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When facing a proposition, the brain straightforwardly understands its grammar and discriminates whether it is true or
false.  Unlike computers, the brain is able to identify signs of sequences in terms of both syntactic symbols and
semantic meaning.  We show, based on the current literature, that a testable algebraic topological approach gives
helpful  insights into brain’s computational activity during semantic recognition.  Indeed, recent suggestions allow us to
hypothesize that the semantic properties of a proposition are processed in brain dimensions higher than the syntactic
ones.  Furthermore, we show how, in a fully reversible process, the syntactic elements embedded in Broca’s area might
project to scattered semantic cortical zones, where the presence of higher functional dimensions gives rise to an increase
in proposition’s information content.    Taking into account the dictates of novel versions of the Borsuk-Ulam and the
fixed-point theorems, we build a  framework that provides a feasible explanation for semantics processing in the brain,
and also paves the way to novel computers which nodes are built in higher dimensions.
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Syntax assesses the relationships among the elements of linguistic expressions (Carnie, 2006).  A property relative to a
proposition is syntactic if it depends just on the symbols by themselves.  In philosophical language, syntax stands for
grammar, which includes also phonology and orthography, e.g., sounds, spellings and so on (Martinich, 1996).  In
mathematical logic, a concept related to a symbols sequence is syntactic if it depends just on the symbols forming the
sequence, not taking into account the meaning.  The ambiguous term meaning will  stand  here  for  the  truth  or  the
falseness of an expression or a sequence of symbols. On the other side of the coin, semantics assesses the relationships
between expressions and extra-linguistic truths (Nerbonne, 1996; Cruse, 2004).  A property relative to a proposition is
semantic if it depends on the meaning, e.g., if the proposition is true or false.  In philosophical language, semantics
stand for the study of the meanings of linguistic expressions.   A concept related to a symbols sequence is semantic if it
depends on the meaning transmitted by the sequence.
While syntactic properties are algorithmically verifiable by computers, semantic ones are not, because the latter are
based on the notion of truth, a task that cannot be pursued by current computers.  Furthermore, Godel’s first
incompleteness theorem (Godel, 1931) demonstrates that, if we limit ourselves to syntactic approaches, we will never
be able to reach truths.  To make an example, Godel states that the phrase: “this enunciate is not demonstrable” could be
either a) false, and in this case it absurd, because is false and demonstrable, b) or could be true, and is this case is not
demonstrable.  Given a group of arithmetical axioms, there is always a true arithmetic proposition that cannot be
demonstrated starting from the axioms, if we admit just the syntactic methods dictated by the Hilbert’s program
(Mancosu, 1998). Therefore, syntactic methods are inadequate in order to understand the whole properties of the same
model that we easily understand through semantics.  In sum, while the human brain is able to grasp the semantic notion
of truth, the latter cannot be verified by computers. Furthermore, Godel’s second incompleteness theorem states that is
not possible to verify the truth of a group of arithmetic axioms (Godel, 1931).  Such problem might be overtaken,
because every true arithmetic proposition can be demonstrated starting from Peano axioms (Segre 1994), which use
semantic methods. However, we cannot never be sure that the semantic methods we used were truthful.  The existence
of  axioms  is  based  on  our  extremely  questionable  intuition  that  such  axioms  are  true.   Therefore,  if  we  use  just  the
unquestionable and consistent syntactic methods, as proposed by Hilbert, we cannot proof all the truths.  Vice versa, if
we rather use the uncertain semantic methods, we could possibly know all the arithmetic truths, but we cannot be sure
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that such methods are correct.  Here we propose a topological computational method able to throw a bridge between
syntactic and semantic expressions, in order to overtake the Godel’s incompleteness theorems and to build semantics-
solving machines.

