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ABSTRACT

Recent approaches to brain phase spaces reinforce the foremost role of symmetries and energy requirements in the
assessment of nervous activity.  Changes in thermodynamic parameters and dimensions occur in the brain during
symmetry breakings and transitions from one functional state to another.  Based on topological results and string-like
trajectories into nervous energy landscapes, we provide a novel method for the evaluation of energetic features and
constraints in different brain functional activities.  We show how abstract approaches, namely the Borsuk-Ulam theorem
and its variants, display real, energetic physical counterparts.  When topology meets the physics of the brain, we arrive at
a general model of neuronal activity, in terms of multidimensional manifolds and computational geometry, that has the
potential to be operationalized.

INTRODUCTION

The brain is a complex, non-linear system operating at the edge of chaos,  formed by inter-dependent components which
exhibit spontaneous self-organization and emergent properties (Tognoli and Kelso, 2013; Fraiman and Chialvo, 2012;
Zare and Grigolini, 2013).  In such a vein, the brain is equipped with phase spaces where particle movements take place
(Watanabe et al., 2013; Yan et al., 2013).  Such trajectories may display different paths.  It has been suggested that the
brain is equipped with  funnel-like locations in phase space where trajectories converge as time progresses, following the
shortest path (Tozzi et al., 2016a; Sengupta et al., 2016).  Others proposed that brain function does not exhibit erratic
brain dynamics nor attractors, but a stable sequence, the so-called transient heteroclinic channel (Afraimovich et al., 2013)
and that a multidimensional functional torus might be displayed during spontaneous brain activity (Tozzi and Peters,
2016a). Furthermore, crucial concepts like communication-through-coherence (Deco and Jirsa, 2012) and plasma-like
collisionless collective movements (Touboul 2012) must be taken into account. In sum, different functional regimes
occurring in the brain phase space have been described,  both in central nervous systems and in artificial neural networks,
and  they have been  correlated with different brain functions (Tozzi et al., 2016a).
Despite the large number of possible trajectories, the processes governing brain paths may be unified when we take just
into account energetic requirements and constraints. Indeed, the second law of thermodynamics states that every process
occurring in nature proceeds in the sense in which the sum of the entropies of all bodies taking part in the process is
increased (Planck’s formulation). This paper aims to evaluate brain  energetic constraints in the framework of algebraic
topology, namely the Borsuk-Ulam theorem (BUT) (Borsuk 1933). We will take into account also another important
topological ingredient, e.g., the symmetries, widespread at every level of nervous organization.  Symmetries may be
regarded as the most general feature of biological  systems (including the brain), perhaps more general also than energetic
requirements, so that   giving insights into them might provide a general approach to nervous activities (Tozzi and Peters,
2016b).  Here we show how BUT and its variants provide powerful insights into brain functioning, especially if we assess
the noteworthy relationships between symmetry breaks, changes of neural dimensions, thermodynamic  free-energy and
informational entropy.
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ABSTRACT TOPOLOGY COMES INTO PLAY

The standard version of the Borsuk-Ulam theorem (BUT).  BUT states that (Dodson 1997):
Every continuous map : n nf S R®  must identify a pair of antipodal points (on Sn).
In other words, if a sphere Sn is mapped continuously into a n-dimensional Euclidean space Rn, there is at least one pair
of antipodal points on Sn which map onto the same point of Rn.  For further details, see Tozzi and Peters (2016a).
Examples of antipodal points are the opposite points along the poles of a sphere (Matousek, 2003). The notation nS
denotes an n-sphere of convex curvature, which is embedded in a n+1 euclidean space  (Weeks, 2002; Marsaglia, 1972).
BUT variants provide  a topological methodology for  the evaluation of the most general features of brain activity, cast
in an empirical fashion that has the potential to be operationalized.  This is a quantitative way to give a physical meaning
to the otherwise abstract concept of BUT.  Many BUT variants, useful for the evaluation of brain functions, have been
recently described (Tozzi and Peters, 2016b; Peters and Tozzi, 2016a).

