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Abstract. The high efficiency of complex analysis is attributable mainly to the ability to represent 

adequately the Euclidean physical plane essential properties, which have no counterparts on the real 

axis. In order to provide the similar ability in higher dimensions of space we introduce the general 

concept of essentially adequate differentiability, which generalizes the key features of the transition 

from real to complex differentiability. In view of this concept the known Cauchy-Riemann-Fueter 

equations can be characterized as inessentially adequate.  Based on this concept, in addition to the 

usual complex definition, the quaternionic derivative has to be independent of the method of qua-

ternion division: on the left or on the right. Then we deduce the generalized quaternionic Cauchy-

Riemann equations as necessary and sufficient conditions for quaternionic functions to be ℍ-holo-

morphic. We prove that each ℍ-holomorphic function can be constructed from the ℂ-holomorphic 

function of the same kind by replacing a complex variable by a quaternionic in an expression for the 

ℂ-holomorphic function. It follows that the derivatives of all orders of ℍ- holomorphic functions are 

also ℍ-holomorphic and can be analogously constructed from the corresponding derivatives of ℂ-

holomorphic functions. The examples of Liouvillian elementary functions demonstrate the effi-

ciency of the developed theory.  

 

                                                                    

1   Introduction 

 

    In accordance with the so-called Meǐlihzon result the admissible set of the quaternion-differ-

entiable functions is restricted to linear functions [1, 2, 3, 4], while the complex analysis gives 

a large class of the complex-differentiable functions. This also means that we cannot construct 

any quaternion-differentiable function from a corresponding complex-differentiable function 

by the direct replacement of a complex variable by a quaternion variable in the expression for 

the complex function (without change of a functional dependence form), while an analogous 

procedure is possible (see, e.g., [5], p. 353) by constructing complex-differentiable functions 

from real-differentiable functions by the direct replacement of a real variable by a complex 
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variable. For example, the complex-differentiable function sin(𝑥 + 𝑖𝑦) can be created in this 

way from the real-differentiable function  sin 𝑥. 

   Such a contradiction cannot exist in principle, since each point of any real line is at the same 

time a point of some plane and space as a whole, and therefore any characterization of differ-

entiability at a point must be the same regardless of whether we think of that point as a point 

on the real axis or a point in the complex plane, or a point in space. Nevertheless, this contra-

diction arises within the framework of existing concepts of quaternionic differentiability and 

does not find a complete solution in accessible materials (see, e.g., [2, 3, 4]) on quaternionic 

analysis. For example, the prevailing direction of quaternionic analysis [3] constructs the "reg-

ular" functions  𝜓 ∶  ℍ → ℍ in an indirect way by means of expressions combining harmonic 

functions of four real variables and analytic functions of a complex variable. The original Cau-

chy-Riemann-Fueter equations (see, e.g., [3, 4]), namely, 

                                                    
𝜕𝜓

𝜕𝑡
+ 𝑖

𝜕𝜓

𝜕𝑥
+ 𝑗

𝜕𝜓

𝜕𝑦
+  𝑘

𝜕𝜓

𝜕𝑧
 = 0                                               (1.1) 

for the left-regular quaternionic functions, and 

                                                    
𝜕𝜓

𝜕𝑡
+

𝜕𝜓

𝜕𝑥
𝑖 +

𝜕𝜓

𝜕𝑦
𝑗 +  

𝜕𝜓

𝜕𝑧
𝑘 = 0                                               (1.2) 

for the right-regular quaternionic functions (the variable being 𝑞 = 𝑡 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧) remain 

the basic conditions of quaternionic differentiability, but the definitions of the left and right 

derivatives in the usual sense (as a limit of the left and right difference quotients) are replaced 

by the definitions using  the exterior differential calculus. As noted in [3], such a "definition of 

'regular' for a quaternionic function is satisfied by a large class of functions and leads to a de-

velopment similar to the theory of regular functions of a complex variable". However the prob-

lem mentioned above remains on the whole.  

    The main reason for this contradiction is the prevailing [1, 2, 3] separate consideration of the 

left and right versions of quaternionic analysis. The separate consideration, as it will be clarified 

below, is essentially not adequate to properties of 3-dimensional physical space since a repre-

sentation of an arbitrary rotation of any vector in space by means of quaternions requires the 

use of both left and right quaternionic multiplication together [6]. The only left or only right 

version enables us to describe only a part of all rotations in space and cannot be regarded as 

essentially adequate. We can call it inessentially adequate. Therefore, the essentially adequate 

quaternionic differentiability theory must be represented by some ''construct'' of the left and 

right versions of differentiability together.  
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    It is necessary to say that there are successful results using the left and right versions together 

[4, 7], however they rather represent ''heuristic'' formulations than give a consequent theory 

similar to complex analysis. In particular, they do not solve the above general problem. 

    The purpose of this article is to develop a theory of quaternionic differentiability, which is 

essentially adequate to properties of 3-dimensional physical space. This purpose is achieved by 

introducing the general concept of essentially adequate definitions and conditions of the hyper-

complex differentiability. They represent a hypercomplex generalization of key features of the 

transition from definitions of real differentiability to those of complex differentiability. This 

concept also contains the requirement of the uniqueness of the derivative value since derivatives 

of hypercomplex-differentiable functions must represent conservative vector fields in space just 

as derivatives of complex-differentiable functions in the plane [5, 9].  

    Based on this concept, we develop below the basics of the theory of quaternionic differenti-

ability similar to the theory of complex differentiability. The derived quaternionic generaliza-

tions of the complex derivative definition and Cauchy-Riemann's equations enable us to solve 

the mentioned problem of constructing quaternion-differentiable functions (and their deriva-

tives of all orders) from complex-differentiable functions (and their derivatives of analogous 

orders) by the direct replacing of variables.  

    The sections and subsections of this article are given as follows: 1 Introduction – (p.1);  

2 Preliminaries – (3); 3 The concept of essentially adequate differentiability – (7); 4 The essen-

tially adequate quaternionic differentiation – (10); 4.1 Principal definitions of ℍ-differentiabil-

ity and ℍ-holomorphicity – (13); 4.2 The essentially adequate generalization of Cauchy-Rie-

mann's equations – (14); 4.3 Construction of ℍ-holomorphic functions – (27); 4.4 ℍ-holomor-

phic derivatives of all orders – (30); 5 Efficiency examples of the presented theory – (34); 6 

Conclusions – (44); References – (45).    

     Examples of elementary functions demonstrate the efficiency of the theory developed, which 

is confirmed every time, when it is required to create the quaternion-differentiable function 

from the corresponding complex-differentiable function of the same type.  

2   Preliminaries 
 

    We assume the reader is familiar enough with the basics of complex numbers and quaterni-

ons, as well as complex and quaternionic analysis (see, e.g., [2, 6, 8, 9]). We give the only data 

which are needed for the sequel.  

    Objects of study in complex analysis in one independent variable are complex-valued func-

tions 𝜓(𝑧) =  𝑢(𝑥, 𝑦) + 𝑣(𝑥, 𝑦)𝑖 of a single complex variable 𝑧 = 𝑥 + 𝑦𝑖 ∈ 𝐺2 ∈ ℂ, where 𝑥 
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and 𝑦 are real variables; 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are real-valued differentiable (with respect to 𝑥 

and 𝑦) functions; 𝐺2 is some connected, open subset called a domain of a function definition 

(or simply the domain). In the sequel we always understand by a domain a connected, open set 

of points. We denote it by 𝐺2 in the complex plane ℂ or by 𝐺4 in the quaternion space  ℍ.  

    The complex derivative of 𝜓(𝑧) at any point 𝑧 in its domain is defined by the limit of the 

difference quotient:  

                                              𝜓′(𝑧) = lim
∆𝑧→0

𝜓(𝑧+Δ𝑧)−𝜓(𝑧) 

Δ𝑧
=  

𝑑𝜓(𝑧)

𝑑𝑧
 ,                                         (2.1) 

as the complex increment  ∆𝑧 = ∆𝑥 + ∆𝑦𝑖  approaches zero. This is the same as the definition 

of the derivative for real functions, except that all of the quantities are complex. If the limit 

(2.1) exists, then the function 𝜓(𝑧) is called complex-differentiable (briefly, ℂ-differentiable) 

at the point 𝑧. A function 𝜓(𝑧) is said to be complex-holomorphic (briefly, ℂ-holomorphic) at 

the point 𝑧, if 𝜓(𝑧) is ℂ-differentiable in some open connected neighborhood of 𝑧. If 𝜓(𝑧) is 

ℂ-differentiable at every point 𝑧 in an open set 𝐺2, we say that 𝜓(𝑧) is ℂ-holomorphic on 𝐺2. 

Such functions are denoted by 𝜓𝐶(𝑧) in the sequel. 

    The existence of the limit (2.1) is equivalent to independence of the path that ∆𝑧 follows 

toward zero. It gives [1, 3, 6] the complex Cauchy-Riemann condition, which can be written as 

                                                                   𝑖
𝜕𝜓

𝜕𝑥
=

𝜕𝜓

𝜕𝑦
                                                         (2.2) 

where multiplying  
𝜕𝜓

𝜕𝑥
 by imaginary unit 𝑖 reflects the essentially new property of the complex 

plane, namely, the rotations of vectors in the plane. The differentiability condition (2.2) can be 

regarded as the essentially adequate condition of complex differentiability since it reflects  the 

essential  property of the new dimension of physical space (the complex plane), which have no 

counterparts in the previous dimension of space (the real axis).    

    Usually, the requirement (2.2) is represented by two equations, namely, for  𝑢(𝑥, 𝑦) 

and 𝑣(𝑥, 𝑦), the so-called Cauchy-Riemann equations:  

                                                        
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 ,      

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 .                                                  (2.3) 

In the sequel we use the compact notation 𝜕𝑠, where 𝑠 may be any variable, to denote the partial 

differentiation with respect to this variable. By using this notation, the Cauchy-Riemann equa-

tions can be rewritten as  

                                                    𝜕𝑥𝑢 =  𝜕𝑦𝑣 ,     𝜕𝑦𝑢 = − 𝜕𝑥𝑣.                                              (2.4) 

The relationship between real differentiability and complex differentiability is the following. If 

a complex function 𝜓(𝑧) = 𝜓(𝑥 + 𝑦𝑖) = 𝑢(𝑥, 𝑦) + 𝑣(𝑥, 𝑦)𝑖  is  ℂ-holomorphic, then 𝑢(𝑥, 𝑦) 
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and 𝑣(𝑥, 𝑦) have first partial derivatives with respect to x and y (in the sense of real differenti-

ability) and satisfy (the additional complex condition) Cauchy–Riemann's equations.  

    In the quaternion theory below we use the complex values  

                                                                   𝑎 = 𝑥 + 𝑦𝑖,                                                            (2.5) 

                                                                   𝑏 = 𝑧 + 𝑢𝑖,                                                               (2.6) 

and their conjugates 

                                                                   𝑎 = 𝑥 − 𝑦𝑖,                                                            (2.7) 

                                                                   𝑏 = 𝑧 − 𝑢𝑖,                                                            (2.8) 

where 𝑥, 𝑦, 𝑧, and 𝑢 are real numbers. These values define according to the Cayley–Dickson 

doubling procedure [6] the independent quaternionic variable  

                                      𝑝 =  𝑥 + 𝑦𝑖 + 𝑧𝑗 + 𝑢𝑘 = (𝑥 + 𝑦𝑖) + (𝑧 + 𝑢𝑖)𝑗                               (2.9) 

                                          = 𝑎 + 𝑏𝑗 ∈ ℍ, 

where 𝑖, 𝑗, 𝑘 are "imaginary" units of the quaternionic algebra with multiplication table   

                      𝑖2 = 𝑗2 = 𝑘2 = −1, 𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖, 𝑘𝑖 = −𝑖𝑘 = 𝑗.                  (2.10) 

    The Cayley–Dickson doubling procedure is essential to the theory of quaternionic differen-

tiability discussed in this paper. Note that the general scheme (2.9) of ''doubling'' the complex 

numbers uses the ''imaginary unit'' 𝑗 in   𝑝 = 𝑎 + 𝑏𝑗. The quaternion conjugate of 𝑝 is defined, 

as usual [6], by   

                                                 𝑝 = 𝑎 − 𝑏𝑗 = 𝑥 − 𝑦𝑖 − 𝑧𝑗 − 𝑢𝑘.                                         (2.11) 

    Let 𝑝 = (𝑥1 + 𝑦1𝑖) + (𝑧1 + 𝑢1𝑖) ⋅ 𝑗 = 𝑎1 + 𝑏1 ⋅ 𝑗  and 𝑞 = (𝑥2 + 𝑦2𝑖) + (𝑧2 + 𝑢2𝑖) ⋅ 𝑗 =

𝑎2 + 𝑏2 ⋅ 𝑗  be two arbitrary quaternions. Then the multiplication rule for quaternions in the 

Cayley–Dickson doubling form is determined [6] by 

               𝑝 ⋅ 𝑞 = (𝑎1 + 𝑏1 ⋅ 𝑗) ⋅ (𝑎2 + 𝑏2 ⋅ 𝑗) = (𝑎1𝑎2 − 𝑏1𝑏2) + (𝑎1𝑏2 + 𝑎2𝑏1) ⋅ 𝑗,          (2.12) 

where by " ∙" is denoted the quaternion multiplication. Putting 𝑎1 = 𝑥1  (𝑦1 = 0) , 𝑏1 = 𝑧1 

(𝑢1 = 0), 𝑎2 = 𝑎2 = 𝑥2  (𝑦2 = 0),  𝑏2 = 𝑏2 = 𝑧2 (𝑢2 = 0) we have two complex numbers        

𝑝 = 𝑥1 + 𝑧1𝑗 and 𝑞 = 𝑥2 + 𝑧2𝑗; then the multiplication rule for quaternions (2.12) reduces to 

the known  multiplication rule for complex numbers: 

                   𝑝 ∙ 𝑞 = (𝑥1 + 𝑧1 ∙ 𝑗) ∙ (𝑥2 + 𝑧2 ∙ 𝑗) = (𝑥1𝑥2 − 𝑧1𝑧2) + (𝑥1𝑧2 + 𝑥2𝑧1) ∙ 𝑗                     

where imaginary unit 𝑗 ( 𝑗2 = −1)  plays  a role of the "complex imaginary unit" 𝑖. 

