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Abstract – We present a solution for the Navier-Stokes equations for 

incompressible case with any smooth (𝐶∞) initial velocity given a pressure and 

external force in 𝑛 =  3 spatial dimensions, based on expansion in Taylor’s series 

of time. Without major difficulties, it can be adapted to any spatial dimension,  

𝑛 ≥ 1. 
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 Let 𝑝, 𝑞, 𝑟 be the three components of velocity of an element of fluid in the 3-

D orthogonal Euclidean system of spatial coordinates (𝑥, 𝑦, 𝑧) and 𝑡 the time in this 

system.  

 Lagrange in his Mécanique Analitique, firstly published in 1788, proved that 

if the quantity (𝑝 𝑑𝑥 + 𝑞 𝑑𝑦 + 𝑟 𝑑𝑧) is an exact differential when 𝑡 = 0 it will also 

be an exact differential when 𝑡 has any other value. If the quantity (𝑝 𝑑𝑥 + 𝑞 𝑑𝑦 +

𝑟 𝑑𝑧) is an exact differential at an arbitrary instant, it should be such for all other 

instants. Consequently, if there is one instant during the motion for which it is not 

an exact differential, it cannot be exact for the entire period of motion. If it were 

exact at another arbitrary instant, it should also be exact at the first instant.[1]   

 To prove it Lagrange used 

(1)  {
𝑝 = 𝑝𝐼 + 𝑝𝐼𝐼𝑡 + 𝑝𝐼𝐼𝐼𝑡2 + 𝑝𝐼𝑉𝑡3 + ⋯

𝑞 = 𝑞𝐼 + 𝑞𝐼𝐼𝑡 + 𝑞𝐼𝐼𝐼𝑡2 + 𝑞𝐼𝑉𝑡3 + ⋯

𝑟 = 𝑟𝐼 + 𝑟𝐼𝐼𝑡 + 𝑟𝐼𝐼𝐼𝑡2 + 𝑟𝐼𝑉𝑡3 + ⋯

 

in which the quantities 𝑝𝐼 , 𝑝𝐼𝐼 , 𝑝𝐼𝐼𝐼 , etc., 𝑞𝐼 , 𝑞𝐼𝐼 , 𝑞𝐼𝐼𝐼 , etc., 𝑟𝐼 , 𝑟𝐼𝐼, 𝑟𝐼𝐼𝐼, etc., are functions 

of 𝑥, 𝑦, 𝑧 but without 𝑡. 

 Here we will finally solve the equations of Euler and Navier-Stokes using 

this representation of the velocity components in infinite series, as pointed by 

Lagrange. We assume satisfied the condition of incompressibility, for brevity. 

Without it the resulting equations are more complicated, as we know, but the 

method of solution is essentially the same in both cases. 

 To facilitate and abbreviate our writing, we represent the fluid velocity by 

its three components in indicial notation, i.e., 𝑢 = (𝑢1, 𝑢2, 𝑢3), as well as the 
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external force will be 𝑓 = (𝑓1, 𝑓2, 𝑓3) and the spatial coordinates 𝑥1 ≡ 𝑥, 𝑥2 ≡ 𝑦,

𝑥3 ≡ 𝑧. The pressure, a scalar function, will be represented as  𝑝.  

 The representation (1) is as the expansion of the velocity in a Taylor´s 

series in relation to time around 𝑡 = 0, considering 𝑥, 𝑦, 𝑧 as constant, i.e., for 

1 ≤ 𝑖 ≤ 3, 

(2)  𝑢𝑖 = 𝑢𝑖(𝑡 = 0) +
𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 𝑡 +

𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0  

𝑡2

2
+

𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0  

𝑡3

6
+ ⋯ 

   +
𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
|𝑡=0  

𝑡𝑘

𝑘!
+ ⋯ 

or  

(3)  𝑢𝑖 = 𝑢𝑖
0 + ∑

𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
|𝑡=0  

𝑡𝑘

𝑘!

∞
𝑘=1 . 