Systems’ symmetry breaking (Sym-BUT): changes in brain dimensions.  Symmetries are invariances underlining
physical and biological systems (Weyl, 1982).  A symmetry break occurs when the symmetry is present at one level of
observation, but “hidden” at another level (Roldàn et al., 2014).  BUT tells us that we can find, on an n-dimensional
sphere, a pair of opposite points that have the same encoding on an n-1 sphere.  This means that symmetries can be found
when evaluating the system in a proper dimension, while they disappear (are hidden or broken) when we assess the same
system in just one dimension lower (Tozzi and Peters, 2016b).
There are two different ways to define and assess brain dimensions.  Indeed, the term dimension may reflect either
functional relationships of brain activities, or anatomical connections between cortical areas.  The first approach takes
into account the dimensionality of the neural space.  Connectivity and complex network analyses of neural signals allow
the assessment of the complex dynamics of brain activity, providing a novel insight into the multidimensionality of
various neural functions’ representations (Kida et al., 2016).   From a dynamical system perspective, one would expect
that brain activities are represented as, for example, some scalar quantity measured at different brain locations (say N
locations) at different points in time. Then one could describe nervous dynamics as trajectories and/or manifolds in a N-
dimensional phase space (Lech et al., 2016).  Mazzucato et al (2016) demonstrated that stimuli reduce the dimensionality
of cortical activity.  Clustered networks, such as default mode network, have instead a larger dimensionality, because the
latter grows with ensemble size: the more neurons are recruited, the more the dimensions (Mazzucato et al, 2016).  Apart
from giving insights in neural dynamics in the canonical three dimensions (space, time, and frequency), complex network
analyses are also able to evaluate other functional dimensions, e.g. categories of neuronal indices such activity magnitude,
connectivity, network properties and so on (Kida et al., 2016).  It must be taken into account that dimension reduction
and symmetry breaking display close relationships, so that symmetries are correlated with changes in functional
dimensions in the brain. Indeed, a key feature of dynamical approaches is that the dynamics they predict are characterized
by nonequilibrium phase transitions, and therefore breaks of symmetries (Scholz et al., 1987).   Many studies emphasized
how different levels of behavioral dynamics’ organization take place in neural ensembles. To make some examples, Jirsa
et al. (1998), focusing on the cortical left-right symmetry, derived a bimodal description of the brain activity that is
connected to behavioral dynamics, while Jirsa et al. (1994) demonstrated that, when an acoustic stimulus frequency is
changed systematically, a spontaneous transition in coordination occurs at a critical frequency, in both motor behavior
and brain signals.
Concerning the second approach to brain dimensionality, it has been recently suggested that brain  trajectories, at least
during spontaneous activity, might display four spatial dimensions, instead of three (Tozzi and Peters 2016a).  Brain
symmetric states display dimensions higher than asymmetric ones, so that, in this case, the space of interest does not refer
to dynamical neural spaces, but to detectable physical cortical locations. In such a vein, Stemmler et al. (2015) proposed
that animals can navigate by reading out a simple population vector of grid cell activity across multiple spatial scales.
Combining population vectors at different microscopic dimensions predicts indeed neural and behavioral correlates of
multiscale grid cell readout, that transcend the known link between entorhinal grid cells and hippocampal place cells.
While the spatial activity of a single grid cell does not constitute a metric, an ensemble of hierarchically organized grid
cells does provide instead a distance measure (Stemmler et al., 2015).  In our paper, the mapping of trajectories from high
dimensional manifold to lower dimensions refers to both the above described definitions of dimensionality.
In sum, the study of changes in brain dimensions is a promising novel methodology.  We need to take into account that,
despite neural networks modelling complex systems are known to exhibit rich, lower-order connectivity patterns at the
level of individual nodes and edges, however higher-order organization remains largely unknown. Benson et al. (2016)
recently developed an algorithmic framework for studying how complex networks are organized by higher-order
connectivity patterns, revealing unexpected hubs and geographical elements. In such a vein, Kleinberg et al. (2016)
demonstrated that real networks are not just random combinations of single networks, but are instead organized in specific
ways dictated by hidden geometric correlation between layers.  Such correlations allowed the detection of
multidimensional communities, e.g., sets of nodes that are simultaneously similar in multiple layers. Crucial for our
topological arguments, such multidimensionality also enables accurate trans-layer link prediction, meaning that
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connections in one layer can be predicted by observing the hidden geometric space of another layer. For example, when
the geometric correlations are sufficiently strong, a multidimensional framework outperforms navigation in the single
layers, allowing efficient targeted navigation simply by using local multilayer knowledge (Kleineberg et al., 2016).