    In the sequel we consider the quaternion-valued (briefly, quaternionic) functions  

                𝜓(𝑝) = 𝜓1(𝑥, 𝑦, 𝑧, 𝑢) + 𝜓2(𝑥, 𝑦, 𝑧, 𝑢)𝑖 + 𝜓3(𝑥, 𝑦, 𝑧, 𝑢)𝑗 + 𝜓4(𝑥, 𝑦, 𝑧, 𝑢)𝑘,      (2.13) 

which in accordance with the Cayley–Dickson doubling [6] procedure are represented as  

                                       𝜓(𝑝) = 𝜓(𝑎, 𝑏) = 𝜙1(𝑎, 𝑏) + 𝜙2(𝑎, 𝑏) ∙ 𝑗,                                 (2.14) 
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where 𝜓1(𝑥, 𝑦, 𝑧, 𝑢), 𝜓2(𝑥, 𝑦, 𝑧, 𝑢), 𝜓3(𝑥, 𝑦, 𝑧, 𝑢), and 𝜓4(𝑥, 𝑦, 𝑧, 𝑢) are real-valued functions, 

and  

                    𝜙1(𝑎, 𝑏) = 𝜓1(𝑎, 𝑏) + 𝜓2(𝑎, 𝑏)𝑖 = 𝜓1(𝑥, 𝑦, 𝑧, 𝑢) + 𝜓2(𝑥, 𝑦, 𝑧, 𝑢)𝑖,             (2.15) 

                    𝜙2(𝑎, 𝑏) = 𝜓3(𝑎, 𝑏) + 𝜓4(𝑎, 𝑏)𝑖 = 𝜓3(𝑥, 𝑦, 𝑧, 𝑢) + 𝜓4(𝑥, 𝑦, 𝑧, 𝑢)𝑖              (2.16) 

are complex-valued functions. We write briefly  𝜙1(𝑎, 𝑏) and 𝜙2(𝑎, 𝑏) bearing in mind the 

complete notation 𝜙1(𝑎, 𝑎, 𝑏, 𝑏) and 𝜙2(𝑎, 𝑎, 𝑏, 𝑏).  As usual [2, 3, 6], the quaternionic conju-

gate of 𝜓(𝑝) is determined by  

                𝜓(𝑝) = 𝜓1(𝑥, 𝑦, 𝑧, 𝑢) − 𝜓2(𝑥, 𝑦, 𝑧, 𝑢)𝑖 − 𝜓3(𝑥, 𝑦, 𝑧, 𝑢)𝑗 − 𝜓4(𝑥, 𝑦, 𝑧, 𝑢)𝑘       (2.17) 

                          = 𝜙
1

(𝑎, 𝑏) − 𝜙2(𝑎, 𝑏)𝑗. 

Quaternionic functions are assumed to be continuous and single-valued everywhere on their 

definition domains 𝐺4 except, possibly, at certain singularities. 

    In accordance with definitions of complex analysis [2, 3] we shall be concerned with the 

following differential operators:  

                                                           𝜕𝑎 = 1

2
(𝜕𝑥 − 𝜕𝑦 ∙ 𝑖),                                                  (2.18) 

                                                           𝜕𝑎 = 1

2
(𝜕𝑥 + 𝜕𝑦 ∙ 𝑖),                                                    (2.19) 

                                                           𝜕𝑏 = 1

2
(𝜕𝑧 − 𝜕𝑢 ∙ 𝑖),                                                    (2.20) 

                                                           𝜕𝑏 = 1

2
(𝜕𝑧 + 𝜕𝑢 ∙ 𝑖).                                                      (2.21) 

Here the differential operators 𝜕𝑎  and  𝜕𝑏 represent the so-called Cauchy-Riemann operators 

in the complex planes 𝑎 = 𝑥 + 𝑦𝑖 and 𝑏 = 𝑧 + 𝑢𝑖, respectively.   

    The quaternionic generalization [2, 3] of the Cauchy-Riemann operator is denoted by 𝜕 and 

called the Cauchy-Riemann operator too. It and its quaternion conjugate ∂ are represented, as 

usual, by     

                                                    𝜕 = 𝜕𝑥 + 𝜕𝑦 ∙ 𝑖 + 𝜕𝑧 ∙ 𝑗 + 𝜕𝑢 ∙ 𝑘                                           (2.22)                

                                                  𝜕 = 𝜕𝑥 − 𝜕𝑦 ∙ 𝑖 − 𝜕𝑧 ∙ 𝑗 − 𝜕𝑢 ∙ 𝑘                                          (2.23)                         

Since 𝜕 = (𝜕𝑥 + 𝜕𝑦 ∙ 𝑖) + (𝜕𝑧 + 𝜕𝑢 ∙ 𝑖) ∙ 𝑗, 𝜕 = (𝜕𝑥 − 𝜕𝑦 ∙ 𝑖) − (𝜕𝑧 + 𝜕𝑢 ∙ 𝑖) ∙ 𝑗 the quaternion 

Cauchy-Riemann operator and its quaternion conjugate may be represented in the Cayley–

Dickson doubling form as follows: 

                                                           𝜕 = 2(𝜕𝑎 + 𝜕𝑏 ∙ 𝑗),                                                      (2.24) 

                                                           𝜕 = 2(𝜕𝑎 − 𝜕𝑏 ∙ 𝑗).                                                    (2.25) 

When it is obvious that the quaternion multiplication is used we can omit its notation, that is, 

the dot ''∙''. 
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     A rotation of any vector 𝑧 in the complex plane through an arbitrary angle 𝜑 is represented 

[5, 8, 9] by means of multiplication of this vector by the complex number 𝑟 = cos 𝜑 + 𝑖 sin 𝜑 

(of length 1): 

                                                                     𝑧′ = 𝑟𝑧, 

where 𝑧′ is the vector 𝑧 after the rotation. The commutativity of rotations in the Euclidean plane 

is adequately represented by the commutative multiplication of complex numbers: 

                                                          𝑧′ = 𝑟2𝑟1𝑧 = 𝑟1𝑟2𝑧, 

 where 𝑟1 and 𝑟2 are complex numbers  corresponding rotations.    

    A rotation of any 3-dimensional vector 𝑣 about an arbitrary 3-dimensional vector 𝑝1of length 

1 through an arbitrary angle 2𝜑1 is represented [6] by means of multiplication of 𝑣 on the left 

by the quaternion 𝑞1 = cos 𝜑1 + 𝑝1 sin 𝜑1 (of length 1) and on the right by the quaternion 

𝑞1
−1 = cos 𝜑1 − 𝑝1 sin 𝜑1 : 

                                                                 𝑣1 = 𝑞1𝑣𝑞1
−1 , 

where 𝑣1 is the vector 𝑣  after the rotation, 𝑞1
−1 is the inverse of the quaternion 𝑞1 such that  

𝑞1𝑞1
−1 = 1. Clearly, the description of arbitrary rotations in space requires the use of both left 

and right quaternion multiplication together. Noncommutativity of quaternion multiplication 

represents adequately noncommutativity of vector rotations in 3-dimensional physical space: 

                𝑞2(𝑞1𝑣𝑞1
−1)𝑞2

−1 = (𝑞2𝑞1)𝑣(𝑞2𝑞1)−1 ≠ 𝑞1(𝑞2𝑣𝑞2
−1)𝑞1

−1 = (𝑞1𝑞2)𝑣(𝑞1𝑞2)−1,    

where 𝑞2 = cos 𝜑2 + 𝑝2 sin 𝜑2  and 𝑞2
−1 = cos 𝜑2 − 𝑝2 sin 𝜑2 are quaternions of length 1. We 

see that a sequence of rotations of any vector 𝑣 about arbitrary axes 𝑝1 and 𝑝2 through the cor-

responding arbitrary angles 2𝜑1 and 2𝜑2 is non-commutative owing to noncommutativity of 

quaternion multiplication:                                                  

                                                                  𝑞2𝑞1 ≠ 𝑞1𝑞2. 

    The use of the only left or only right version of the quaternion theory is essentially non-ade-

quate  to physical properties of 3-dimensional  space, because such a use does not describe all 

arbitrary non-commutative rotations in space. 

3   The concept of essentially adequate differentiability 
 

    In order to obtain the correct (that is, adequate to properties of physical space)  hypercomplex 

generalization of complex differentiability conditions (2.4),  it is necessary to define a general  

concept (rules) for obtaining the essentially adequate differentiability conditions upon transition 

from spatial dimension 𝑁  to dimension 𝑁 + 1 (briefly, to a new dimension), where 𝑁 = 1, 2 .         
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We formulate this in a general way that allows us to analyze the known hypercomplex gener-

alizations of complex analysis. This concept can be established by the following assertions. 

Assertion 3.1  Essentially adequate differentiability conditions upon the transition to a new 

dimension must be formulated only on the basis of algebras adequately representing new prop-

erties of a new dimension, that is, properties, which have no counterparts in the previous di-

mensions of space. 

    Clearly, the new property of commutative vector rotations appears upon transition from the 

real axis to the Euclidean (physical) plane. This property has no counterpart on the real axis and 

is adequately represented by the commutative algebra of complex numbers. Therefore, complex 

differentiability conditions are adequate to physical reality of Euclidean space.   

    Further on, a new property of noncommutativity of vector rotations appears upon transition 

from the Euclidean physical plane to 3-dimensional Euclidean physical space. This property is 

adequately represented by the non-commutative algebra of quaternions and has no counterpart 

in the complex plane, where rotations are commutative. 

    From this assertion it follows that any generalizations of complex analysis cannot be ade-

quate to 3-dimensional physical space if they are based on algebras with the commutative law 

of multiplication (see, e.g., S. Rönn's bicomplex analysis in [10], M.S. Marinov's S-regular 

functions in [2]). It is impossible to expect from such generalizations any results comparable in 

the "internal perfection and external justification" with results of real and complex theory of 

differentiability.  

    It also follows that definitions of quaternionic differentiability only "on the left" and only 

"on the right" (left-regular and right-regular functions in [2, 3, 4]) cannot be essentially adequate 

to the 3-dimensional space properties, since the description of the arbitrary vector rotations in 

space requires the use of both quaternionic multiplications, that is, the left and the right quater-

nionic multiplication must only be used together. Thus the statement of the type "For definite-

ness, we will only consider left-regular functions, which we will call simply 'regular' " (see [3]) 

cannot be regarded as true. In this sense, all the papers quoted above represent hypercomplex 

generalizations, which cannot be regarded as essentially adequate. 

Assertion 3.2 The definition of differentiability in higher dimensions of space cannot be "re-

duced" to the definition of differentiability in the previous lower dimensions. There must be 

some additional conditions of differentiability, which correspond to the new dimension proper-

ties and have no structural (algorithmic) counterparts in the previous lower dimensions.   
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    This assertion generalizes the known statement of complex analysis [8, 9]: the differentiabil-

ity in the complex sense cannot be "reduced" (cannot be completely similar) to the differentia-

bility in the real sense since the complex differentiability  requires not only the existence of 

partial derivatives in the real sense (that is, a simple transfer of the corresponding concepts of 

real analysis) but also the satisfaction the Cauchy–Riemann complex differentiability condi-

tions, which have no counterparts on the real axis and correspond to the new property of com-

mutative rotations of vectors in the physical plane. 

Assertion 3.3 By analogy with real and complex analysis any generalization of differentiability 

conditions upon transition to the new dimension of space must contain a requirement of the 

uniqueness of the derivative value. We must also strive to preserve the form (2.1) of a derivative 

definition upon transition from the complex plane to the new higher dimension of space. 

    In complex analysis any holomorphic function 𝜓𝐶(𝑧0) with nonvanishing derivative at a 

point 𝑧0 ∈ ℂ  is a conformal (angle-preserving) map at that point. A conformal mapping  𝜓𝐶(𝑧) 

qives a graphical picture of a "linear transformation" (dilation) of an initial complex plane, if 

we plot images of horizontal and vertical lines under the map  𝜓𝐶(𝑧).   

   This transformation can be "measured" as follows. Firstly, we represent the derivative 𝜓𝐶
′ (𝑧0)   

in the known [9] exponential polar form  𝜓𝐶
′ (𝑧0) = |𝜓𝐶

′  (𝑧0)|𝑒𝑖𝜃  and, secondly, we say 

that 𝜓𝐶(𝑧0) at the point 𝑧0 has the dilation constant [9] or scale factor [11]  

                                                            𝑟 = |𝜓𝐶
′ (𝑧0)| > 0,                                                        (3.1) 

and the rotation angle 𝜃 ∈ [0,2𝜋[. Thus we associate local dilations of the 2-dimensional com-

plex plane under the map 𝜓𝐶(𝑧)  with the derivative in the form (2.1), that is, with the limit of 

the quotient of the line segment "Δ𝜓(𝑝) " in the "dilated" complex plane by the line segment 

"Δ𝑝" in  the initial "non-dilated" plane.  

    This simplest representation of 1- and 2- dimensional local dilations (in the form (2.1)) must 

be preserved to obtain a correct hypercomplex representation of 3-dimensional local dilations. 