 For the calculation of  
𝜕𝑢𝑖

𝜕𝑡
,

𝜕2𝑢𝑖

𝜕𝑡2
,

𝜕3𝑢𝑖

𝜕𝑡3
, … we use the values that are obtained 

directly from the Navier-Stokes equations and its derivatives in relation to time, 

i.e., 

(4)  
𝜕𝑢𝑖

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥𝑖
− ∑ 𝑢𝑗

3
𝑗=1

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜈 ∇2𝑢𝑖 + 𝑓𝑖 , 

and therefore    

(5)  
𝜕2𝑢𝑖

𝜕𝑡2
= −

𝜕2𝑝

𝜕𝑡 𝜕𝑥𝑖
− ∑ (

𝜕𝑢𝑗

𝜕𝑡

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
)3

𝑗=1 + 𝜈 ∇2 𝜕𝑢𝑖

𝜕𝑡
+

𝜕𝑓𝑖

𝜕𝑡
, 

(6)  
𝜕3𝑢𝑖

𝜕𝑡3
= −

𝜕3𝑝

𝜕𝑡2 𝜕𝑥𝑖
− ∑ (

𝜕2𝑢𝑗

𝜕𝑡2

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 2

𝜕𝑢𝑗

𝜕𝑡

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2 )3
𝑗=1  

   +𝜈 ∇2 𝜕2𝑢𝑖

𝜕𝑡2
+

𝜕2𝑓𝑖

𝜕𝑡2
,  

(7)  
𝜕4𝑢𝑖

𝜕𝑡4
= −

𝜕4𝑝

𝜕𝑡3 𝜕𝑥𝑖
− ∑ 𝑁𝑗

33
𝑗=1 +  𝜈 ∇2 𝜕3𝑢𝑖

𝜕𝑡3
+

𝜕3𝑓𝑖

𝜕𝑡3
, 

  𝑁𝑗
3 =

𝜕

𝜕𝑡
𝑁𝑗

2, 𝑁𝑗
2 =

𝜕2𝑢𝑗

𝜕𝑡2

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 2

𝜕𝑢𝑗

𝜕𝑡

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
, 

  𝑁𝑗
3 =

𝜕3𝑢𝑗

𝜕𝑡3

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 3

𝜕2𝑢𝑗

𝜕𝑡2

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 3

𝜕𝑢𝑗

𝜕𝑡

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕3𝑢𝑖

𝜕𝑡3
, 

(8)  
𝜕5𝑢𝑖

𝜕𝑡5
= −

𝜕5𝑝

𝜕𝑡4 𝜕𝑥𝑖
− ∑ 𝑁𝑗

43
𝑗=1 +  𝜈 ∇2 𝜕4𝑢𝑖

𝜕𝑡4
+

𝜕4𝑓𝑖

𝜕𝑡4
, 

  𝑁𝑗
4 =

𝜕

𝜕𝑡
𝑁𝑗

3 =
𝜕4𝑢𝑗

𝜕𝑡4

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 4

𝜕3𝑢𝑗

𝜕𝑡3

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 6

𝜕2𝑢𝑗

𝜕𝑡2

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
+ 

    +4
𝜕𝑢𝑗

𝜕𝑡

𝜕

𝜕𝑥𝑗

𝜕3𝑢𝑖

𝜕𝑡3
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕4𝑢𝑖

𝜕𝑡4
, 
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and using induction we come to    

(9)  
𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
= −

𝜕𝑘𝑝

𝜕𝑡𝑘−1 𝜕𝑥𝑖
− ∑ 𝑁𝑗

𝑘−13
𝑗=1 +  𝜈 ∇2 𝜕𝑘−1𝑢𝑖

𝜕𝑡𝑘−1
+

𝜕𝑘−1𝑓𝑖

𝜕𝑡𝑘−1
, 

  𝑁𝑗
𝑘−1 =

𝜕

𝜕𝑡
𝑁𝑗

𝑘−2 = ∑  (𝑘−1
𝑙

)𝑘−1
𝑙=0 𝜕𝑡

𝑘−1−𝑙𝑢𝑗  
𝜕

𝜕𝑥𝑗
𝜕𝑡

𝑙𝑢𝑖 , 

  𝜕𝑡
0𝑢𝑛 = 𝑢𝑛, 𝜕𝑡

𝑚𝑢𝑛 =
𝜕𝑚𝑢𝑛

𝜕𝑡𝑚
, (𝑘−1

𝑙
) =

(𝑘−1)!

(𝑘−1−𝑙)! 𝑙!
.  