General BUT (Gen-BUT).  Here we provide also a generalized version of BUT, which allows a topological study of the
brain in the context of physics.  Gen-BUT states that:
Multiple sets of objects with matching descriptions in a d-dimensional manifold Md are mapped to a single set of objects
in Md-1 and vice versa.   The sets of objects, which can be mathematical, physical or biological features, do not need to
be antipodal and their mappings need not to be continuous.   The term matching description means the sets of objects
display common feature values or symmetries. M stands for a manifold with any kind of curvature, either concave, convex
or flat.    Md-1 may also be a part of Md.  The projection from a sphere to an Euclidean space in not anymore required, just
M is required.  The notation d stands for a natural, or rational, or irrational number.  This means that the need for spatial
dimensions of the classical BUT is no longer required.  Note that a force, or a group, an operator, an energetic source, is
needed, in order to project from one dimension to another.  The process is reversible, depending on energetic constraints.

String-BUT: a topological approach to brain paths.  Another foremost BUT variant is the string-based BUT (briefly,
strBUT) (Peters and Tozzi, 2016b).  The usual continuous function required by BUT (Peters and Tozzi, 2016a; Peters,
2016) is replaced by a proximally continuous function, which guarantees that, whenever a pair of strings (regions that are
called world lines) are close (near enough to have common elements), then we always know that their mappings will be
also be close.  A string is a region of space with either bounded or unbounded length.     As a particle moves through
space following a world line (Olive and Landsberg, 1989), interactions occur at the junctions of world lines.  A string is
then a part of a hypersphere surface, over which a particle travels.  Put another way, a string is path-connected and its
path is defined by a sequence of adjacent surface points.   The points can be physical, as opposed to abstract geometric
points.   In other words, a string  is a thin region of space that has describable features such as connectedness, length,
open-ended or closed-ended, and shape.   Strings are antipodal, provided they  are disjoint and yet have the same
description  (Petty, 1971).  In terms of nervous theory, a string is a path which stands for a moving particle into either the
functional or anatomical spaces of the brain.
In order to map Sn to Sn-1, we need to work with lower dimensional spaces containing regions where each point in Sn-1

has one less coordinate than a point in Sn.   Let X be a topological space equipped with Lodato proximity d  (Peters,
2016). str  strAA d Ø  reads strA  and strAØ  are close.   Dochviri and Peters (2016) introduce a natural approach in
the evaluation of the nearness of sets in topological spaces. The objective is to classify levels of nearness of sets relative
to each given set. The main result is a proximity measure of nearness for disjoint sets in an extremely disconnected
topological space.  Let int(str )A  be the set of points in the interior of str .A  Another result is that if strings str , strAA Ø
are nonempty semi-open sets such that str  strAA d Ø , then  int(str )  int( strA).A d Ø
An important feature is that the manifolds Md and Md-1 are topological spaces equipped with a strong descriptive proximity
relation.  Recall that in a topological space M, every subset in M and M itself are open sets.  A set E in M is open, provided
all points sufficiently near E belong to E (Bourbaki, 1966).  The description-based functions in genBUT are strongly
proximally continuous and their domain can be mathematical, physical or biological features of world line shapes.  Let
A,B be subsets in the family of sets in M (denoted by 2M ) and let : 2 , 2 , ( )M n Mf R A f A® Î = a feature vector that
describes A.  That is, ( ), ( )f A f B are descriptions of A and B.  Nonempty sets are strongly near, provided the sets of
have elements in common. The function f is strongly proximally continuous, provided A strongly near B implies ( )f A
is strongly near ( )f B .  This means that strongly near sets have nonempty intersection.   From a genBUT perspective,