Indeed, any point of the real axis is also a point of some plane and a point of space. Then the 

derivative definition at that point must have the same form (2.1) regardless of whether we think 

of that point as a point on the real axis or a point in the complex plane, or a point in space. Such 

a representation must have a unique value of a derivative (2.1), since it is impossible to imagine 

that a 3-dimensional local dilation at the same point can have two or more vector values.  

    On the other hand, the uniqueness of the derivative value follows from the fact that the de-

rivative (2.1) of any ℂ-holomorphic function (viewed as a complex potential function) is asso-

ciated in complex analysis with a complex vector [11] of the corresponding conservative vector 

field. This vector (a field strength) can have physically the only unique value. Therefore, the 
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derivative value must be unique regardless of whether we consider it in real or in complex 

analysis, or in some hypercomplex generalization of complex analysis.  

    For this reason, if a quaternionic derivative is defined by analogy with formula (2.1) as a 

limit of the difference quotient, then it must have the same value regardless of whether we 

calculate the derivative by using the division on the left or the division on the right. 

    It is not superfluous to note that the physical formulation of a problem played an important 

role initially in the theory of complex-differentiable functions, and the Cauchy-Riemann equa-

tions (2.4) were found [8] as early as in 1752 in d'Alembert's doctrine about planar fluid flow.  

4   The essentially adequate quaternionic differentiation 
 

    First we establish consequences of assertion 3.3 of the essentially adequate (EA) differenti-

ability concept. To get the correct conclusions there is a need to recall the well-known things, 

which are frequently not taken into consideration in the articles on the generalizations of com-

plex analysis. 

    The complex division algebra representing operations on vectors in the Euclidean complex 

2- dimensional plane is a normed algebra with identity element 1. Since 3-dimensional Euclid-

ean space, say, consists of Euclidean 2-dimensional planes, it follows that a hypercomplex rep-

resentation of operations on vectors in 3-dimensional space must also be a certain normed al-

gebra with identity element 1. We shall say a few words about these properties of algebras; for 

details we refer to [6].  

    The normability concept characterizes in principle the possibility of "measuring" of a dis-

tance between two points in the Euclidean plane and Euclidean space. Such a distance is repre-

sented [2, 6, 8, 9]  in complex algebra by the absolute value |𝑎| (the norm or length) of a com-

plex vector 𝑎 = 𝑥 + 𝑖𝑦: 

                                               |𝑎| = √𝑎𝑎 = √𝑥2 + 𝑦2 = √(𝑎, 𝑎), 

where (𝑎, 𝑎) is the so-called scalar product (see, e.g., [6], p. 94).The general expression of 

normability is defined usually as the norm property                         

                                                               |𝑎𝑎′| = |𝑎||𝑎′|. 

The analogous formulae exist [6] in the 4-dimensional quaternion algebra: 

  |𝑝| = √𝑝𝑝 = √𝑝𝑝 = √𝑥2 + 𝑦2 + 𝑧2 + 𝑢2 = √(𝑝, 𝑝) = √𝑎𝑎 + 𝑏𝑏,  |𝑝𝑝′| = |𝑝||𝑝′|,     (4.1)   

where  𝑝 = 𝑥 + 𝑦𝑖 + 𝑧𝑦 + 𝑢𝑘 is an arbitrary quaternion and 𝑝′ is another arbitrary quaternion.  

    The possibility of "measuring" of a line segment length such as |∆𝜓| and |∆𝑧| (or |∆𝑝|), that 

is, the normability property of an acceptable algebra is the first requirement, which enable us 
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in principle to obtain an expression for a spatial dilation constant similar to (3.1). Only in this 

case, it makes sense to use an expression similar to (2.1) for the definition of a hypercomplex 

derivative.  

    The second requirement is the possibility of the division operation in an acceptable hyper-

complex number system. This enables us to define a hypercomplex derivative as a limiting 

value of a difference quotient similar to formula (2.1) used in complex analysis.  

    Now it makes sense to recall [6] the division definition in a hypercomplex number system. 

A hypercomplex number of dimension 𝑛 can be written as follows: 

                                           𝑢 = 𝑢11 + 𝑢2𝑖2 + 𝑢3𝑖3 +  … + 𝑢𝑛𝑖𝑛,                                        (4.2) 

where 𝑛 is a fixed integer, and 1 is an identity element defined by the formula  

                                                              𝑢1 = 1𝑢 = 𝑢                                                                     (4.3) 

for any 𝑢; 𝑢1, 𝑢2, … 𝑢𝑛  are arbitrary real numbers, and 𝑖2, 𝑖3, … 𝑖𝑛  are certain symbols ("imag-

inary units") with multiplication rule defined  by some multiplication table ( see, e.g., [6], p. 

36). The operations defined in each system of hypercomplex numbers are addition, subtraction, 

and multiplication. The possibility of division depends on the system. 

    Let  

                                             𝑣 = 𝑣11 + 𝑣2𝑖2 + 𝑣3𝑖3 + … + 𝑣𝑛𝑖𝑛, 

be another hypercomplex number, where 𝑣1, 𝑣2  … 𝑣𝑛    are real numbers such that 𝑣 ≠ 0.   

A hypercomplex number system is called a division system if for all 𝑢 and 𝑣 ≠ 0 each of equa-

tions: 

                                                                     𝑣𝑥 = 𝑢                                                              (4.4) 

and 

                                                                     𝑥𝑣 = 𝑢                                                              (4.5) 

is uniquely solvable. The solution of equation (4.4) is called the left quotient of  𝑢 by 𝑣, and the 

solution of equation (4.5) is called the right quotient of 𝑢 by  𝑣. In general, two quotients are 

different. 

    The concept of an algebra is more general than that of a hypercomplex system. Any algebra 

of dimension 𝑛 consists of elements that are representable in the form 

                                           𝑢 = 𝑢1𝑖1 + 𝑢2𝑖2 + 𝑢3𝑖3 +  … + 𝑢𝑛𝑖𝑛, 

and are added, subtracted, multiplied, and divided in the same way as the hypercomplex num-

bers [6]. Every hypercomplex system may be viewed as an algebra in which the first basis 

element 𝑖1 (in general, ≠ 1) is replaced by the identity element 1. 

    If we "clear away" the terms with  3 ≤ 𝑘 ≤ 𝑛 in the expression (4.2) and in the corresponding 

multiplication table (e.g., in the table (2.10), where the units 𝑖2, 𝑖3, 𝑖4 are denoted,  
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respectively, by  𝑖, 𝑗, 𝑘), then we reduce the hypercomplex numbers of dimension 𝑛 to the hy-

percomplex numbers of dimension 2. Starting with 𝑛 = 4, we can write out three hypercomplex 

numbers of dimensions 4, 3, 2, respectively: 

                                                  𝑢 = 𝑢11 + 𝑢2𝑖2 + 𝑢3𝑖3 + 𝑢4𝑖4,                                            (4.6) 

                                                       𝑢 = 𝑢11 + 𝑢2𝑖2 + 𝑢3𝑖3,                                                 (4.6a) 

                                                             𝑢 = 𝑢11 + 𝑢2𝑖2 ,                                                     (4.6b) 

where we assume that the latter denotes a complex number. 

    Instead of a 4-dimensional hypercomplex number (4.6) we consider now an element of an  

4-dimensional algebra:  

                                                 𝑢 = 𝑢1𝑖1 + 𝑢2𝑖2 + 𝑢3𝑖3 + 𝑢4𝑖4,                                                  (4.7) 

 where 𝑖1 ≠ 1 (the other 𝑖𝑘 ≠ 1 , 𝑘 = 2, 3, 4). If there is no identity elements 1 in the expres-

sion (4.7), then by starting with (4.7) and "clearing away" any two terms 𝑢𝑘𝑖𝑘 in it, we cannot 

reduce this expression to the expression (4.6b) of the complex algebra, since the latter has the 

identity element 1. Hence, each acceptable generalization of the complex algebra correspond-

ing to properties of the physical space and therefore "including" the complex algebra ''as a lim-

iting case'', must contain the identity element 1. We can regard this as the third requirement 

that must be imposed on the algebra, underlying the EA hypercomplex differentiability.  

    Thus, we have shown that assertion 3.3 together with the natural third requirement leads to 

necessity of using of some normed division algebra with the identity element 1 to determine a 

hypercomplex derivative upon transition from the complex plane to space. 

    As is well known, (see, e.g., [6], p. 39), any 3-dimensional system of numbers of the form  

𝑢11 + 𝑢2𝑖2 + 𝑢3𝑖3, with any multiplication table, does not possess a division operation. Hence 

we need look for a hypercomplex division system in higher dimensions. The next extension 

(with division) beyond the complex numbers is to the quaternions. This can be explained as 

follows. According to Hurwitz's theorem, [6] ''every normed algebra with an identity is isomor-

phic to one of following four algebras: the real numbers, the complex numbers, the quaternions, 

and the Cayley numbers''. Hence, the only quaternion algebra can be the nearest algebra under-

lying the EA hypercomplex differentiability.  Assertion 3.1 leads to this conclusion too.  

    Finally, we can state that the quaternion algebra remains the only algebra that satisfies 

 assertions 3.1 and 3.3 of essentially adequate differentiability conditions. It follows that a hy-

percomplex generalization of complex differentiability must be realized as a quaternion gener-

alization. 
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4.1   Principal definitions of ℍ-differentiability and ℍ-holomorphicity   

 

    Let ∆𝑝 = ∆𝑎 + ∆𝑏𝑗 be an arbitrary increment of the quaternion variable 𝑝 = 𝑎 + 𝑏𝑗 in the 

Cayley–Dickson "doubling form" (see (2.9)). A corresponding increment of a quaternion func-

tion (see (2.14))  𝜓(𝑝) = 𝜓(𝑎, 𝑏) = 𝜙1(𝑎, 𝑏) + 𝜙2(𝑎, 𝑏)𝑗,  at a point 𝑝 = 𝑎 + 𝑏𝑗 = (𝑎, 𝑏) can 

be denoted by ∆𝜓(𝑝) = ∆𝜓(𝑎, 𝑏) = ∆𝜙1(𝑎, 𝑏) + ∆𝜙2(𝑎, 𝑏)𝑗. Now suppose that a function 

𝜓(𝑝) is defined in domain 𝐺4 ⊆ ℍ and has in 𝐺4 all first-order partial derivatives of  complex 

functions  𝜙1, 𝜙
1
, 𝜙2, 𝜙

2
  with respect to complex variables 𝑎, 𝑎, 𝑏, 𝑏 in the usual sense, that 

is, as limiting values of  corresponding quotients of the increments ∆𝜙1, ∆𝜙
1
, ∆𝜙2 and ∆𝜙

2
  by 

the increments ∆𝑎, ∆𝑎, ∆𝑏 and ∆𝑏.  By a domain 𝐺4 we understand, as usual, a connected, open 

set of points in the quaternion space ℍ. We define a quaternion-differentiable (briefly, ℍ-dif-

ferentiable) function in accordance with the above concept of EA differentiability as follows.  

Definition 4.1   A single-valued function 𝜓(𝑝) ∶ 𝐺4 → ℍ is ℍ-differentiable at a point 

 𝑝 ∈ 𝐺4 ⊆ ℍ  if there exists a limiting value (denoted  by  𝑑𝜓(𝑝)

𝑑𝑝
) of the difference quotient   

                                                                         
𝛥𝜓

𝛥𝑝
                                                                    (4.8) 

as ∆𝑝 → 0 , and  this value is independent of (i) how we let ∆𝑝 = ∆𝑎 + ∆𝑏𝑗 approach  zero, 

and  (ii) how we divide ∆𝜓(𝑝) = 𝜓(𝑝 + ∆𝑝) − 𝜓(𝑝) by ∆𝑝: on the left or on the right. We say 

also that 𝜓(𝑝) has a quaternionic derivative  𝑑𝜓(𝑝)

𝑑𝑝
  at a point 𝑝 ∈ 𝐺4. 

    In its essence, this definition is a "transfer" of complex definition (2.1) with the additional 

requirement (ii) of the independence of the division way. For the sequel, it is possible to intro-

duce for both requirements (i) and (ii) to be used together in the definition of the quaternionic 

derivative, more succinctly a single notion of "independence of the way of computation ".  

    By analogy with complex analysis [9], we make the following definition of the quaternion-

holomorphic (briefly, ℍ-holomorphic) functions. 

Definition 4.2 If a quaternionic function 𝜓(𝑝) is single-valued and ℍ-differentiable in some 

open connected neighborhood of 𝑝 ∈ ℍ, then we say that this function is ℍ-holomorphic at a 

point 𝑝 and denote it by 𝜓𝐻(𝑝). If  𝜓(𝑝) is ℍ -differentiable at every point  𝑝 in an open con-

nected set 𝐺4 ⊆ ℍ, then we say that 𝜓𝐻(𝑝) is ℍ-holomorphic on 𝐺4.  

    When speaking of a ℍ-differentiability or a ℍ-holomorphicity in the sequel we shall use a 

general term "ℍ-holomorphicity".  
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4.2 The essentially adequate generalization of Cauchy-Riemann's equations  

 

    Now we show that Definition 4.1 leads to the following  

    Necessary condition for ψ (p) to be H- holomorphic. Continuing the analogy with real and 

complex numbers, we consider now two "directions" to approach a limiting point 𝑝 for  𝑝 + ∆𝑝 

as ∆𝑝 = ∆𝑎 + ∆𝑏 ∙ 𝑗 → 0: the way A) ∆𝑝 = ∆𝑎 → 0 when ∆𝑏 ∙ 𝑗 = 0, and the way B) ∆𝑝 =

∆𝑏 ∙ 𝑗 → 0 when ∆𝑎 = 0. They must be considered together with division on the left and divi-

sion on the right in the expression of the difference quotient (4.8).  

