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Abstract 

This research work proposes a Lagrangian and Hamiltonian analysis for a class of exactly 

integrable quadratic Liénard-type harmonic nonlinear oscillator equations and its inverted 

version admitting a position-dependent mass dynamics.  

1. Analysis of the class of quadratic Liénard-type harmonic nonlinear oscillator equations 

This section is devoted to the analysis of a class of quadratic Liénard-type nonlinear 

dissipative oscillator equations that admits exact analytical harmonic periodic solutions. 

Consider the equation [1, 2] 

0)(' )(222  xxexxx                                                                    )1(  

that represents the class of equations under analysis.   and  are arbitrary parameters, and 

)(x is an arbitrary function of x . The dot over a symbol means differentiation with respect to 

time, and prime holds for differentiation with respect to x . The equation )1( is of the general 

form  

0)()( 2  xgxxfx                                                                                      )2(  

for which the first integral is given by [3] 
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So, a first integral of (1) may be written as 

22)(22),( xexxx x   
                                                                                                      )4(  

By application of the formula [4] 
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the Lagrangian of the equation (1) becomes 

22)(22),( xexxxL x   
                                                                                                       )6(   

Applying the Euler-Lagrange equation 
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to the equation )6( , gives the equation )1( . Now, using [3]  
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one may deduce from (6) the Hamiltonian  

22)(2
2

4
),( xe

p
xpH x  

                                                                                                 
)9(  

Let us now consider, as illustration, some specific examples of )1( . Let xx )( . Then )1(  

becomes 

0222  xxexx           )10(   

The equation (10) admits the first integral 

2222),( xexxx x                          )11(  

which provides the Lagrangian function 

2222),( xexxxL x             )12(   

The application of the Euler-Lagrange equation )7(  to )12(  gives, as expected, )10( .In this 

regard the Hamiltonian associated to )10(  takes the form 
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So, the Hamilton equations  
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yield for )13(
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The explicit expression for the canonically conjugate momentum p , as a function of x and x

takes then the form  

 xx xexep   22222                      )16(   

Putting now 2

2

1
)( xx  , into )1( , one may obtain as equation 

0
222  xxexxx                                                                                                 )17(  

A first integral of )17(  takes  then the form 
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The associated Lagrangian becomes 
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The application of the Euler-Lagrange equation )7( to )19(  gives with satisfaction )17( . So, 

the associated Hamiltonian may be written as 

22
2

2

4
),( xe

p
xpH x                                                                                                  )20(  

Such that the Hamilton equations take the form 
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The relation between x and p  reads in this perspective 

)(2
22 22 xx exxep                                                                                                      )22(  

2. Analysis of inverted versions 

Consider now the inverted version of (1) 

0)(' )(222  xxexxx                                                                  )23(  

which gives for xx )( , the following equation 
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The first integral of )24(  may be then deduced from )3(  as 

xxx exeexxx 







 4

2

2
4

2
22

82
),(                   )25(

  

Therefore, the Lagrangian for )24(  may be written in the form 
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In this regard, it may be verified that the application of the Euler-Lagrange equation )7(  to 

)26(  yields, as expected, )24( . The Hamiltonian for )24( may also be computed as  
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which gives the Hamiltonian equations  


















xx

x

xeex
p

p

e
p

x





 422
2

2

2
2

2





                                                                                             )28(

from which the canonically conjugate momentum becomes 
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By analysis, other forms of equations are also suggested by the previous studied equations. 

So, the following equations may also be considered in the perspective of this study, that is 

0
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or in general                       
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Finally one may consider the following more generalizations 
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These equations will be investigated in a subsequent work. 
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