multiple sets of objects in Md are mapped to ( ) ,f A BÇ  which is a description of those objects common to A and B.  In
other words, the functions in genBUT are set-based embedded in a strong proximity space.   In particular, each set is set
of contiguous points in a path traced by a moving particle.  The path is called a world line. Pairs of world lines have
squiggly, twisted shapes opposite each other on the surface of a manifold.   Unlike the antipodes in a conventional
hypersphere assumed by the BUT, the antipodes are now sets of world lines that are discrete and extremely
disconnected.   Sets are extremely disconnected, provided: a) the closure of every set is an open set (Dochviri and Peters,
2016), b) the closure of every set is embedded in the discrete space, and c) the intersection of the closure of the intersection
of every pair of antipodes is empty.   The shapes of the antipodes are separated and belong to a computational
geometry.   That is, the shapes of the antipodal world lines approximate the shapes in conventional homotopy theory
(Peters, 2016).   The focus here is on the descriptions (sets of features) of world line shapes.  Mappings onsets with
matching description, or, in other words, mappings on descriptively strongly proximal sets, here means that such
mappings preserve the nearness of pairs of sets.  The assumption made here is that antipodal sets live in a descriptive
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Lodato proximity (DLP) space.   Therefore, antipodal sets satisfy the requirements for a DLP (Peters, 2016).   Letd  be
a  DLP  and  write A Bd to denote the descriptive nearness of antipodes A and B.    And  let  f  be  a  DLP  continuous
function.   This means    implies f( )  f( ) f( ) f( ) .A B A B A Bd d = Ç ¹ Æ
Example: Assume that antipodes A and B have symmetries (shape, bipolar, overlap, path-connectedness), and f is DLP
strongly continuous function, then     f( )   f( )A B A Bd dÞ
This means that, whenever A and B are descriptively close, then A is mapped to ( )f A  and B is mapped to ( )f B and
f( )  f( ).A Bd   If we include in the description of A and B the location of the discrete points in A and B, then the DLP
mapping is invertible.   That is, ( )f A  maps to A, ( )f B  maps to Band ( )   ( )  implies    .f A f B A Bd d
To make an example, in nervous functional terms we may state that the paths followed by nervous trajectories in brain
phase spaces are closed and can be described in guise of moving strings.