METHODS

StringBUT.  Here we introduce a string-based extension of the Borsuk-Ulam theorem, denoted strBUT (Peters and
Tozzi, 2016a).  The Borsuk-Ulam Theorem (BUT) states that a single point on a circumference maps on a sphere to two
points equipped with matching description.  For technical readers, see: Borsuk (1933), Matousek (2003), Crabb and
Jaworowski (2013), Peters (2016), Peters and Tozzi (2016b), Tozzi and Peters (2016a). Continuous projections from an
n-dimensional sphere to a n-dimensional Euclidean space lead to a string-based incarnation of the BUT.  We consider a
geometric structure that has the characteristics of a string.  By definition, a string on the surface of an n-sphere is a line
that represents the path traced by a particle moving along its surface.  In an abstract geometric space, a string, also
termed worldline (Olive, 1987; Olive and Landsberg, 1989) stands for a region of space with either bounded or
unbounded lengths. In evaluating a string-based BUT, we take into account antipodal sets instead of antipodal points
(Petty, 1971). Indeed, in a point-free geometry (Di Concilio, 2013; Di Concilio and G. Gerla, 2006), regions replace
points as the primitives.  If we assess a worldline in terms of a spatial region on the surface of an n-sphere, or in an n-
dimensional normed  linear space, strings can be defined as antipodal (Figure 1). Strings are antipodal, provided the
regions encompassing the strings belong to disjoint parallel hyperplanes: put simply, they have no points in common.  A
region is called a worldsheet if that everyone of its subregions contains at least one string. In other words, the term
worldsheet designates a nonempty region of a space completely covered by strings, in which every member is a string.
A  2d  plane  worldsheet  can  be  rolled  up  to  form  the  lateral  surface  of  a  3d  cylinder,  termed  a  worldsheet  cylinder.
Further, a worldsheet cylinder maps to a worldsheet torus, formed by bending the former until the ends meet  (Figure
1).  In sum, a flattened worldsheet maps to a worldsheet cylinder and a flattened worldsheet cylinder maps to
worldsheet torus.  It means that a bounded worldsheet cylinder is homotopically equivalent to a worldsheet torus.  The
strings on different wordsheets are antipodal and descriptively near, e.g., they share matching description.  There is
however a difference between the strings embedded in wordsheets of diverse dimensions.   The higher the dimension of
the wordsheet, the more the information encompassed in strings on the same region, because of the higher number of
coordinates. Strings contain more information than their projections in a lower dimensions.  It means that strBUT
allows us to evaluate systems features in higher dimensions, in order to increase the amount of detectable information.
To make an example, you might extract the three-dimensional shape of a cat, just looking at its shadow.  Vice versa,
dropping down a dimension means that each point in the lower dimensional space is simpler.  In sum, strBUT provides
a way to evaluate changes of information in a topological, other than thermodynamical, fashion.
Now  a  problem  arises.  Take  the  example  of  a  string,  say  str1,  on  a  n  manifold  (say  a  2D  worldsheet).   Such  str1  is
antipodal to str2, e..g. the string embedded on a n+1 manifold (say a 3d worldsheet rolled up into a cylinder).  Hovever,
for  the  classical  BUT,  it  must  exist  on  the  worlsheet  cylinder  ALSO  another  string,  say  str3,  which  has  matching
description with str2.  This is because, as BUT dictates, going one dimension higher, a single feature needs to project to
TWO matching features.  It means that a projection mapping contains multiple mappings in higher levels.
Brouwer’s fixed point theorem.  Next, consider Brouwer’s fixed point theorem (FPT) (Brower, 1906). In simple
words, every continuous function from a n-sphere of every dimension (e.g. a disk, or a ball) to itself has at least one
fixed point.  FPT applies, for example,  to any disk-shaped area, where it guarantees the existence of a fixed point,
which behaves like a sort of whirlpool attracting moving particles.  Su (1997) gives a coffee cup illustration of the FPT.
No matter how you continuously slosh the coffee around in a coffee cup, some point is always in the same position that
it was before the sloshing began. And if you move this point out of its original position, you will eventually move some
other point in the sloshing coffee back into its original position.  In strBUT terms, it means that we can always find a n-
sphere  containing  a  string.   Also,  each  string  has  a  particular  shape  and  come  together  with  another  string,  which  is
termed a wired friend.  These observations lead to a wired friend theorem: every occurrence of a wired friend string
with a particular shape on the structure Sn maps to a fixed description, e.g. another string that belongs to another
structure. Every wired friend is recognizable by its shape, because the shape of a string is the silhouette of a wired
friend string.  We achieve a maps of wired friend strings, projecting from the 2D wordsheet, to the cylinder wordsheet,
to  the  woldsheet  torus.  In  sum,  we  can  always  find  a  structure  containing  a  string  which  is  a  description  of  another
string in a lower dimensional structure, and vice versa. In the next paragraphs we will discuss how this theorem has
important consequences in the study of syntactic and semantic brain processing.