 In (2) and (3) it is necessary to know the values of the derivatives 

𝜕𝑢𝑖

𝜕𝑡
,

𝜕2𝑢𝑖

𝜕𝑡2
, … ,

𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
  in 𝑡 = 0 then we must to calculate, from (4) to (9),   

(10)  
𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 = −

𝜕𝑝0

𝜕𝑥𝑖
− ∑ 𝑢𝑗

03
𝑗=1

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 𝜈 ∇2𝑢𝑖

0 + 𝑓𝑖
0, 

the superior index 0 meaning the value of the respective function at 𝑡 = 0, and 

(11)  
𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0 = −

𝜕2𝑝

𝜕𝑡 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

13
𝑗=1 |𝑡=0 + 

             + 𝜈 ∇2 𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 +

𝜕𝑓𝑖

𝜕𝑡
|𝑡=0,    

  𝑁𝑗
1|𝑡=0 = ∑ (

𝜕𝑢𝑗

𝜕𝑡
|𝑡=0

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 𝑢𝑗

0 𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
|𝑡=0)3

𝑗=1 , 

(12)  
𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0 = −

𝜕3𝑝

𝜕𝑡2 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

2|𝑡=0
3
𝑗=1 + 

                        + 𝜈 ∇2 𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0 +

𝜕2𝑓𝑖

𝜕𝑡2
|𝑡=0,    

  𝑁𝑗
2|𝑡=0 =

𝜕2𝑢𝑗

𝜕𝑡2
|𝑡=0

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 2

𝜕𝑢𝑗

𝜕𝑡
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 + 

           + 𝑢𝑗
0 𝜕

𝜕𝑥𝑗

𝜕
2

𝑢𝑖

𝜕𝑡2 |𝑡=0, 

(13)  
𝜕4𝑢𝑖

𝜕𝑡4
|𝑡=0 = −

𝜕4𝑝

𝜕𝑡3 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

33
𝑗=1 |𝑡=0 +  

                        + 𝜈 ∇2 𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0 +

𝜕3𝑓𝑖

𝜕𝑡3
|𝑡=0,  

  𝑁𝑗
3|𝑡=0 =

𝜕3𝑢𝑗

𝜕𝑡3
|𝑡=0

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 3

𝜕2𝑢𝑗

𝜕𝑡2
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 + 

                  + 3
𝜕𝑢𝑗

𝜕𝑡
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0 + 𝑢𝑗

0 𝜕

𝜕𝑥𝑗

𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0,  

(14)  
𝜕5𝑢𝑖

𝜕𝑡5
|𝑡=0 = −

𝜕5𝑝

𝜕𝑡4 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

43
𝑗=1 |𝑡=0 + 

             + 𝜈 ∇2 𝜕4𝑢𝑖

𝜕𝑡4
|𝑡=0 +

𝜕4𝑓𝑖

𝜕𝑡4
|𝑡=0,   
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  𝑁𝑗
4|𝑡=0 =

𝜕4𝑢𝑗

𝜕𝑡4
|𝑡=0

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 4

𝜕3𝑢𝑗

𝜕𝑡3
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 

              + 6
𝜕2𝑢𝑗

𝜕𝑡2
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0 + 4

𝜕𝑢𝑗

𝜕𝑡
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0 + 

   + 𝑢𝑗
0 𝜕

𝜕𝑥𝑗

𝜕4𝑢𝑖

𝜕𝑡4
|𝑡=0, 

and of generic form, 

(15)  
𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
|𝑡=0 = −

𝜕𝑘𝑝

𝜕𝑡𝑘−1 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

𝑘−13
𝑗=1 |𝑡=0 + 

                + 𝜈 ∇2 𝜕𝑘−1𝑢𝑖

𝜕𝑡𝑘−1
|𝑡=0 +

𝜕𝑘−1𝑓𝑖

𝜕𝑡𝑘−1
|𝑡=0, 

  𝑁𝑗
𝑘−1|𝑡=0 = ∑  (𝑘−1

𝑙
)𝑘−1

𝑙=0 𝜕𝑡
𝑘−1−𝑙𝑢𝑗|𝑡=0  

𝜕

𝜕𝑥𝑗
𝜕𝑡

𝑙𝑢𝑖|𝑡=0, 

  𝜕𝑡
0𝑢𝑛|𝑡=0 = 𝑢𝑛

0 , 𝜕𝑡
𝑚𝑢𝑛|𝑡=0 =

𝜕𝑚𝑢𝑛

𝜕𝑡𝑚
|𝑡=0. 