ABSTRACT TOPOLOGY MEETS REAL PHYSICS: BRAIN ENERGETIC REQUIREMENTS

A  BUT  variant,  termed energy-BUT,  is  particularly  useful  in  our  context.   There  exists  a  physical  link  between  the
abstract concept of BUT and the energetic features of the system formed by two manifolds Md and Md-1.  We start from a
manifold Md equipped with a pair of antipodal points, standing for a symmetry according to Sym-BUT.  When these
opposite points map to a n-Euclidean manifold (where Md-1lies), a symmetry break/dimensionality reduction occurs, and
a single point is achieved (Tozzi and Peters 2016b). However, it is widely recognized that a decrease in symmetry goes
together with a decrease in entropy and free-energy, at least in a closed system.  This means that  the  single mapping
function on Md-1displays energy parameters lower than the two corresponding antipodal functions on Md.  Therefore,
decreases of dimensions give rise to decreases of energy and energy requirements (Figure 1).  In such a way, BUT and
its variants yield physical quantities, because we achieve a system in which energetic changes do not depend anymore on
thermodynamic parameters, rather on affine connections and homotopies.
It must be taken into account that energy-BUT concerns not just energy, but also information.  Indeed, two antipodal
points contain more information than their single projection in a lower dimension.  Dropping down a dimension means
that each point in the lower dimensional space is simpler, because each point has one less coordinate.  In sum, energy-
BUT provides a way to evaluate decreases in energy and information in topological, other than thermodynamic, terms.
An example. Here we provide an example in order to calculate the energy requirements of different functional states in
the central nervous system.  We start from a nervous closed system, shaped in guise of a Md-1equipped with a single
physical function A characterized, say, by a free-energy =1 and an entropy =2.  For gen-BUT, when  we project the
function to Md, we achieve two antipodal functions B and C with matching description, forming a symmetric system.
The question here is: which are the free-energy and the entropy of each one of the two antipodal (symmetric) functions
on Md? And what happens to enthalpy? This question is crucial, because it  calls attention to energy conservation and
symmetries.  In effect, this question leads to the Noether theorem (Noether, 1918), which gives us a physical, testable
counterpart to the otherwise algebraic topological BUT.  Indeed, if we do not take into account the changes in free energy
from A to B and C, there is no possibility to translate the abstract BUT to the physics of brain activity, and we have to
use the BUT, as we already did, simply as a useful methodological tool (Peters et al., 2016).
The following scenario can be depicted.  The projection (mapping) of the description of a pair of physical points (or
regions, or functions) on Md into a point  in Md-1 occurs because we have found a continuous function between the two
manifolds.   This is a flexible situation, because we can vary the  description of the pair physical points (regions, or
functions) and achieve a mapping to various Euclidean spaces, depending  on the number of features of the antipodes.
From the gen-BUT perspective, the entropy of antipodal regions would be part of the description of the antipodes and
would be the same for each antipode.   This works for regions, since informational entropy is defined in terms of a set  of
events.   Each regional antipode would be the culmination of a set of random events, leading to each  antipode.  Similarly,
the free energy of each antipode would be the same.  In sum,  if the region A is characterized by free-energy =1 and an
entropy =2, the regions B and C are both characterized by a free-energy =1 and an entropy =2. The total free energy of
the system B+C is doubled, compared with A.

BRAIN THERMODYNAMIC PARAMETERS: WHEN BUT ENCOMPASSES A PHYSICAL QUANTITY

In the previous paragraph, our discussion on energetic requirements assumed that the brain is a closed system.  Changing
the state of system necessarily entails a modification in thermodynamic free-energy, which is equivalent to the work done
on the system, and which can be regarded as the average uncertainty, or the information we have about the system’s
microscopic states (Sengupta et al. 2013a). However, we need to take into account that the brain is an open, non-
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equilibrium biological system. As thermodynamic entropy measures the dispersion over microstates of a thermodynamic
canonical ensemble, informational entropy plays the same role, but over some phase functions or macroscopic variables
that change with time (Sengupta et al. 2013a).  It means that symmetry breaking in the brain may occur through the widely
described phenomena of critical fluctuations and critical slowing (Scholz et al, 1987).  In such a vein, this paragraph aims
to correlate classical thermodynamical parameters  with brain dynamical features, in order to analyze and quantify them.

Free-energy.   The brain represents 2% of the human body mass yet it accounts for about 20% of total energy consumed,
a substantial proportion (Attwell and Laughlin, 2001).  The metabolic brain activity, influenced by a balance between the
energy cost incurred by its operation and the benefits realized by energy expenditure, is therefore high and constant over
time (Sengupta et al., 2013a).  Why does the brain consume such remarkable amounts of energy, despite the fact that
evolution is geared toward minimizing very high metabolic costs? Almost 20–60% of the energy allocated for the brain
is used to support the metabolic rate of the cortical grey matter and for synapses and action potentials (Sengupta et al.,
2013b).  For our purposes, we limit our analysis to spike frequency.  It easy to see that the free energy roughly corresponds
to the electric spike frequency.  See Tozzi et al. (2016b) for a technical explanation.  It means that the increase in
thermodynamic free-energy during brain activity is mostly due to spikes, and that we are allowed to evaluate variations
in  thermodynamic free-energy during brain activity just in terms of electric spiking.  In the context of ongoing fluctuations
with complex properties caused by variations in thermodynamic parameters, a foremost issue is the free-energy principle
(Friston 2010).  A self-organizing system like the brain, at non-equilibrium steady-state with its environment, needs to
minimize its free-energy (and associated entropy), in order to resist a tendency towards disorder/entropy. The key thrust
is that energy expenditure is balanced by homeostatic mechanisms, in an effort to minimize free-energy, and in an
interplay between neuronal structure and activity at many different spatiotemporal scales.  A subtle equilibrium takes
place among actual sampled sensations, brain’s predictions (e.g, the expected energy), expectation (e.g., the best possible
guess), surprise (e.g. an improbable outcome caused by unknown quantities), accuracy (e.g., the surprise about the
sensations that are expected) and complexity (e.g., the beliefs before and after observing data through sensory inputs).
Such different mechanisms tend towards a main goal: minimising entropy production, which  corresponds to minimising
the so called variational free-energy.  There is a strict correspondence between concepts in Friston’s formalism and that
of the thermodynamics.  For example, the Gibb’s thermodynamical free-energy stands, in Friston’s framework, for the
entropy of recognition density, or in other words, for the above mentioned actual sensation sampled by the brain. Further,
because variational and thermodynamic free-energy share a common minimum, we are also allowed to link information
processing (e.g., Bayesian belief updating) to metabolic efficiency  (Sengupta et al., 2013b), so that the average time of
variational free-energy becomes a proxy for entropy.