When topology meets logic. In this section, a sample application of strBUT and FTP is given in terms of syntactics
and semantics. We hypothesize that the syntactic elements of a language lie on a n-manifold, while the semantic ones
lie on an n+1 manifold. A syntactic proposition becomes semantic when brain mechanisms projects the former one
dimension higher, and vice versa.  In logical terms, we may state that p=q is syntactic, while (p=q)n+1 is semantic.  The
higher dimension stands for the truth function, e.g., whether a proposition in true or false.  To make an example,
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consider the syntactic preposition: “the-skin-is-tender” and the semantic one, equipped with a truth value of TRUE (or
YES):  “the  skin  is  tender”.  The truth value, of course, could be FALSE (or NOT), in case of a disease affecting the
skin. We write (the-skin-is-tender)n  and (the skin is tender)n+1, where n stands for the abstract dimensions in which the
proposition is embedded.  The two prepositions also stand for two groups, where the n+1 group encompasses the n-
group.  The n+1  group, equipped with a truth function (YES and NOT), cannot be fully detected if we just look at the
n-group, because the latter displays less dimensions.  A part of information is lost in syntactics, due to the lower number
of coordinates. It means that the whole semantic group can be assessed just in case we are in dimensions higher that the
syntactic ones.  In topological terms, syntactic operations take place when strings, e.g, linguistic prepositions, are placed
in a 2D wordsheet, while semantic operations take place when strings are placed in wordsheet cylinders and toruses
lying in higher dimensions.  Therefore, a group equipped with the further dimensions of TRUE or FALSE is formed
through a projective, continuous mechanism (Figure 1B).
For the classical BUT, semantic elements encompass not just one, but two antipodal strings, equipped with matching
description.  Such framework will be useful in the next paragraphs, when we will assess the cortical counterparts of
propositions.   Are there differences between the two points lying in higher dimensions and the single, lower-
dimensional point?  The foremost distinction is that the two antipodal points, lying one dimension higher, form a group
by themselves.  It means that semantic processing can be studied just in a context equipped with dimensions higher than
syntactic symbols.  Furthermore, when n increases, syntactic structures can be compared with models existing one
dimension higher.   What does the dimension n stand for?  The n exponent might simply stand for a further spatial brain
dimension.  In this case, computers equipped with nodes endowed in higher spatial dimensions might be able to
understand semantics.

Figure 1A. String mappings according to StrBUT.  A string (blue spot) maps to higher dimensions, from 2D sheets to
3D cylinders or toruses.  The strings in the three different structures are equipped with matching description and are
thus said to be antipodal.  Note that, for the classical BUT, a single string in the 2D sheet maps to two opposite strings
on the 3D structures.
Figure 1B.   Syntactic  and  semantic  counterparts  of  strBUT.   On  the  left,  the  blue  spot  stands  for  a  bidimensional
syntactic construct.  Going one dimension higher, we achieve a third dimension.  This further dimension stands for the
semantic concept of truth value (YES or NO).  In sum, strings gain novel information when projected into higher-
dimensional structures.
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RESULTS

In touch with predictions from the above mentioned linguistic-topological model, we hypothesize that our brain
processes syntactic and semantic elements through a change in functional or spatial dimensions.  The syntactic
processing that occurs at one level of brain activity is projected to a higher level, giving rise to semantic recognition,
which encompasses more information.  In the next paragraphs, taking into account the recent literature, we will go
through possible physical brain counterparts.
Brain dimensions.  In the novel framework, syntax displays less dimensions than semantics in the central nervous
system, so that semantic inputs have increased complexity.  The first step is to evaluate whether the brain encompasses
different dimensions.  The term brain dimension may reflect either functional activity, or anatomical connections
between cortical areas.    The functional approach, based on complex network analysis of brain signals, assesses neural
space’s multidimensionality in a brain conceived as a complex dynamical system (Kida et al, 2016; Giusti et al., 2016;
Simas et al., 2015).   It allows us to describe nervous dynamics as vectors or tensors in pluri-dimensional phase spaces.
Apart from the canonical three dimensions, the technique is also able to assess other neural features, such as, e.g.,
frequency and magnitude, each one standing for other possible dimensions (Kida et al, 2016).