    The division on the left. A) ∆p = ∆a → 0, when  ∆b ∙ j = 0. 

In this case the difference quotient (4.8) in accordance with (4.4) can be represented in the form 

                                ∆𝑎(𝑋𝐿1(𝑎) + 𝑋𝐿2(𝑎) ∙ 𝑗) = ∆𝜙1(𝑎) + ∆𝜙2(𝑎) ∙ 𝑗 = ∆𝜓(𝑎),                                       

where by (𝑋𝐿1(𝑎) + 𝑋𝐿2(𝑎)𝑗) is denoted the solution of this equation for every ∆𝑎. For any ∆𝑎 ≠

0 it follows that 𝑋𝐿1(𝑎) = ∆𝜙1(𝑎) ∆𝑎⁄  and 𝑋𝐿2(𝑎) = ∆𝜙2(𝑎) ∆𝑎⁄ . Now we denote the limiting 

value of 𝑋𝐿1(𝑎)  by ′𝜙1(𝑎)(𝑝) and the limiting value of 𝑋𝐿2(𝑎)  by ′𝜙2(𝑎)(𝑝) as ∆𝑝 = ∆𝑎 → 0. 

We obviously have  

                                           ′𝜙1(𝑎)(𝑝) = 𝜕𝑎𝜙1,      ′𝜙2(𝑎)(𝑝) = 𝜕𝑎𝜙2.                                    (4.9)              

   The partial complex derivatives 𝜕𝑎𝜙1and 𝜕𝑎𝜙2 are defined, respectively, as limits of quo-

tients  ∆𝜙1(𝑎) ∆𝑎 ⁄ and ∆𝜙2(𝑎) ∆𝑎 ⁄ as ∆𝑝 = ∆𝑎 → 0, that is, in the same usual way as deriva-

tives in real analysis. We suppose here (and in the sequel) that limits of all quotients, that is, all 

partial derivatives of functions 𝜙1, 𝜙1, 𝜙2, 𝜙2 with respect to 𝑎, 𝑎, 𝑏, 𝑏 exist and are independ-

ent of how we let Δ𝑎 and Δ𝑏 approach  zero. Since the "arithmetic" of complex numbers is the 

same as that of real numbers, we can say that all formulae for computation of complex deriva-

tives must be the same (see, e.g., [9], p. 41) as formulae for real derivatives. Thus using division 

on the left and the way A) ∆𝑝 = ∆𝑎 → 0 (∆𝑏 ∙ 𝑗 = 0) in the expression of the difference quo-

tient (4.8), we get the following expression for the left derivative ′𝜓(𝑎)(𝑝): 

                                ′𝜓(𝑎)(𝑝) = ′𝜙1(𝑎)(𝑝) + ′𝜙2(𝑎)(𝑝)𝑗 = 𝜕𝑎𝜙1 + 𝜕𝑎𝜙2𝑗,                           (4.10)     

where index "(𝑎)"  and the left position of the derivative sign " ' " mean, respectively, that the 

way A) and division on the left  are considered. For simplicity we omit the designation " ⋅ " of 

quaternion multiplication in front of " 𝑗 " bearing in mind in the sequel that multiplication by 

"𝑗" can be only carried out according to the quaternion multiplication rule.   

    The division on the left.  B)  ∆p = ∆bj → 0, when ∆a = 0.  

In this case the difference quotient (4.8) in accordance with (4.4) can be represented in the form 

                                 ∆𝑏𝑗 ⋅ (𝑋𝐿1(𝑏) + 𝑋𝐿2(𝑏)𝑗) = ∆𝜙1(𝑏) + ∆𝜙2(𝑏)𝑗 = ∆𝜓(𝑏),                           
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where by (𝑋𝐿1(𝑏) + 𝑋𝐿2(𝑏)𝑗) is denoted the solution of this equation for every given ∆𝑏𝑗. Using 

the left distributive law [6] of quaternion multiplication, we obtain  

                                        ∆𝑏𝑗𝑋𝐿1(𝑏) + ∆𝑏𝑗𝑋𝐿2(𝑏)𝑗 = ∆𝜙1(𝑏) + ∆𝜙2(𝑏)𝑗.   

Since the result must be represented in the "doubling form", where the unit " 𝑗 " is always lo-

cated after a complex value (see (2.9), (2.14)), we use the known (see, e.g., [6], p. 42) equality 

𝑗𝑧 = 𝑧𝑗, 𝑧 ∈ ℂ as well as the associativity of quaternion multiplication. It follows that         

                                     −∆𝑏𝑋𝐿2(𝑏) + ∆𝑏𝑋𝐿1(𝑏)𝑗 = ∆𝜙1(𝑏) + ∆𝜙2(𝑏)𝑗. 

    Equating the terms without "𝑗" on the left and the right sides of this equation, and analogically 

the expressions with "j", we get  

                                       −∆𝑏𝑋𝐿2(𝑏) = ∆𝜙1(𝑏),       ∆𝑏𝑋𝐿1(𝑏) = ∆𝜙2(𝑏).  

Denoting by  ′𝜙
1(𝑏)

(𝑝)  and  by ′𝜙
2(𝑏)

(𝑝), respectively, the limiting values of 𝑋𝐿1(𝑏) and 𝑋𝐿2(𝑏) 

as  ∆𝑏 → 0, we can write   

                                         ′𝜙
2(𝑏)

(𝑝) = −𝜕𝑏𝜙1,        ′𝜙
1(𝑏)

(𝑝) = 𝜕𝑏𝜙2,   

where derivatives are defined in the usual way as the limits of the quotients  ∆𝜙1(𝑏) ∆𝑏⁄  and 

∆𝜙2(𝑏) ∆𝑏⁄  as ∆𝑏 → 0.  Finally, the complex conjugation of these expressions gives 

                     ′𝜙1(𝑏)(𝑝) = (𝜕𝑏𝜙2) = 𝜕𝑏𝜙
2
,        ′𝜙2(𝑏)(𝑝) = −(𝜕𝑏𝜙1) = − 𝜕𝑏𝜙

1
.             (4.11)   

    Thus, by using  division on the left  and the way B) ∆𝑝 = ∆𝑏𝑗 → 0 in the difference quotient 

(4.8),  we get the following expression for the left derivative  ′𝜓(𝑏)(𝑝): 

                                ′𝜓(𝑏)(𝑝) = ′𝜙1(𝑏)(𝑝) + ′𝜙2(𝑏)(𝑝)𝑗 = 𝜕𝑏𝜙
2

− 𝜕𝑏𝜙
1

𝑗,                            (4.12)     

where index "(𝑏)" and the left position of the derivative sign " ′ " mean, respectively, that the 

way B) and division on the left  are considered. 

    From the condition (i) of the above definition of quaternionic differentiability it follows that 

if division on the left is used in the expression (4.8), then it is necessary to satisfy the require-

ment:  ′𝜓(𝑎)(𝑝) = ′𝜓(𝑏)(𝑝), that is, (see (4.10), (4.12)) the following requirements: 

                                   ′𝜙1(𝑎)(𝑝) = ′𝜙1(𝑏)(𝑝),        ′𝜙2(𝑎)(𝑝) = ′𝜙2(𝑏)(𝑝).                          (4.13)            

This gives the necessary equations:  

                                                𝜕𝑎𝜙1 = 𝜕𝑏𝜙
2
,       𝜕𝑎𝜙2 = −𝜕𝑏𝜙

1
,                                      (4.14) 

which we shall call the left quaternionic generalization of the Cauchy-Riemann equations (2.4). 

    Now we can state the following general expression for the left quaternionic derivative: 

                                                    ′𝜓(𝑝) = ′𝜙1(𝑝) + ′𝜙2(𝑝)𝑗,                                               (4.15) 

where in accordance with formulae (4.13), (4.9), and (4.11)  we have 

                                   ′𝜙1(𝑝) = ′𝜙1(𝑎)(𝑝) = ′𝜙1(𝑏)(𝑝) = 𝜕𝑎𝜙1 = 𝜕𝑏𝜙
2
,                           (4.16) 
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                                   ′𝜙2(𝑝) = ′𝜙2(𝑎)(𝑝) = ′𝜙2(𝑏)(𝑝) = 𝜕𝑎𝜙2 = −𝜕𝑏𝜙
1
.     

    In a manner similar as before, we consider now the cases of division on the right in the ex-

pression (4.8).   

    The division on the right.  A)  ∆p = ∆a → 0, when ∆bj = 0. 

In this case the difference quotient (4.8) in accordance with (4.5) can be represented in the form     

                                  (𝑋𝑅1(𝑎) + 𝑋𝑅2(𝑎)𝑗)∆𝑎 = ∆𝜙1(𝑎) + ∆𝜙2(𝑎)𝑗 = ∆𝜓(𝑎). 

Using the right distributive law [6] of quaternion multiplication, the associative law, and the 

equality 𝑗𝑧 = 𝑧𝑗, 𝑧 ∈ ℂ,  we get the following relations: 

                                          𝜙1(𝑎)
′ (𝑝) = 𝜕𝑎𝜙1,       𝜙2(𝑎)

′ (𝑝) = 𝜕𝑎𝜙2,                                     (4.17) 

where index "(𝑎)"  and the right position of the derivative sign " ′ " mean, respectively, that the 

way A) and division on the right are considered. By 𝜙1(𝑎)
′ (𝑝) and by 𝜙2(𝑎)

′ (𝑝) are denoted, 

respectively,  the limiting values of 𝑋𝑅1(𝑎) and 𝑋𝑅2(𝑎) as ∆𝑎 → 0. 

    Finally, by using the way A), we can write the following expression for the right derivative: 

                                  𝜓(𝑎)
′ (𝑝) = 𝜙1(𝑎)

′ (𝑝) + 𝜙2(𝑎)
′ (𝑝)𝑗 = 𝜕𝑎𝜙1 + 𝜕𝑎𝜙2𝑗.                           (4.18) 

    The division on the right. B) ∆𝑝 = ∆𝑏𝑗 → 0, when ∆𝑎 = 0. 

In this case the difference quotient (4.8) in accordance with (4.5) can be represented in the form      

                               (𝑋𝑅1(𝑏) + 𝑋𝑅2(𝑏)𝑗)∆𝑏𝑗 = ∆𝜙1(𝑏) + ∆𝜙2(𝑏)𝑗 = ∆𝜓(𝑏).                     

Denoting by 𝜙1(𝑏)
′ (𝑝) and by 𝜙2(𝑏)

′ (𝑝), respectively, the limiting values of 𝑋𝑅1(𝑏) and 𝑋𝑅2(𝑏)   

as ∆𝑏 → 0, we have   

                                        𝜙1(𝑏)
′ (𝑝) = 𝜕𝑏𝜙2,       𝜙2(𝑏)

′ (𝑝) = −𝜕𝑏𝜙1,                                   (4.19)  

where partial derivatives are defined in the usual way as limits of the quotients ∆𝜙2(𝑏) ∆𝑏⁄   and 

∆𝜙1(𝑏) ∆𝑏⁄  as ∆𝑏, ∆𝑏 → 0.   

    Thus, using division on the right and the way B) ∆𝑝 = ∆𝑏𝑗 → 0 (∆𝑎 = 0)  in the difference 

quotient (4.8), we get the following expression for the right derivative  𝜓(𝑏)
′ (𝑝): 

                               𝜓(𝑏)
′ (𝑝) = 𝜙1(𝑏)

′ (𝑝) + 𝜙2(𝑏)
′ (𝑝)𝑗 = 𝜕𝑏𝜙2 − 𝜕𝑏𝜙1𝑗.                               (4.20)     

    From the condition (i) of Definition 4.1 it follows that if the division on the right in the 

expression (4.8) is used, then the requirement 𝜓(𝑎)
′ (𝑝) = 𝜓(𝑏)

′ (𝑝) must be satisfied. If we bear 

in mind formulae (4.18), (4.20), then from this requirement, we get the conditions: 

                                   𝜙1(𝑎)
′ (𝑝) = 𝜙1(𝑏)

′ (𝑝),        𝜙2(𝑎)
′ (𝑝) = 𝜙2(𝑏)

′ (𝑝),                                (4.21) 

which in accordance with (4.17) and (4.19) lead to the following necessary equations:  

                                              𝜕𝑎𝜙1 = 𝜕𝑏𝜙2,       𝜕𝑎𝜙2 = − 𝜕𝑏𝜙1.                                        (4.22)       
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    We shall call equations (4.22) the right quaternionic generalization of the Cauchy-Riemann 

equations (2.4). 

    Now we can  state the general expression for the right quaternionic derivative: 

                                                     𝜓′(𝑝) = 𝜙1
′ (𝑝) + 𝜙2

′ (𝑝)𝑗,                                                (4.23) 

where in accordance with formulae (4.21), (4.17), and (4.19) we have  

                                      𝜙1
′ (𝑝) = 𝜙1(𝑎)

′ (𝑝) = 𝜙1(𝑏)
′ (𝑝) = 𝜕𝑎𝜙1 = 𝜕𝑏𝜙2                              (4.24) 

                                      𝜙2
′ (𝑝) = 𝜙2(𝑎)

′ (𝑝) = 𝜙2(𝑏)
′ (𝑝) = 𝜕𝑎𝜙2 = −𝜕𝑏𝜙1.                   

