the barley data, again the best MI method according to Tacc was GCV1. As happened 
in the eucalyptus data set, GCV1 had a poorer performance than GLR and GCV2 in terms of 
imputation bias, but none of them outperform it in terms of the variability of mean imputed 
values. The method with poorest performance was again Gnorm (Table 5). 

Up to this point, the results with missing values not at random did not differ much from 
those obtained in the simulation study, but the wheat data set proved to be the exception. In 
this case GCV1, which previously was best because it minimised the imputation bias and/or 
minimised the variance Vb, was outperformed by GCV2 and GLR respectively, using Tacc as 
evaluation criterion. Here, GLR minimised Vb, and all the systems except Gnorm and GLR 
had greater similarity with the original values (B) than GCV1 (Table 5). 
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DISCUSSION AND CONCLUSIONS 

We have fulfilled our objective of producing multiple imputation systems using the 
GabrielEigen algorithm, and have shown GCV1 to have the best performance on (G×E) 
matrices that had simple (eucalyptus), moderate (barley) and complex (wheat) interaction 
structure.  

The second best is either GCV2 or GLR, but their ordering depends strongly on the 
interaction structure and the imputation percentage. GLR has the better performance when 
the missing values percentage is high (~35%) and the interaction structure is moderate or 
complex, but in other cases it may be preferable to use GCV2. 

In the case of systematic occurrence of missing values, our results showed that GCV1 
was again the best for the simple and moderate interaction matrices, but GLR and GCV2 
performed better when used on a complex interaction matrix. However, this is an area for 
more detailed future studies and practical recommendations. The systematic deletion was 
carried out only once in the wheat matrix, but to confirm the robustness of GCV1 to missing 
values not at random in complex interaction structures would require additional research, 
with simulations that can use the procedure proposed here to generate MNAR in G×E 
experiments. Our recommendation in this case is to use all three algorithms GCV1, GCV2 
and GLR and to assess them on any particular data set using the statistics here presented. 

The simulation study presented in this work was done from a complete data set, but the 
applied researcher may wish to conduct a similar study on an incomplete matrix. In order to 
do this, we suggest the methodology described by Arciniegas-Alarcón et al. (2016): delete 
randomly some of the entries of the matrix (for example, between 10% and 30%), apply the 
imputation algorithms, and calculate the statistic of comparison (for instance, Tacc). Repeat 
the deletion process (for example, 100 times), calculate the mean or median of all the values, 
and the method with the lowest mean or median is the recommended method.  

The strategy of constructing confidence intervals for the imputations using cross-
validation was successful, but a point to highlight is that the 95% confidence intervals 
traditionally used in statistics have not provided the best results. Finally, the computational 
aspect in this study was not a problem, but if the analysed matrices are larger then “k-fold” 
cross-validation could be considered instead of “leave-one-out” as described in James et al. 
(2013).  
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