The anatomical approach to brain dimensionality evaluates cortical locations.  Tozzi and Peters (2016a; 2016b) recently
suggested that brain trajectories might display four spatial dimensions, instead of the canonical three, during cortical
spontaneous activity.  Such trajectories can be described in terms of torus-shaped structures.  Stemmler et al. (2015)
showed how animals can navigate by reading out a simple population vector of grid cell activity across multiple spatial
scales.   It means that the behavior of population vectors, each one lying in different anatomical dimensions embedded
on functional toruses, predicts neural and behavioral correlates of grid cell readout.  Benson et al. (2016) developed an
algorithmic framework for studying how complex networks are organized by higher-order connectivity patterns,
revealing hubs and geographical elements not readily achievable by other methods.  They showed that information
propagation units exhibit rich higher-order organizational structures. In such a vein, Kleinberg et al. (2016) recently
proposed that real networks are not just random combinations of single network layers, but are instead organized in
specific ways dictated by hidden geometric correlations between layers, which allow the detection of multidimensional
communities. Crucial for our strBUT arguments, such multidimensionality enables trans-layer link prediction, in order
that connections in one layer can be predicted by observing the hidden geometric space of another  (Kleineberg et al,
2016).
Localizations.  The brain localizations of syntactic and semantic processing described in literature seem to confirm our
topological framework.  The left anterior language areas, e.g. Broca’s area (left Brodmann area 44), is crucial for
syntactic processing in speech production and perception (Skeide and Friederici, 2016; Stromswold et al, 1996), despite
the wide variability between individuals and the presence of diverse circuits, not dedicated just to a single kind of
linguistic information processing (Sahin et al., 2009).  While syntax seems to be localized in relatively fewer and
smaller brain areas,  semantics is instead scattered throughout vaste areas of the cortical surface (Huth et al, 2016). It is
in touch with a model encompassing StrBUT and the fixed-point theorem, which regards semantic concepts as multiple
antipodal strings on a torus surface and  syntactic concepts as single strings located in specific brain zones (Figure 2).
It also means that syntactic elements lie on brain dimensions higher than syntactic ones.
According to strBUT dictates, single strings grasp less information than their matching descriptions embedded in higher
projections.  Note also that semantic information is not aggregated, rather it is scattered in the brain.  Syntactic symbols
stand for single sets of objects, while semantic meanings for numerous sets of objects with matching description.
Recent suggestion let us hypothesize that, during human brain development, semantic processes precede syntactic ones.
Indeed, Skeide and Friederici (2016) demonstrated in children a slow developmental segregation of syntax from semantics. The
human embryo can already distinguish vowels in utero, but grammatical complexity is usually not fully mastered until
at least 7 years.  In the first three years, children rapidly acquire bottom-up processing skills, primarily implemented in
the temporal areas.  In a further stage, until the adolescence, top-down processes emerge gradually with the increasing
structural connectivity of the left inferior frontal cortex.  It means that childen are equipped with more semantics than
adults, in touch with the hypothesis of decrease of functional brain dimensions with time passing.  In a topological
framework, it might be hypothesized that the FPT holds with time passing, leading to convergence of semantic concepts
into fully developed syntactic ones.
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Figure 2.  Semantic and syntactic brain activity in a topological framework. Mappings occur among brain regions
which are temporarily equipped with different functional dimensions.  According to the strBUT dictates, higher
dimensional activities lie on a wordsheet torus, where scattered antipodal strings stand for the cortical areas activated
during semantic activity. On the other side, syntactic processes lie on a 2D wordsheet, where the movements of the
more localized strings endowed in the Broca’s area are dictated by the FPT.  Note that the process is full reversible,
depending on the direction of the continuous mapping from one dimension to another.