    Expressions (4.15) and (4.23) for the left and right quaternionic derivative (just as the equa-

tions of the left and right quaternion generalization of the Cauchy-Riemann equations) are ob-

tained as the result of satisfying the requirement (i) of Definition 4.1. Now our intention is to 

satisfy the requirement (ii) of this definition. To do this we have to require the equality of the 

left (4.15) and right (4.23) quaternionic derivative: 

                                                               ′𝜓(𝑝) ≡ 𝜓′(𝑝),   

that is,  

                                             ′𝜙1(𝑝) + ′𝜙2(𝑝)𝑗 ≡ 𝜙1
′ (𝑝) + 𝜙2

′ (𝑝)𝑗,                                     (4.25) 

 where (and in the sequel) the symbol "≡" means that we require an additional equality. This 

means that in addition to differentiability conditions (4.14) and (4.22) we must also consider 

the following essential requirements: 

                                                ′𝜙1(𝑝) ≡ 𝜙1
′ (𝑝),    ′𝜙2(𝑝) ≡ 𝜙2

′ (𝑝). 

    Using (4.16) and (4.24), we can write the last conditions as 

                                  ′𝜙1(𝑝) = 𝜕𝑎𝜙1 = 𝜕𝑏𝜙
2

≡ 𝜙1
′ (𝑝) = 𝜕𝑎𝜙1 = 𝜕𝑏𝜙2,                            (4.26)  

                               ′𝜙2(𝑝) = 𝜕𝑎𝜙2 = − 𝜕𝑏𝜙
1

≡ 𝜙2
′ (𝑝) = 𝜕𝑎𝜙2 = − 𝜕𝑏𝜙1                        (4.27) 

Since the  partial derivative 𝜕𝑎𝜙1 is contained in the expressions for ′𝜙1(𝑝) and 𝜙1
′ (𝑝), it fol-

lows that the condition (4.26) is satisfied, so to say, "automatically", if left and right  differen-

tiability conditions (4.14) and (4.22) are satisfied. In order to satisfy the condition (4.27) we 

need only to require the equality of partial derivatives 𝜕𝑎𝜙2 and 𝜕𝑎𝜙2, that is, 𝜕𝑎𝜙2 ≡ 𝜕𝑎𝜙2, 

from which it follows that the equality 𝜕𝑏𝜙
1

= 𝜕𝑏𝜙1 also holds if conditions (4.14) and (4.22) 

are satisfied.  

    Formally, the requirement 𝜕𝑎𝜙2 ≡ 𝜕𝑎𝜙2 can be satisfied in only two ways:  

                                                             𝜕𝑎 ≡ 𝜕𝑎 (≡ 1

2
 𝜕𝑥)                                                       (4.28) 

and  

                                                                 𝑎 ≡ 𝑎 (≡ 𝑥),                                                         (4.29) 



 

 - 18 - 

where expressions in parentheses are obtained from the formulae (2.5), (2.7), (2.18), and (2.19). 

We shall mostly use the simple sign of equality "=" instead of "≡". 

    The first of these requirements is the condition imposed on the differential operators 𝜕𝑎 and 

𝜕𝑎; the second is the condition imposed on the variables 𝑎 and 𝑎. Since the partial derivatives 

with respect to 𝑎 and 𝑎  are "already computed" when formulating the left (4.14) and right 

(4.22) generalized Cauchy-Riemann's equations (an application of differential operators has 

been done), it is impossible to modify differential operators, that is, use (4.28). We can use the 

only condition (4.29), when formulating the complete EA quaternionic generalization of  Cau-

chy-Riemann's equations and when working with this generalization. The condition (4.28) can 

be only interpreted as an additional differential requirement that unlike the condition (4.29) can 

be used further to clarify the expressions for the complete quaternionic derivatives.  

    Thus, we have established that the requirement 𝑎 = 𝑎  is the EA condition of quaternionic 

differentiability (holomorphicity), satisfying the requirement (ii) of Definition 4.1.  

    Since the equality 𝜕𝑎𝜙2 = 𝜕𝑎𝜙2 holds upon application of 𝑎 = 𝑎 = 𝑥, it follows from (4.27) 

that the equality 𝜕𝑏𝜙
1

= 𝜕𝑏𝜙1 holds also upon application of 𝑎 = 𝑎 = 𝑥,  and therefore we can 

say that the equality 

                                                 𝜙1(𝑝) = 𝜙1(𝑝) = 𝜓1(𝑥, 𝑦, 𝑧, 𝑢)                                           (4.30) 

follows always from the requirement 𝑎 = 𝑎 = 𝑥. 

    Summarizing the results of the left (4.14) and right (4.22) quaternion generalizations of the 

Cauchy-Riemann equations and the condition (4.29), we can write the following general system 

of EA conditions of quaternionic differentiability: 

                                       1)  𝜕𝑎𝜙1 =  𝜕𝑏𝜙
2
,         2)  𝜕𝑎𝜙2 = − 𝜕𝑏𝜙

1
 

                                                      (after doing 𝑎 ≡ 𝑎 ≡ 𝑥)                                                    (4.31)         

                                       3)   𝜕𝑎𝜙1 = 𝜕𝑏𝜙2,         4)   𝜕𝑎𝜙2 = − 𝜕𝑏𝜙1. 

We shall call this system the complete EA quaternionic generalization of the Cauchy-Riemann 

equations (GCR-equations). It may be remarked, by the way, that the system (4.31) has been 

submitted previously in [12] by the author.   

    It makes sense to speak of  "conceptual requirements" of the EA differentiability theory un-

der consideration bearing in mind the necessity of satisfying the requirements (4.28) and (4.29).  

In its essence, such a concept gives the final transition to 3-dimensional physical space with 

quaternion basis units 1, j, k. The requirement (4.28) of this concept exists, so to say, "in paral-

lel" with the condition (4.29) but independently of the formulation of GCR-equations (4.31). 

Thus the system (4.31) remains the same when testing not only the quaternionic differentiability 
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of any function but also the quaternionic differentiability of its derivatives. The condition (4.28) 

can give equalities, which don't belong to the system (4.31).  

    Equations (4.31-1) and (4.31-2) correspond to the left quaternion division in the expression 

(4.8), and equations (4.31-3) and (4.31-4) to the right quaternion division. It is easy to check by 

direct computation that among power functions  𝑝𝑛, where 𝑛 is integer, the only functions of 

degrees 𝑛 = 0 and 𝑛 = 1 satisfy equations (4.31-1) and (4.31-2) as well as equations (4.31-3) 

and (4.31-4) by themselves, that is, without the condition 𝑎 = 𝑎. This corresponds to the so-

called Meǐlihzon result [1, 2, 3] that states that only linear functions are solutions of the left or 

right equations of the same type as (4.31-1,2), or (4.31-3,4). In this special case the partial 

derivatives in (4.31) are independent of variables  𝑎, 𝑎, 𝑏, 𝑏. Conversely, we shall show below 

that power functions 𝑝𝑛of degrees 𝑛 ≥ 2  are solutions of the EA system (4.31), that is, of the 

system of the left and right equations together with the condition 𝑎 = 𝑎 = 𝑥.  

    The condition 𝑎 = 𝑎 = 𝑥 is essential to the theory under consideration. It implements asser-

tions 3.2 and 3.3 of the above concept of EA conditions of differentiability. This additional 

condition is associated with a new property of quaternionic analysis having no counterparts in 

complex analysis, namely, the possibility of two different results of division. Therefore, the 

system (4.31) can't be "reduced" to the system of Cauchy-Riemann's complex equations. 

    It is of interest to compare equations (4.31) with the Cauchy-Riemann-Fueter equations (1.1) 

and (1.2). For this we can represent equations (1.1) and (1.2) as equations 𝜕𝜓 = 0 and  𝜓𝜕 = 0  

[2, 3], using the formal multiplication (2.12) of the Cauchy-Riemann operator 𝜕 (see (2.24)) by 

a quaternion function 𝜓(𝑝) = 𝜙1 + 𝜙2𝑗 in the Cayley–Dickson doubling form. Multiplying  𝜕 

on the left by 𝜓(𝑝) we obtain 

               𝜕𝜓 = 2(𝜕𝑎 + 𝜕𝑏𝑗) ∙ (𝜙1 + 𝜙2𝑗) = 2(𝜕𝑎𝜙1 − 𝜕𝑏𝜙
2

) + 2(𝜕𝑎𝜙2+𝜕𝑏𝜙
1

)𝑗 = 0, 

whence follows the system of the left-regularity equations equivalent to (1.1): 

                                             𝜕𝑎𝜙1 = 𝜕𝑏𝜙
2
,         𝜕𝑎𝜙2 = − 𝜕𝑏𝜙

1
.                                       (4.32) 

Similarly, we get the system of the right-regularity equations equivalent to (1.2): 

                                             𝜕𝑎𝜙1 = 𝜕𝑏𝜙2,         𝜕𝑎𝜙2 = − 𝜕𝑏𝜙1.                                       (4.33) 

    The systems (4.32) and (4.33) cannot be regarded as essentially adequate. They do not satisfy 

assertions 3.2 and 3.3 of the above concept of EA differentiability. Note that there is no essential 

difference between these systems considered together and the system (4.31) without the condi-

tion 𝑎 = 𝑎, however, due to the absence of an essentially new requirement reflecting (similar 

to 𝑎 = 𝑎) the essential difference between the complex plane and space, these systems can be, 

in principle, "reduced" to Cauchy–Riemann's equations of complex analysis.   
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    Thus, the Cauchy-Riemann-Fueter equations (1.1) and (1.2) can be regarded only as ines-

sentially adequate to properties of space.  

    Taking into account (4.15), (4.23), (4.25) - (4.27), we obtain the following expression for the 

EA quaternionic derivative after doing the condition 𝑎 = 𝑎:                         

                                                       
𝜕𝜓

𝜕𝑝
∶= 𝑘(𝜕𝑝𝜙1 + 𝜕𝑝𝜙2𝑗),                                                (4.34) 

where 𝑘 is a constant factor associated with the obvious linearity of equations (4.31); 𝜕𝑝𝜙1 and  

𝜕𝑝𝜙2 are determined by relations 

                                                  𝜕𝑝𝜙1 ∶=  𝜕𝑎𝜙1 =  𝜕𝑏𝜙
2

= 𝜕𝑏𝜙2,                                          (4.35) 

                                        𝜕𝑝𝜙2 ∶=  𝜕𝑎𝜙2 = − 𝜕𝑏𝜙
1

= 𝜕𝑎𝜙2 = − 𝜕𝑏𝜙1, 

that must be valid after doing the condition 𝑎 = 𝑎  if 𝜓(𝑝) = 𝜙1 + 𝜙2𝑗 is ℍ-differentiable (ℍ-

holomorphic) at a point 𝑝. We see that the expression (4.34) follows from Definition 4.1 and 

gives the derivative that is "independent of the way of computation".  

    When considering complex variables 𝑎 and 𝑏 in expressions for functions 𝜙1  and 𝜙2  we 

speak (by analogy with [10]) of a C2-representation. As a rule, the C2-representation leads to 

the shortest calculations. If we consider real variables 𝑥, 𝑦, 𝑧, 𝑢 in expressions for functions 𝜙1  

and 𝜙2 , then we speak of an R4-representation. As noted earlier, the equality 𝜙1 = 𝜙
1

=

𝜓1(𝑥, 𝑦, 𝑧, 𝑢) follows from the condition 𝑎 = 𝑎 = 𝑥 whenever the function 𝜓(𝑝) = 𝜓(𝑎, 𝑏) =

𝜙1(𝑎, 𝑏) + 𝜙2(𝑎, 𝑏) ∙ 𝑗  satisfies equations (4.31). It follows that in the R4-representation the 

equalities  𝑦 = 0,  𝜓2(𝑥, 𝑦, 𝑧, 𝑢) = 0  hold too if 𝑎 = 𝑎 = 𝑥 holds.  Substituting (2.18) and 

(2.19) into (4.28), we get the requirement (4.28) in the R4-representation:  𝜕𝑦 = 0. 

    If the conditions 𝑎 = 𝑎 and 𝜙1 = 𝜙
1
 or, respectively, 𝑦 = 0 and  𝜓2(𝑥, 𝑦, 𝑧, 𝑢) = 0 are ful-

filled first of all, then we have immediately 3-dimensional hypercomplex expressions, namely, 

𝑝 = 𝑥 + 𝑧𝑗 + 𝑢𝑘 and 𝜓(𝑝) = 𝜓1(𝑥, 𝑧, 𝑢) + 𝜓3(𝑥, 𝑧, 𝑢)𝑗 + 𝜓4(𝑥, 𝑧, 𝑢)𝑘, for which the opera-

tion of division and  hence Definitions 4.1 and 4.2 are impossible. Therefore, it is important to 

recall that the requirement 𝑎 = 𝑎  = 𝑥 can be only executed in expressions after computation 

of partial derivatives of the functions 𝜙1 and 𝜙2 to be used in system (4.31). In other words, it 

is possible to use the only following sequence of actions. 

    Computation rule in the C2-representation. Firstly, we compute the partial derivatives of 

functions 𝜙1, 𝜙2, 𝜙
1
 and  𝜙

2
 with respect to the variables 𝑎, 𝑎, 𝑏, or 𝑏 in accordance with the 

system (4.31); secondly, we put 𝑎 = 𝑎  = 𝑥 in the computed expressions of partial derivatives; 

and  thirdly, we check whether equations (4.31) hold.  
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    The same sequence of actions but when calculating partial derivatives with respect to 

𝑥, 𝑦, 𝑧, 𝑢 and performing the condition  𝑦 = 0, must be carried out if we check whether equa-

tions (4.31) hold in the R4-representation. This representation of equations (4.31) can be readily 

obtained by substituting (2.15), (2.16), (2.18), (2.20) and their conjugates into (4.31), however, 

we shall not dwell on this here. 