Temperature. The cortical temperature is not a stable parameter as currently believed.  The brain displays instead thermal
gradients observed at many spatiotemporal scales (Wang H. et al., 2014). Local temperature fluctuations may act as a
dynamic variable, modulating presynaptic and postsynaptic events, sensory stimuli, behavioral changes, memory
encoding and fine-tune activity-dependent processes (Kalmbach and Waters, 2012; Long and Fee, 2008).  In terms of
symmetry breakings achieved during nervous second order phase-transitions, temperature might stand for one of the
critical control parameters which dictates how the brain evolves from one coordinated state to another. Therefore, brain
temperature can be used as an order parameter to monitor the dynamics of the nervous collective state and deviations
from the symmetrical state.  Indeed, in terms of informational entropy, cortical temperatures contain information about
how large-scale physiological and pathological outcomes arise from the interactions of many small-scale processes, in
order that thermal brain variations may lead to different probability outcomes.  In sum, non-stationary thermal cortical
fluctuations, an underrated general mechanism of nervous function able to modify the energy of the brain  and to influence
psychophysical characteristics, can be assessed in topological terms.

Entropies.  Entropies  are evaluated in fMRI functional studies through different techniques, e.g., pairwise entropy
(Schneidman et al., 2006; Watanabe et al., 2014; Wang Z. et al., 2014), Granger causality index, phase slope index, and
so on (Kida et al., 2016).  Such approaches also make it possible to analyse how the complexity of an adaptive system
like the brain is best understood as a dynamic network that aims to decrease its free-energy, for example via entropy
transfer.  Here we propose a novel topological way to assess, in brain fMRI functional studies, changes in informational
entropies. The method, referred here to changes in cortical spatial dimensions, is described in Figure 2.  The Figure shows
how, by knowing just the entropy values for each BOLD-activated brain area, we are allowed to correlate two different
brain states, e.g., a state with symmetry breaking and a state with preserved symmetries.
During a symmetry break or vice versa, the brain may use different mechanisms in order to modify thermodynamic
parameters.  The possible mechanisms are displayed in Figure 1.  For example, when the system goes from symmetry to
symmetry break, the enthalpy must be reduced of the half, via, e.g., a decrease of local blood flow (enthalpy), or a decrease
of spike frequency (free-energy).  When the system goes from a symmetry break towards a restored symmetry, the brain
requires a surplus of external energy to inject into Md, and vice versa.  Brain spikes, in this framework, could stand for
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one of the thermodynamic parameters able to give rise to different attractors, and to supply the required enthalpy, in order
to proceed from a symmetry to a symmetry breaking and vice versa.