DISCUSSION

We showed how semantic and syntactic brain abilities can be investigated in terms of algebraic topology, in particular
through strBUT and FPT.  Our data gave some understanding of how the connectivity among the brain active centres
might  change  during  syntactic  or  semantic  inputs.   These  findings  pave  the  way  to  novel  computational  and  logic
approaches to brain functions.  Semantic concepts are based on the notion of truth; consequently, computers which
carry inputs just on a 2D surface cannot evaluate whether a preposition is true or false. Despite massively parallel
computers have become available (Angel and Leong, 2014), such kind of multidimensionality does not tackle the long-
standing problem of semantics.  Indeed, current multidimensional efforts just concern either access methods, in which
sets of multidimensional points give computers support at the physical level (Gaede and Günther, 1998), or digital
signal processing (Pastizzo et al, 2002) and data sampling (Mersereau and Speake, 1983).    Multiple dimensions are
merely used as representational devices for data analysis, limiting the potential of the current artificial intelligence
studies. The fact that brain nodes can be embedded in higher dimensional spaces suggests the possibility to build
computers equipped with pluridimensional nodes endowed in 3D geometric spaces.  Indeed, a computer can be
hypothesized having connections that are topologically 4D, even if embedded in a simple 3D space. Such computers,
implemented in ordinary 3D space, but equipped with nodes with the same number of neighbors as a points in a 4D
cube, could be able to perform semantic operations, due to the more degrees of freedom.  Recent studies explored this
approach.  For example, Ursino et al. (2009; 2010; 2011; 2014) investigated how complex semantics can be extracted
from the statistics of input features, using attractor neural networks. They focused on how similarity among objects,
feature dominance and distinctiveness can be naturally coded using Hebbian training. Their model includes a lexical
network, representing word-forms, and a semantic network composed of several areas, each one coding for a different
feature. They use a simple taxonomy of schematic objects, i.e., a vector of features, with shared features (categories)
and distinctive features (individual members) (Ursino et al., 2014).  However, their framework differs from ours,
because the former takes into account the hypothesis, opposite to ours, that concepts are represented in memory as a
collection of features that shrinks the sum of previous sensory, motor and emotional experiences.
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In logic, our framework elucidates several previous suggestions by various Authors. Hilbert’s program states that every
true proposition must be demonstrated starting from one of the available axioms.  Except for the axioms, no other
proposition can be considered true by itself, but must be necessarily assessed through algorythms and computational
processing. It means that a demonstrable proposition is syntactic, because it could be verified by inspecting every
symbol, with no need to keep into account its meaning.  However, the Godel’s first incompleteness theorem states that,
given a group of arithmetical axioms, there will always be a true arithmetic enunciate that cannot be demonstrated
starting from the axioms, if we just admit the methods suggested by the Hilbert’s program.  The theorem states that, if
we limit ourselves to syntactic methods of reasoning, there will always be truths that are not accessible to us.  Syntactic
methods are inadequate in order to understand all the properties of an otherwise semantically understandable model.  To
make an example, our mental model of natural numbers cannot be completely characterized through syntactic methods.
Furthermore, how can we be sure that all the axioms are true?  Their truth depends just on the discourse universe,
because the concept of truth has to do with semantics. According to formalists, axioms are indeed just starting points of
linguistic jokes (Wittgenstein, 1953): the choice of an axiom looks like writing the rules of a table game.  Therefore,
every proposition, even if entirely false, is theoretically demonstrable, if we start from an erratic group of axioms.  Our
topological model sheds new light on some of these issues.  While Hilbert describes real objects in terms of
mathematical axioms, we describe them in terms of projections and mappings.  Maps from the lower syntactic
dimensions to the higher semantic ones ride out the caveats cast by Godel’s theorems.  In a language, paraphrasing
Charles Ball, groups of words and expressions are correlated both with their shapes and meanings, which pertain to the
same conceptual sphere, but to different dimensions.  We could imagine that syntax works with individual symbols,
while semantics works instead with groups of symbols.
For sake of brevity, here we did not tackle the issue of the third linguistic subfield (together with syntax and semantics),
e.g., pragmatics, that investigates the ways in which context and use contributes to meaning (Mey 2001).  However, our
data pave also the way to a forthcoming interpretation of pragmatics, in terms of dimensions even higher than the
semantic ones.  We would like to bring to an end with a few excerpts from Wittgenstein’s Philosophical Investigations
(1953), where the author seems to foresight the topological framework in which propositions are embedded: “I said to
myself "I wonder what time it is?"—And if this sentence has a particular atmosphere, how am I to separate it from the
sentence itself? It would never have occurred to me to think the sentence had such an aura if I had not thought of how
one might say it differently—as a quotation, as a joke, as practice in elocution, and so on... (I, 607). Suppose someone
said: every familiar word, in a book for example, actually carries an atmosphere with it in our minds, a 'corona' of
lightly indicated uses.—Just as if each figure in a painting were surrounded by delicate shadowy drawings of scenes, as
it were in another dimension, and in them we saw the figures in different contexts (IIVI). But how is it possible to see an
object according to an interpretation? — The question represents it as a queer fact; as if something were being forced
into a form it did not really fit. But no squeezing, no forcing took place here. When it looks as if there were no room for
such a form between other ones you have to look for it in another dimension. If there is no room here, there is room in
another dimension (IIXI).
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