    To denote the correct sequence of actions when we apply the requirement 𝑎 = 𝑎 = 𝑥 we in-

troduce the following notation. Let 𝑓(𝑎, 𝑏, 𝑎, 𝑏)  be any function; then the notation 

(𝑓(𝑎, 𝑏, 𝑎, 𝑏)|  (as well as [𝑓(𝑎, 𝑏, 𝑎, 𝑏)|  or {𝑓(𝑎, 𝑏, 𝑎, 𝑏)|  for "complicated" expressions), 

briefly (. . |, where instead of the end parenthesis we use the vertical bar, shows that we have 

put 𝑎 = 𝑎  = 𝑥 in the expression in brackets, that is, in 𝑓(𝑎, 𝑏, 𝑎, 𝑏). Using this notation we can 

rewrite equations (4.31) as follows:  

                                   1)   (𝜕𝑎𝜙1| = (𝜕𝑏𝜙
2

|,         2)   (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙
1

|,                       (4.36) 

                                   3)   (𝜕𝑎𝜙1| = (𝜕𝑏𝜙2|,         4)   (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙1|. 

We call this system just as the system (4.31) the complete EA quaternionic generalization of 

the Cauchy-Riemann equations (GCR-equations).  

    Further, the expressions (4.34) and (4.35) for the quaternionic derivative can be rewritten as 

follows: 

                                                   
𝜕𝜓

𝜕𝑝
∶= 𝑘[(𝜕𝑝𝜙1| + (𝜕𝑝𝜙2|𝑗],                                               (4.37)  

where (𝜕𝑝𝜙1| and (𝜕𝑝𝜙2|  are determined by expressions 

                                          (𝜕𝑝𝜙1| ∶= (𝜕𝑎𝜙1| = (𝜕𝑏𝜙
2

| = (𝜕𝑏𝜙2|,                                       (4.38) 

                                 (𝜕𝑝𝜙2| ∶= (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙
1

| = (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙1|, 

and by  
𝜕𝜓

𝜕𝑝
 is denoted the derivative after performing the conceptual condition (4.29). In partic-

ular, it follows that 

                                                  
𝜕𝜓

𝜕𝑝
∶= 𝑘[(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗].                                                (4.39) 

This expression is the quaternion analogue of the complex derivative in the usual notation [9]:  

                                                  
𝜕𝜓

𝜕𝑧
= 𝜕𝑥𝑢(𝑥, 𝑦) + 𝑖𝜕𝑥𝑣(𝑥, 𝑦). 

    We have shown that the system of equations (4.31) is the necessary condition for a quaterni-

onic function 𝜓(𝑝) to be ℍ-holomorphic in 𝐺4 ⊆ ℍ. Now our intention is to show that this sys-

tem is also the sufficient condition. 

    Sufficient condition for ψ (p) to be ℍ-holomorphic. To show this we suppose that a quater-

nionic function  𝜓(𝑝, 𝑝) = 𝜙1(𝑎, 𝑎, 𝑏, 𝑏) + 𝜙2(𝑎, 𝑎, 𝑏, 𝑏) ∙ 𝑗 is single-valued and continuous at 
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all points  𝑝 ∈ 𝐺4 ⊆ ℍ and that it has in  𝐺4  the continuous first-order partial derivatives of 

functions 𝜙1 and 𝜙2 with respect to variables  𝑎, 𝑎, 𝑏, 𝑏. Then we can (see, e.g., [9]) write   

                          ∆𝜙1 = 𝜙1(𝑎 + ∆𝑎, 𝑏 + ∆𝑏, 𝑎 + ∆𝑎, 𝑏 + ∆𝑏) − 𝜙1(𝑎, 𝑏, 𝑎, 𝑏)      

                            = (𝜕𝑎𝜙1)∆𝑎 + (𝜕𝑏𝜙1)∆𝑏 + (𝜕𝑎𝜙1)∆𝑎 + (𝜕𝑏𝜙1)∆𝑏 + 𝑜1(|∆𝑝|), 

                          ∆𝜙2 = 𝜙2(𝑎 + ∆𝑎, 𝑏 + ∆𝑏, 𝑎 + ∆𝑎, 𝑏 + ∆𝑏) − 𝜙2(𝑎, 𝑏, 𝑎, 𝑏)    

                            = (𝜕𝑎𝜙2)∆𝑎 + (𝜕𝑏𝜙2)∆𝑏 + (𝜕𝑎𝜙2)∆𝑎 + (𝜕𝑏𝜙2)∆𝑏 + 𝑜2(|∆𝑝|),              

where 𝑜1(|∆𝑝|) and 𝑜2(|∆𝑝|) converge to zero faster than |∆𝑝| = |∆𝑎 + ∆𝑏𝑗| = |∆𝑝|. 

    Thus altogether, 

               ∆𝜓(𝑝) = ∆𝜙1 + ∆𝜙2 ⋅ 𝑗 = (𝜕𝑎𝜙1)∆𝑎 + (𝜕𝑏𝜙1)∆𝑏 + (𝜕𝑎𝜙1)∆𝑎 + (𝜕𝑏𝜙1)∆𝑏 

                            +(𝜕𝑎𝜙2)∆𝑎𝑗 + (𝜕𝑏𝜙2)∆𝑏𝑗 + (𝜕𝑎𝜙2)∆𝑎𝑗 + (𝜕𝑏𝜙2)∆𝑏𝑗 + 𝑜(|∆𝑝|), 

where 𝑜(|∆𝑝|) = 𝑜1(|∆𝑝|) + 𝑜2(|∆𝑝|)𝑗 converges to zero faster than |∆𝑝|, that is, 
𝑜(|∆𝑝|)

|∆𝑝|
→ 0 

as |∆𝑝| → 0 . This expression represents the total infinitesimal increment of the function 

𝜓(𝑝, 𝑝) = 𝜙1(𝑎, 𝑎, 𝑏, 𝑏) + 𝜙2(𝑎, 𝑎, 𝑏, 𝑏) ∙ 𝑗   due to infinitesimal increments of all its argu-

ments. Rearranging the terms, we obtain 

                      ∆𝜓(𝑝) = {(𝜕𝑎𝜙1)∆𝑎 + (𝜕𝑎𝜙2)∆𝑎𝑗 + (𝜕𝑏𝜙2)∆𝑏𝑗 + (𝜕𝑏𝜙1)∆𝑏}                   (4.40)   

                        +{(𝜕𝑎𝜙1)∆𝑎 + (𝜕𝑎𝜙2)∆𝑎𝑗 + (𝜕𝑏𝜙2)∆𝑏𝑗 + (𝜕𝑏𝜙1)∆𝑏} + 𝑜(|∆𝑝|).                        

    Now our intention is to show by means of transformations of this expression that if the func-

tions 𝜙1(𝑎, 𝑎, 𝑏, 𝑏) and 𝜙2(𝑎, 𝑎, 𝑏, 𝑏) satisfy GCR-equations (4.36), then  
𝜕𝜓

𝜕𝑝
 exists (Definition 

4.1) and coincides up to a constant factor 𝑘 with the one of expressions (4.37), in particular, 

with (4.39). We must use the operations of taking limits when  ∆𝑎, ∆𝑎, ∆𝑏, ∆𝑏 tend to zero 

together with the additional condition 𝑎 = 𝑎 = 𝑥. It is possible to perform these operations step 

by step until the process is fully completed. We assume that it is possible to replace a certain 

term in (4.40), say, "𝑋" by another term "𝑌" if both of them are eventually equal by using these 

operations, equations (4.36), and the conceptual requirements (4.28) and (4.29).   

    For now it is important to compare the derivatives 𝜕𝑎𝜙1 and  𝜕𝑎𝜙1. Formally, it follows from 

the conceptual requirement (4.28) that these derivatives are equal (in principle, "when 𝑎 = 𝑎"). 

We cannot use the introduced notation (. . | directly in this case, because the straightforward 

computation in accordance with the above  computation rule in the C2-representation is not 

obligatory to lead to the equality of derivatives 𝜕𝑎𝜙1and 𝜕𝑎𝜙1. This is so because such an 

equality doesn't belong to the system of equations (4.36). Therefore, such an equality, based on 

the general concept of the theory under consideration, can only be regarded as the additional 
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requirement imposed on the operators 𝜕𝑎 and  𝜕𝑎. We can use the simple notation in accordance 

with (4.28) as follows:   

                                                      𝜕𝑎𝜙1 ≡ 𝜕𝑎𝜙1 (≡ 1

2
 𝜕𝑥𝜙1) .                                                 (4.41) 

    Then we can formally state that the expression  

                                                      [(𝜕𝑎𝜙1)𝑑𝑎| = [(𝜕𝑎𝜙1)𝑑𝑎| 

is valid. In this case we can, as noted earlier, replace the fifth term (𝜕𝑎𝜙1)∆𝑎 in the expression 

(4.40) by the term (𝜕𝑎𝜙1)∆𝑎. After this partial replacement we can use further the computation 

rule in the C2-representation and the notation (. . |. 

    Now we consider the third term in (4.40), namely,  (𝜕𝑏𝜙2)∆𝑏𝑗. We want to show that the 

relation  

                                                        (𝜕𝑏𝜙2)∆𝑏 = (𝜕𝑏𝜙2)∆𝑏                                                  (4.42) 

is valid in the limit when ∆𝑏, ∆𝑏 tend to zero and if equations (4.36) hold. We can assume in 

our proof that this relation holds approximately for  sufficiently small values ∆𝑏, ∆𝑏 and show 

further how it can be reduced to the precise equality in the limit ∆𝑏, ∆𝑏 → 0. From (4.26) it 

follows that the relation 

                                                                𝜕𝑏𝜙
2

= 𝜕𝑏𝜙2                                                         (4.43) 

is valid.  Note that we do not even need to require 𝑎 = 𝑎 = 𝑥 in this case. Substituting this 

relation into (4.42), we obtain the following expression: 

                                                        (𝜕𝑏𝜙
2

)∆𝑏 = (𝜕𝑏𝜙2)∆𝑏. 

    It is now easy to see that this expression can be formally reduced to  

                                                                   
𝜕𝜙2

∆𝑏
=

𝜕𝜙2

∆𝑏
, 

and hence to the expression 

                                                          
𝜕𝜙2

(𝜕𝑏+𝜀1∆𝑏)
=

𝜕𝜙2

(𝜕𝑏+𝜀2∆𝑏)
, 

where 𝜀1 → 0 as ∆𝑏 → 0 and 𝜀2 → 0 as ∆𝑏 → 0, that is,  𝜀1∆𝑏 → 0 more rapidly than 

𝜕𝑏 → 0 as ∆𝑏 → 0 and 𝜀2∆𝑏 → 0 more rapidly than 𝜕𝑏 → 0 as ∆𝑏 → 0. Taking the limits as  

∆𝑏, ∆𝑏 → 0 in the last expression we get the true relation (4.43) from (4.42). Therefore (4.42) 

is valid in the above sense. Thus, the replacement of the third term (𝜕𝑏𝜙2)∆𝑏𝑗 by the term 

(𝜕𝑏𝜙2)∆𝑏𝑗 in (4.40) is possible.  

    Making the noted replacements of the third and fifth terms in (4.40), we obtain 

                         ∆𝜓(𝑝) = {(𝜕𝑎𝜙1|∆𝑎 + (𝜕𝑎𝜙2)∆𝑎𝑗 + (𝜕𝑏𝜙2)∆𝑏𝑗 + (𝜕𝑏𝜙1)∆𝑏} + 

                          {(𝜕𝑎𝜙1|∆𝑎 + (𝜕𝑎𝜙2)∆𝑎𝑗 + (𝜕𝑏𝜙2)∆𝑏𝑗 + (𝜕𝑏𝜙1)∆𝑏} + 𝑜(|∆𝑝|),          
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where  𝑜(|∆𝑝|) = 𝑜1(|∆𝑝|) + 𝑜2(|∆𝑝|)𝑗 converges to zero faster than |∆𝑝|. 

Using the multiplicative commutativity of complex numbers, the associativity of quaternion 

multiplication as well as formulae 𝑐𝑗 = 𝑗𝑐  for 𝑐 ∈ ℂ (see, e.g., [3, 6])  and  𝑗2 = −1, we get  

                      ∆𝜓(𝑝) = {∆𝑎(𝜕𝑎𝜙1| + ∆𝑎(𝜕𝑎𝜙2)𝑗 + ∆𝑏𝑗(𝜕𝑏𝜙
2

) − ∆𝑏𝑗(𝜕𝑏𝜙
1

)𝑗} + 

                       {(𝜕𝑎𝜙1|∆𝑎 + (𝜕𝑎𝜙2)𝑗∆𝑎 + (𝜕𝑏𝜙2)∆𝑏𝑗 − (𝜕𝑏𝜙1)𝑗∆𝑏𝑗} + 𝑜(|∆𝑝|).   

    Further, taking into account the left and right distributive laws (see [6], p. 38) of quaternion 

multiplication, we get the following expression:                                

                      ∆𝜓(𝑝) = {∆𝑎[(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2)𝑗] + ∆𝑏𝑗[(𝜕𝑏𝜙
2

) − (𝜕𝑏𝜙
1

)𝑗]} +                 (4.44) 

                       {[(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2)𝑗]∆𝑎 + [(𝜕𝑏𝜙2) − (𝜕𝑏𝜙1)𝑗]∆𝑏𝑗} + 𝑜(|∆𝑝|). 

Setting 𝑎 = 𝑎 = 𝑥 only in expressions for derivatives in (4.44)  and using equations (4.36-1,2) 

in the first braces (the third and fourth terms) as well as equations (4.36-3,4) in the second 

braces (the third and fourth terms), we obtain  

∆𝜓(𝑝) = {∆𝑎[(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗] + ∆𝑏𝑗[(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗]} + 

                          {[(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗]∆𝑎 + [(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗]∆𝑏𝑗} + 𝑜(|∆𝑝|). 

