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Abstract

This research work proposes a Lagrangian and Hamiltonian analysis for a class of exactly
integrable quadratic Liénard-type harmonic nonlinear oscillator equations and its inverted
version admitting a position-dependent mass dynamics.

1. Analysis of the class of quadratic Liénard-type harmonic nonlinear oscillator equations

This section is devoted to the analysis of a class of quadratic Liénard-type nonlinear
dissipative oscillator equations that admits exact analytical harmonic periodic solutions.
Consider the equation [1, 2]

X— 0 (X)X? + 0’ xe 27X =0 @

that represents the class of equations under analysis. y and » are arbitrary parameters, and
o(x) Is an arbitrary function of x. The dot over a symbol means differentiation with respect to
time, and prime holds for differentiation with respect to x. The equation (1) is of the general
form

%+ f (%% +g(x) =0 (2)
for which the first integral is given by [3]

I(X,X) = Xzezjf(x)dx

+2 j g(x)eZI %y 3)
So, afirst integral of (1) may be written as
I(X, x) = X% 2™ + &’X® (4)

By application of the formula [4]

: L% X)
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the Lagrangian of the equation (1) becomes
L(X, X) = X2 2770 — ?x? (6)

Applying the Euler-Lagrange equation

E(G—Fj—@ﬂ) ™
dt\ox ) ox

to the equation (6) , gives the equation (1) . Now, using [3]
H(p’x) = pX_ L(X’ X) (8)

one may deduce from (6) the Hamiltonian

2

H(p,X) =p7e27‘/’(x) +w?x? (9)
Let us now consider, as illustration, some specific examples of (1). Letp(x)=x. Then (1)
becomes

X— % +w*xe?* =0 (10)
The equation (10) admits the first integral

I(X, X) = X’ ™" + 0°x? (12)
which provides the Lagrangian function

L(X,X) = X’e 2% — 0*Xx? (12)

The application of the Euler-Lagrange equation (7) to (12) gives, as expected, (10) .In this
regard the Hamiltonian associated to (10) takes the form

2

H(p,x)z%ez”ﬂozx2 (13)

So, the Hamilton equations

. OH
X:E

14
o (14)
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yield for (13)



(15)

p= —p?;/xezyX —2w*X

The explicit expression for the canonically conjugate momentum p, as a function of xand x

takes then the form

b =—2e (15 + wPxe?) (16)
Putting now ¢(X) = %xz , into (1), one may obtain as equation

X — 22X+ @’ xe”™ =0 17)
A first integral of (17) takes then the form

(% X) = X% 7% + w?X’ (18)
The associated Lagrangian becomes

L(X, X) = X277 — w?X’ (19)

The application of the Euler-Lagrange equation (7)to (19) gives with satisfaction (17) . So,
the associated Hamiltonian may be written as

2

H(p,x) =

Te”z +w*X? (20)

Such that the Hamilton equations take the form

(21)

- p 7X2 2
=——Xxe"" =2wX
P 2

The relation between Xxand p reads in this perspective

p=—2xe" (¥ +w’e’™) (22)
2. Analysis of inverted versions

Consider now the inverted version of (1)

X+ 70 (X)X + 0*xe??™) =0 (23)

which gives for ¢(x) =x, the following equation



X+ X +0’xe” =0 (24)
The first integral of (24) may be then deduced from (3) as
a)2 C{)z
I(%, X) = X% + — xe™ —— e (25)
2y 8y
Therefore, the Lagrangian for (24) may be written in the form
o’ o’
L(X,x) = X’e™ + —e"” - —xe™ (26)
8y 2y

In this regard, it may be verified that the application of the Euler-Lagrange equation (7) to
(26) yields, as expected, (24). The Hamiltonian for (24) may also be computed as

2 2 2
H(p,x) =%e‘27x +;)—xe4}“ —860—2e4’“ (27)
v /4

which gives the Hamiltonian equations

X = gezy X
2 (28)
p= p?;/xe‘zyX — 2w xe*"*
from which the canonically conjugate momentum becomes
b = 262 (4% — w?xe>) (29)

By analysis, other forms of equations are also suggested by the previous studied equations.
So, the following equations may also be considered in the perspective of this study, that is

X+ XX+ 0*xe”™ =0 (30)
or in general

X+ 70 (X)X* + 0’ xe”™ =0 (3D
X — 10’ (X)X* + 0*xe’™ =0 (32)

Finally one may consider the following more generalizations
X+ 79" (X)X + w*h(x)e”?™ =0 (33)

X — 10’ (X)X* + 0’h(x)e’*™ =0 (34)



X+ 10’ (X)X + 0*h(x)e”?™ =0 (35)
X — 70’ (X)X* + w*h(x)e?7*¥ =0 (36)
These equations will be investigated in a subsequent work.
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