CONCLUSIONS

We showed how, from an abstract topological assessment of brain activity, we may achieve real thermodynamic
parameters, in order to evaluate and correlate different cortical functions. BUT and its novel variants display very useful
general features which help us to explain a wide-range of brain phenomena. By satisfying the requirements for BUT, it is
possible for us to quantify increases and decreases of free-energy/entropy/enthalpy when going from one functional brain
conformation to another, e.g., from the functional  4D sphere of the default mode network during spontaneous brain
activity (Tozzi and Peters, 2016a), to the lower dimensional 3D manifold during evoked brain activity (Papo, 2014).
Therefore, the existence of one pair of mappings implies an overall change in thermodynamic and informational
parameters. Despite  BUT theorem states that it exists at least a pair of antipodal point that maps a dimension lower,
nevertheless it does not say that every antipodal pair will be mapped to a single set, nor that all the two sets of objects in
higher dimensions display matching descriptions with all the single sets of objects in lower dimensions. It means that we
would neither specifically assess if a recorded brain state or a set of trajectories is the image of any antipodes, nor the
accurate matching of the mapping from higher-dimension manifolds to lower-dimension ones.  However, BUT is still
very informative about brain dynamics in practice.  Indeed, there exist some trajectories, even if we don’t know which,
that are mapped to a lower-dimensional space and imply a predictable energetic change.  Because the brain functional
micro-zones are countless, the use of BUT is helpful in achieving a drastic reduction and simplification of  the areas to
investigate.  Instead of looking for a needle in a haystack, BUT makes it possible for neuro-researchers to remove the
most of the straw and to increase the number of needles.  The BUT approach also overtakes the claim of Simas et al.
(2016), who suggested that the algebraic topological approach of embedding a brain network on metric spaces  (of
different dimensions) may reveal regions that are members of large areas or subsystems, rather than regions with a specific
role in information processing.  In sum, contrary to the classical averaging of connectivity matrices and to the recent
algebraic topological methodologies, the BUT approach  reveals brain areas with a specific role in information processing.
A shift in conceptualizations is evident in a methodological approach based on BUT.  That is, the opportunity to treat
brain dynamics as topological structures gives us the invaluable chance to describe them through the tools of functional
analysis (Dol’nikov, 1992).  The BUT perspective enunciates a symmetry property located in the physical space (the
environment and the brain) to be translated to an abstract space and vice-versa, enabling us to achieve maps from one
system to another.  This approach  is in touch with recent proposals, which provide a rigorous way of measuring distance
on brain manifolds (Sengupta et al., 2016). We might imagine the brain as a manifold,  equipped with a high number of
symmetries and with an internal, mathematically structured, holistic generative model of the external world. Depending
on external stimuli (Tozzi et al., 2016a) and on individual background, symmetry breaks occur, giving rise to phase spaces
equipped with a lower number of dimensions.  This takes us into the realm of metric algebraic topology (Willard, 1990),
where multidimensional manifold describe the structural order of the relationships between  nervous anatomical
components and their functional paths.
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Figure 1.  The manifold Md displays two antipodal points with matching description. It this case, according to strBUT
dictates, the antipodal points stand for two symmetric functions equipped with the same energetic conformation (black
ovals containing curved arrows).  When a symmetry break occurs, the manifold Md-1displays just a single function,
equipped with an energetic level lower than the sum of the antipodal functions’ ones. Therefore, dimension loss occurs
with a decrease of energy.  The lateral dark boxes illustrate some hypothetical but plausible conditions  which might cause
increase or decrease of energy in the brain.  In sum, the system displays a configuration with higher energy in Md, and
with lower energy when a symmetry break occurs. The background stands for a schematized structure of the brain phase
space.
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Figure 2. The two brain hemispheres are flattened and displayed in 2D, according to Van Essen (2005).  The black
circles, depicting hypothetical micro-areas of BOLD signal during fMRI functional studies, contain a number which
stands for the corresponding entropy value. Figure A displays a functional state with preserved symmetry (e.g., mind
wandering), while Figure B one with symmetry breaking (e.g., a task-related activity).  Note that two micro-areas with
the same entropy values in Figure A stand for two points with matching description.  The latter necessarily project to a
single point, in case the brain symmetry is broken, according to the dictates of gen-BUT.  It means that in Figure B there
must be a micro-area with the same entropy value of the two matching points in Figure A.   It  allows us to recognize
which zones of the brain could be correlated during symmetry breaks.