The application of the left and right distributive laws to this expression yields 

                         ∆𝜓(𝑝) = ∆𝜙1 + ∆𝜙2𝑗 = (∆𝑎 + ∆𝑏𝑗) ⋅ [(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗] +                     (4.45) 

                                          [(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗] ⋅ (∆𝑎 + ∆𝑏𝑗) + 𝑜(|∆𝑝|),                  

where 𝑜(|∆𝑝|) = 𝑜1(|∆𝑝|) + 𝑜2(|∆𝑝|)𝑗 converges to zero faster than |∆𝑝|. 

    It is not difficult to see that the first and second terms in (4.45) are, respectively, the "left" 

and "right" (total) infinitesimal changes in the value of function 𝜓(𝑝) due to the infinitesimal 

change  ∆𝑝 = ∆𝑎 + ∆𝑏𝑗. The left increment in (4.45) includes the left derivative  ′𝜓(𝑝) =

(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗  defined by (4.15) and the right increment includes the right derivative  

𝜓′(𝑝) = (𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗  defined by (4.23). Since the increments ∆𝑎, ∆𝑏, and ∆𝑝 = ∆𝑎 +

∆𝑏𝑗  are arbitrary, it follows that both derivatives are independent of how we let ∆𝑝 = ∆𝑎 +

∆𝑏𝑗 approach zero. Thus the condition (i) of Definition 4.1 is satisfied.  

    In accordance with (4.38) the equality (𝜕𝑎𝜙2| = (𝜕𝑎𝜙2| holds, then the left and right qua-

ternion derivatives in (4.45) are equal and hence the condition (ii) of Definition 4.1 is satisfied 

too.  Both derivatives coincide up to a constant factor with the derivative defined by (4.39).  

    Thus, we have shown that GCR-equations (4.36) are not only necessary but also sufficient 

conditions for the function 𝜓(𝑝) to be ℍ-holomorphic in 𝐺4 if we assume that the continuous 

first-order partial derivatives of functions 𝜙1 and  𝜙2 with respect to variables  𝑎, 𝑏, 𝑎, 𝑏 exist 

at points 𝑝 ∈ 𝐺4 ∈ ℍ. This allows us to introduce the following definition of a ℍ-holomorphic 

function in complete analogy to complex analysis. 
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Definition 4.3 A single-valued quaternion function 𝜓(𝑝) = 𝜓(𝑎, 𝑏) = 𝜙1(𝑎, 𝑏) + 𝜙2(𝑎, 𝑏) ∙ 𝑗, 

where 𝜙1(𝑎, 𝑏) and 𝜙2(𝑎, 𝑏) have continuous first-order partial derivatives with respect to 

𝑎, 𝑎, 𝑏, and 𝑏 in some open connected neighborhood 𝐺4 of a point 𝑝 = 𝑎 + 𝑏𝑗 ∈ 𝐺4 ∈ ℍ, is ℍ-

holomorphic at that point if and only if the functions 𝜙1(𝑎, 𝑏) and 𝜙2(𝑎, 𝑏) satisfy equations 

(4.36) in 𝐺4. 

    From (4.45), in the limit as  ∆𝑎, ∆𝑏, and hence ∆𝑝 = ∆𝑎 + ∆𝑏𝑗 → 0, we get the following 

expression for the total differential of a ℍ-holomorphic function 𝜓(𝑝, 𝑝) = 𝜙1(𝑎, 𝑎, 𝑏, 𝑏) +

𝜙2(𝑎, 𝑎, 𝑏, 𝑏) ∙ 𝑗:  

                       𝑑𝜓(𝑝) = 𝑑𝑝 ⋅ [(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗] + [(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗] ⋅ 𝑑𝑝,                   (4.46) 

 where 𝑑𝑝 = 𝑑𝑎 + 𝑑𝑏𝑗. Using the argumentation as above, it is not difficult to show that  

                                 𝑑𝑝 ⋅ [(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗] = [(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗] ⋅ 𝑑𝑝. 

We shall not dwell on this here. Note that for simplicity we do not use here the notation 𝑑(𝑝| 

for the final transition 𝑎 = 𝑎 = 𝑥. Taking into account this equality and (𝜕𝑎𝜙2| = (𝜕𝑎𝜙2| we 

can rewrite (4.46) as follows: 

                                               𝑑𝜓(𝑝) = 2[(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗] ⋅ 𝑑𝑝.                                     (4.47)                 

    It makes sense to compare this expression with the expression for the total differential (see, 

e.g., [2, 8, 9]) of the complex function  𝜓(𝑎):  

                                                 𝑑𝜓(𝑎) = (𝜕𝑎𝜓)𝑑𝑎 + (𝜕𝑎𝜓)𝑑𝑎,                                          (4.48) 

where by 𝑎 = 𝑥 + 𝑦𝑖 is denoted a complex variable; 𝜕𝑎 and 𝜕𝑎 are differential operators de-

fined by (2.18) and (2.19). If 𝜓(𝑎) is ℂ-holomorphic (analytic) [2, 8, 9], then  

                                                                    𝜕𝑎𝜓 = 0 ,                                                            (4.49) 

and (4.48) becomes   

                                                            𝑑𝜓(𝑎) = (𝜕𝑎𝜓)𝑑𝑎                                                     (4.50) 

    The expression (4.47) for the total differential of a ℍ-holomorphic function is the EA gener-

alization of the expression (4.50) for the total differential of a ℂ-holomorphic function. Note 

that expressions for the total differentials in both cases of holomorphicity are similar in the 

sense that the expression (4.47) is independent of the conjugate quaternion variable 𝑝  just as 

the expression (4.50) is independent of the conjugate complex variable  𝑎  [2, 9]. Taking into 

account the above formulae too, we can see that the presented theory of quaternionic differen-

tiability gives expressions for the ℍ-holomorphic functions similar to expressions for the ℂ-

holomorphic functions. A more detailed study of these matters is beyond the scope of the pre-

sent article.  
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    Comparing the formulae (4.47) and (4.50), we can establish the following expression for the 

first-order quaternionic derivative after doing the transition 𝑎 = 𝑎 = 𝑥: 

                                  
𝜕𝜓

𝜕𝑝
= 2[(𝜕𝑎𝜙1| + (𝜕𝑎𝜙2|𝑗] = 2(𝜕𝑎𝜙1| + 2(𝜕𝑎𝜙2|𝑗,                          (4.51)        

which allows us to specify the constant factor 𝑘 in the expressions (4.34), (4.37), and (4.39), 

namely 𝑘 = 2.  

    The expression (4.51) can represent, so to say, a certain final "materialization" of 4-dimen-

sional results in 3-dimensional physical space (with quaternion basis units1, 𝑗, 𝑘) upon the tran-

sition 𝑎 = 𝑎 = 𝑥 if we shall use the presented theory in practical applications. In principle, we 

can compute in this way the 3-dimensional local "dilations" associated with some physical con-

servative vector field.  However, frequently it is important to know the general expression for 

the full quaternionic derivative before we do the transition  𝑎 = 𝑎 = 𝑥, especially when exam-

ining the second and higher order derivatives. 

    We have obtained the final (after doing the transition 𝑎 = 𝑎 = 𝑥) expression (4.51) as the 

sum of contributions of the final left and right derivatives of the function  𝜓(𝑝). If we want to 

find the general expression for the computation of the quaternionic derivative before we do the 

transition 𝑎 = 𝑎 = 𝑥 (in this case we denote the derivative by 𝜓(𝑝)′, not to be confused with 

the notation ′𝜓(𝑝) and 𝜓′(𝑝)), then we need have a sum of contributions of the left and right 

derivatives before we do the transition 𝑎 = 𝑎 = 𝑥.  

     To achieve this we write first the required expression as 

                                                          𝜓(𝑝)′ = 𝜙1
(′)

+ 𝜙2
(′)

𝑗,                                                   (4.52)                                

where   𝜙1
(′)

 and  𝜙2
(′)

 are components of the derivative 𝜓(𝑝)′ in the Cayley–Dickson doubling 

form before doing the transition 𝑎 = 𝑎 = 𝑥.  If the function 𝜓(𝑝) = 𝜙1(𝑎, 𝑏) + 𝜙2(𝑎, 𝑏) ∙ 𝑗 is 

ℍ-holomorphic, then in accordance with (4.51) we have 

                                                             (𝜙1
(′)

| = 2(𝜕𝑎𝜙1|,                                                     (4.53) 

                                                             (𝜙2
(′)

| = 2(𝜕𝑎𝜙2|.                                                     (4.54) 

    To obtain a sum of contributions of the left and right derivatives we consider first the expres-

sion (4.54). Since in accordance with (4.38) we have (𝜕𝑎𝜙2| = (𝜕𝑎𝜙2|, it is possible to rewrite 

(4.54) as a sum 

                                            (𝜙2
(′)

| = 2(𝜕𝑎𝜙2| = (𝜕𝑎𝜙2| + (𝜕𝑎𝜙2|, 

whence 

                                                          𝜙2
(′)

= 𝜕𝑎𝜙2 + 𝜕𝑎𝜙2.                                                   (4.55)  
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The derivative 𝜕𝑎𝜙2 belongs to the "left" equation (4.36-2), the derivative 𝜕𝑎𝜙2 belongs to the 

"right" equation (4.36-4), hence we have in (4.55) the sum of the left and right contributions to 

the component 𝜙2
(′)

 of the complete derivative before doing the transition 𝑎 = 𝑎 = 𝑥. 

    To clarify (4.53) we can use the additional information about constructing the derivative 

following from the conceptual requirement (4.41). We can rewrite (4.53) as  

                                        (𝜙1
(′)

| = 2(𝜕𝑎𝜙1| = 2[
1

2
(𝜕𝑥𝜙1|] = (𝜕𝑥𝜙1|. 

Further using the operator identity 𝜕𝑥 = 𝜕𝑎 + 𝜕𝑎 based on (2.18) and (2.19), we get  

                                               (𝜙1
(′)

| = (𝜕𝑥𝜙1| = (𝜕𝑎𝜙1 + 𝜕𝑎𝜙1|                                      

whence 

                                                          𝜙1
(′)

= 𝜕𝑎𝜙1 + 𝜕𝑎𝜙1.                                                  (4.56)                

Finally, combining (4.52), (4.55), and (4.56), we get the following expression for the quaterni-

onic derivative of the ℍ-holomorphic function 𝜓𝐻(𝑝) in the C2-representation before doing the 

transition 𝑎 = 𝑎 = 𝑥: 

                                                 𝜓𝐻(𝑝)′ = 𝜙1
′ (𝑎, 𝑏) + 𝜙2

′ (𝑎, 𝑏)𝑗,                                           (4.57)  

 where 

                                                 𝜙1
′ (𝑎, 𝑏) = 𝜕𝑎𝜙1(𝑎, 𝑏) + 𝜕𝑎𝜙1(𝑎, 𝑏),                                    

                                                 𝜙2
′ (𝑎, 𝑏) = 𝜕𝑎𝜙2(𝑎, 𝑏) + 𝜕𝑎𝜙2(𝑎, 𝑏), 

                

4.3   Construction of ℍ-holomorphic functions   

 

    We consider now a theorem that will play an important role in the sequel.  

Theorem 4.4  (the extension of complex holomorphicity to quaternionic). Let a complex func-

tion 𝜓𝐶(𝜉): 𝐺2 → ℂ be ℂ-holomorphic everywhere in a connected open set 𝐺2 ⊆ ℂ, except, 

possibly, at certain singularities. Then a ℍ-holomorphic function 𝜓𝐻(𝑝) of the same kind 

as 𝜓𝐶(𝜉) (without change of a kind of function) can be constructed from 𝜓𝐶(𝜉) by replacing a 

complex variable 𝜉 ∈ 𝐺2  in an expression for  𝜓𝐶(𝜉) by a quaternionic variable 𝑝 ∈ 𝐺4 ⊆ ℍ, 

where 𝐺4 is defined (except, possibly, at certain singularities) by the relation  𝐺4 ⊃ 𝐺2 in the 

sense that 𝐺2 exactly follows from 𝐺4 upon transition from 𝑝 to 𝜉. 

    Proof. Tо prove this theorem we need consider a transformation of equations (4.31) when 

making a transition to the complex case. Equations (4.31) contain the transition 𝑎 = 𝑎 = 𝑥 to 

the 3-dimensional case. Since the transition 𝑎 = 𝑎 = 𝑥, (𝑦 = 0) is "already used" (𝑝 = 𝑥 +

𝑦𝑖 + 𝑧𝑗 + 𝑢𝑘 becomes 𝑝3 =  𝑥 + 𝑧𝑗 + 𝑢𝑘 = 𝑥 + 𝑏𝑗), we have the only two further possibilities 
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to complete the transition from 𝑝 to the complex case: by putting 1) 𝑏 = 𝑏 = 𝑧 , (𝑢 = 0) or 2) 

𝑏 = −𝑏 = 𝑢𝑖, (𝑧 = 0). Consider the first way and then show that the second way gives the 

same result. 