 If the external force is conservative there is a scalar potential 𝑈 such as 

𝑓 = ∇𝑈 and the pressure can be calculated from this potential 𝑈, i.e.,  

(16)  
𝜕𝑝

𝜕𝑥𝑖
= 𝑓𝑖 =

𝜕𝑈

𝜕𝑥𝑖
, 

and then 

(17)  𝑝 = 𝑈 + 𝜃(𝑡), 

𝜃(𝑡) a generic function of time of class 𝐶∞, so it is not necessary the use of  the 

pressure 𝑝 and external force 𝑓, and respective derivatives, in (4) to (15) if the 

external force is conservative. In this case, the velocity can be independent of the 

both pressure and external force, otherwise it will be necessary to use both the 

pressure and external force derivatives to calculate the velocity in powers of time.  

 The result that we obtain here in this development in Taylor’s series seems 

to me a great advance in the search of the solutions of the Euler’s and Navier-

Stokes equations. It is possible now to know on the possibility of non-uniqueness 

solutions as well as breakdown solution respect to unbounded energy of another 

manner. 

 We now can choose previously an infinity of different pressures such that 

the calculation of 
𝜕𝑢

𝜕𝑡
 and derivatives can be done, for a given initial velocity and 

external force, although such calculation can be very hard. 

 It is convenient say that Cauchy[2] in his memorable and admirable Mémoire 

sur la Théorie des Ondes, winner of the Mathematical Analysis award, year 1815,  

firstly does a study on the equations to be obeyed by three-dimensional molecules 
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in a homogeneous fluid in the initial instant 𝑡 = 0, coming to the conclusion which 

the initial velocity must be irrotational, i.e., a potential flow. Of this manner, after, 

he comes to conclusion that the velocity is always irrotational, potential flow, if the 

external force is conservative, which is essentially the Lagrange’s theorem 

described in the begin of this article, but it is shown without the use of series 

expansion (a possible exception occurs if one or two components of velocity are 

identically zero, when the reasonings on 3-D molecular volume are not valid). The 

solution obtained by Cauchy for Euler's equations is the Bernouilli's law, as almost 

always happens. Perhaps a solution in Eulerian description not always 

corresponds to some solution in Lagrangian description, and vice-versa, I yet don’t 

know for sure. There can be no contradiction in science, particularly in 

mathematics. 

 I began my study of the Navier-Stokes equations verifying the lack 

(inexistence, I called breakdown) of solutions, but realizing that given the pressure 

and initial velocity there would be no problem about not being possible to 

integrate the equations of Navier-Stokes and find the velocity, in general case. Now 

with more clarity and conviction I realize that, given only the velocity may not be 

possible to find the corresponding pressure, but given the pressure we can find the 

velocity, in special using the expansion in Taylor’s series, as we see here. 

 If the mentioned series is divergent may be an indicative of that the 

correspondent velocity and its square diverge, again going to the case of 

breakdown solution due to unbounded energy. Without pressure and with initial 

velocity and external force both belonging to Schwartz Space is expected that the 

solution for velocity also belonging to Schwartz Space, obtaining physically 

reasonable and well-behaved solutions throughout the space. 

 The method presented here can also be applied in other equations, of 

course, for example in the heat equation. Always will be necessary that the 

remainder in the Taylor's series goes to zero when the order 𝑘 of the derivative 

tends to infinity.[3] Applying this concept in (3) and (9), substituting 𝑡 by 𝜏, the 

remainder is 

(18)  𝑅𝑘 =
1

𝑘!
∫ (𝑡 − 𝜏)𝑘𝑡

0
 
𝜕𝑘+1𝑢𝑖

𝜕𝑡𝑘+1
𝑑𝜏.   

 

To Jean-Christophe Yoccoz, in memorian. I have just know of his premature death, 

great friend of mathematicians of IMPA. I'm not one successful, I do not have fame, 

I did not win any awards. In common we have only a great love for mathematics. 

He was a genius man who now leaves the Earth, but I know that even in heaven 

there are math and science to be done. He did an excellent job. 

September-06-2016 
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