    For operators 𝜕𝑎, 𝜕𝑎, 𝜕𝑏, 𝜕𝑏 the transition conditions 𝑦 = 0, 𝑢 = 0 (respectively 𝜕𝑦 = 𝜕𝑢 =

0)  yield in accordance with (2.18), (2.19), (2.20), (2.21) the following transition formulae:  

                                               𝜕𝑎 = 𝜕𝑎 = 1

2
𝜕𝑥 ,     𝜕𝑏 = 𝜕𝑏 = 1

2
𝜕𝑧.                                         (4.58) 

We see that upon transition to the complex case we factually rule out the dimensions with im-

aginary units 𝑖 and 𝑘. Then a quaternionic function 𝜓(𝑝) = 𝜓1(𝑥, 𝑦, 𝑧, 𝑢) + 𝜓2(𝑥, 𝑦, 𝑧, 𝑢)𝑖 + 

 + 𝜓3(𝑥, 𝑦, 𝑧, 𝑢)𝑗 + 𝜓4(𝑥, 𝑦, 𝑧, 𝑢)𝑘 = 𝜙1(𝑎, 𝑏) + 𝜙2(𝑎, 𝑏) ∙ 𝑗, where 𝑝 =  𝑥 + 𝑦𝑖 + 𝑧𝑗 + 𝑢𝑘 =

𝑎 + 𝑏𝑗 ∈ 𝐺4 ⊆ ℍ, becomes 𝜓(𝜉) = 𝜓1(𝑥, 𝑧) + 𝜓3(𝑥, 𝑧, )𝑗, where  𝜉 =  𝑥 + 𝑧𝑗 ∈ 𝐺2 ⊆ ℂ; and 

𝐺4 ⊃ 𝐺2 in the sense that 𝐺2 exactly follows from 𝐺4 upon transition to the complex case.  

    Thus we get for the quaternionic function 𝜓(𝑝) the following transition formulae: 

                    𝜙1(𝑎, 𝑏) = 𝜙
1

(𝑎, 𝑏) = 𝜓1(𝑥, 𝑧),   𝜙2(𝑎, 𝑏) = 𝜙
2

(𝑎, 𝑏) = 𝜓3(𝑥, 𝑧).                 (4.59) 

It is also easy to see that the first formula follows from equations (4.31-2) and (4.31-4) when 

𝜕𝑎 = 𝜕𝑎, and the second from equations (4.31-1) and (4.31-3) when 𝜕𝑏 = 𝜕𝑏  in accordance 

with (4.58). 

    Substituting the transition formulae (4.58) and (4.59) into the system of quaternionic holo-

morphicity equations (4.31), we transform this system to the following system:    

                                           1)  1

2
𝜕𝑥𝜓1 = 1

2
𝜕𝑧𝜓3,        2) 1

2
𝜕𝑥𝜓3 = −1

2
𝜕𝑧𝜓1, 

                                      3)  1

2
𝜕𝑥𝜓1 = 1

2
𝜕𝑧𝜓3,        4) 1

2
𝜕𝑥𝜓3 = −1

2
𝜕𝑧𝜓1. 

This system represents the Cauchy-Riemann complex holomorphicity equations for the func-

tions  𝜓𝐶(𝜉) = 𝜓1(𝑥, 𝑧) + 𝜓3(𝑥, 𝑧, )𝑗 in the complex plane 𝜉 = 𝑥 + 𝑧𝑗, that is, with ''imaginary 

unit'' 𝑗 (𝑗2 = −1):  

                                                𝜕𝑥𝜓1 = 𝜕𝑧𝜓3,        𝜕𝑥𝜓3 = −𝜕𝑧𝜓1.                                      (4.60) 

    Any given kind of a function 𝜓 remains unchanged (𝜓 retains the same form) when we make 

a replacement of 𝑝 by 𝜉, and, correspondingly, replacements (designated further by ''→'') 𝑎, 𝑎 →

𝑥, 𝑏, 𝑏 → 𝑧,  𝜙1(𝑎, 𝑏), 𝜙
1

(𝑎, 𝑏) → 𝜓1(𝑥, 𝑧), and 𝜙2(𝑎, 𝑏), 𝜙
2

(𝑎, 𝑏) → 𝜓3(𝑥, 𝑧). For example, 

the function 𝜓(𝑝) = 𝑝3 becomes 𝜓(𝜉) = 𝜉3 without change of a kind of function.  

    Thus, the replacement 𝑝 → 𝜉 without change of a kind of function 𝜓 transforms the ℍ-holo-

morphicity equations (4.31) into ℂ  -holomorphicity equations (4.60). Each ℍ-holomorphic 

function becomes ℂ-holomorphic. Since all ℂ -holomorphic functions satisfy the Cauchy-Rie-

mann equations we can state that each ℂ-holomorphic function follows always from the corre-

sponding ℍ-holomorphic function when we replace a quaternion argument 
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 𝑝 =  𝑥 + 𝑦𝑖 + 𝑧𝑗 + 𝑢𝑘 by a complex argument 𝜉 =  𝑥 + 𝑧𝑗 in an expression for a quaternionic 

function without change of a kind of function.  

    In principle, the transition 𝑝 → 𝜉 is invertible; then any ℍ-holomorphic function 𝜓𝐻(𝑝) can 

be created from a ℂ-holomorphic function of the same kind by replacing 𝜉 by 𝑝 in a general 

expression  𝜓𝐶(𝜉) for a ℂ-holomorphic function. Indeed, if a function 𝜓(p), obtained when re-

placing a complex variable 𝜉 by a quaternion variable 𝑝 in an expression for  𝜓𝐶(𝜉), were non-

ℍ-holomorphic, then this would mean that a ℂ-holomorphic function can follow from a non-

ℍ-holomorphic function when reverse replacing  𝑝 → 𝜉  that contradicts the fact that each ℂ-

holomorphic function follows always from the corresponding ℍ-holomorphic function if a kind 

of function 𝜓 remains unchanged (otherwise the invariance of a kind of function when replac-

ing 𝑝 by 𝜉 would be broken). This contradiction proves our theorem for case 1) when  𝑝 =  𝑥 +

𝑦𝑖 + 𝑧𝑗 + 𝑢𝑘 becomes  𝜉 =  𝑥 + 𝑧𝑗. 

    Let us now see what happens in the case 2) when we assume that the transition conditions 

are 𝑎 = 𝑎 = 𝑥 , (𝑦 = 0) and 𝑏 = −𝑏 = 𝑢𝑖 , (𝑧 = 0). In this case  𝑝 =  𝑥 + 𝑦𝑖 + 𝑧𝑗 + 𝑢𝑘  be-

comes  𝜉 =  𝑥 + 𝑢𝑘. For operators 𝜕𝑎 , 𝜕𝑎 , 𝜕𝑏 , 𝜕𝑏 the transition conditions 𝑦 = 0, 𝑧 = 0 (re-

spectively 𝜕𝑦 = 𝜕𝑧 = 0)  give in accordance with (2.18), (2.19), (2.20), (2.21) the following 

transition formulae:  

                                              𝜕𝑎 = 𝜕𝑎 = 1

2
𝜕𝑥,        𝜕𝑏 = −𝜕𝑏 = −𝑖1

2
𝜕𝑢.                                (4.61) 

Using these formulae we get from equations (4.31-2), (4.31-4) and  (4.31-1), (4.31-3) the tran-

sition formulae, respectively, for the function 𝜙1 and 𝜙2:  

                  𝜙1(𝑎, 𝑏) = 𝜙
1

(𝑎, 𝑏) = 𝜓1(𝑥, 𝑢),        𝜙2(𝑎, 𝑏) = − 𝜙
2

(𝑎, 𝑏) = 𝑖𝜓4(𝑥, 𝑢).      (4.62) 

In other words, the function 𝜓(p) = 𝜙1(𝑎, 𝑏) + 𝜙2(𝑎, 𝑏)𝑗 = 𝜓1(𝑥, 𝑦, 𝑧, 𝑢) + 𝜓2(𝑥, 𝑦, 𝑧, 𝑢)𝑖 +

𝜓3(𝑥, 𝑦, 𝑧, 𝑢)𝑗 + 𝜓4(𝑥, 𝑦, 𝑧, 𝑢)𝑘 becomes 𝜓(𝜉) = 𝜓1(𝑥, 𝑢) + 𝜓4(𝑥, 𝑢)𝑘 . 

    Substituting the transition formulae (4.61) and (4.62) into the system of quaternion holomor-

phicity equations (4.31) we transform it to the following system: 

                                                 𝜕𝑥𝜓1 = 𝜕𝑢𝜓4,        𝜕𝑥𝜓4 = −𝜕𝑢𝜓1, 

which represents the Cauchy-Riemann equations for complex functions 𝜓𝐶(𝜉) = 𝜓1(𝑥, 𝑢) +

𝜓4(𝑥, 𝑢)𝑘 in the complex plane 𝜉 = 𝑥 + 𝑢𝑘 with imaginary unit 𝑘 (𝑘2 = −1).  We see that in 

the second possible case of the transition to the complex plane each ℂ-holomorphic function 

follows allways from the corresponding ℍ-holomorphic function of the same kind too. Then 

by using the argumentation as in the case 1) we prove our theorem for case 2). This completes 

the proof of the theorem in whole. □  
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    In the sequel, we can without loss of generality consider the only replacement of 𝜉 =  𝑥 + 𝑧𝑗  

by  𝑝 = 𝑎 + 𝑏𝑗 , and vice versa.  

4.4   ℍ-holomorphic derivatives of all orders   

 

    Theorem 4.4 enables us to establish the ℍ-holomorphicity of derivatives of all orders, com-

puted by using the expression (4.57). We begin by the following theorem.  

Theorem 4.5 Let a continuous quaternion function 𝜓𝐻(𝑝) = 𝜙1(𝑎, 𝑏) + 𝜙2(𝑎, 𝑏)𝑗 , where 

𝜙1(𝑎, 𝑏) and 𝜙2(𝑎, 𝑏) are differentiable with respect to 𝑎, 𝑎, 𝑏 and 𝑏, be  ℍ-holomorphic eve-

rywhere in its domain of definition 𝐺4 ⊆ ℍ. Then its quaternion derivative, defined by the gen-

eral formula (4.57): 

                                                𝜓𝐻(𝑝)′ = 𝜙1
′ (𝑎, 𝑏) + 𝜙2

′ (𝑎, 𝑏)𝑗 ,                                           

where 

                                              𝜙1
′ (𝑎, 𝑏) = 𝜕𝑎𝜙1(𝑎, 𝑏) + 𝜕𝑎𝜙1(𝑎, 𝑏),                                     

                                              𝜙2
′ (𝑎, 𝑏) = 𝜕𝑎𝜙2(𝑎, 𝑏) + 𝜕𝑎𝜙2(𝑎, 𝑏), 

is also ℍ-holomorphic in 𝐺4, except, possibly, at certain singularities. If a quaternion function 

𝜓(𝑝) is once ℍ-differentiable in 𝐺4, then it possesses derivatives of all orders in 𝐺4, each one 

ℍ-holomorphic.  

    Proof.  Let a complex-valued function 𝜓𝐶(𝜉) = 𝜓1(𝑥, 𝑧) + 𝜓3(𝑥, 𝑧, )𝑗 be ℂ-holomorphic in 

an open connected domain  𝐺2 ⊆ ℂ, 𝜉 = 𝑥 + 𝑧𝑗 ∈ 𝐺2. The complex derivative of 𝜓𝐶(𝜉) at a 

point 𝜉 is defined [5, 9] by   

                        𝜓𝐶(𝜉)′ = 𝜕𝑥𝜓1 + 𝑗𝜕𝑥𝜓3 = (𝜕𝜉𝜓1 + 𝜕
𝜉

𝜓1) + (𝜕𝜉𝜓3 + 𝜕
𝜉

𝜓3) 𝑗,                 (4.63) 

where 𝜕𝜉  and 𝜕
𝜉
 are operators in the complex plane 𝜉 = 𝑥 + 𝑧𝑗, defined by 𝜕𝜉 = 1

2
(𝜕𝑥 − 𝜕𝑧 ∙ 𝑖),  

𝜕
𝜉

= 1

2
(𝜕𝑥 + 𝜕𝑧 ∙ 𝑖), whence 𝜕𝜉 + 𝜕

𝜉
= 𝜕𝑥. 

   It is easy to see that we can formally state the following identity for operators: 

                                                     𝜕𝑥 =  𝜕𝜉 + 𝜕
𝜉

= 𝜕𝑎 + 𝜕𝑎 ,                                                (4.64) 

where 𝜕𝑎 = 1

2
(𝜕𝑥 − 𝜕𝑦 ∙ 𝑖) and 𝜕𝑎 = 1

2
(𝜕𝑥 + 𝜕𝑦 ∙ 𝑖) correspond to (2.18) and (2.19). 

It is possible because the differential operators 𝜕𝑧 and  𝜕𝑦 disappear upon summation, respec-

tively, of operators  𝜕𝜉 , 𝜕
𝜉
  and  𝜕𝑎, 𝜕𝑎.  

    By using the identity (4.64) the expression (4.63) can be rewritten as follows: 

                                     𝜓𝐶(𝜉)′ =  (𝜕𝑎𝜓1 + 𝜕𝑎𝜓1) + (𝜕𝑎𝜓3 + 𝜕𝑎𝜓3)𝑗.                              (4.65) 
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The transition from the ℂ-holomorphic function 𝜓𝐶(𝜉) = 𝜓1(𝑥, 𝑧) + 𝜓3(𝑥, 𝑧, )𝑗 to the quater-

nion case can be carried out in accordance with Theorem 4.4 by replacing 𝜉 by 𝑝 in the expres-

sion for 𝜓𝐶(𝜉), that is, by means of transition  𝜓𝐶(𝜉) → 𝜓𝐻(𝑝) without change of an initial 

kind of function 𝜓𝐶 . This is equivalent to the replacements 𝜉 → 𝑝, 𝜓1(𝑥, 𝑧) → 𝜙1(𝑎, 𝑏), and  

𝜓3(𝑥, 𝑧, ) → 𝜙2(𝑎, 𝑏), where 𝜓1(𝑥, 𝑧) and 𝜓3(𝑥, 𝑧, ) are defined by the initial complex func-

tion 𝜓𝐶(𝜉) = 𝜓1(𝑥, 𝑧) + 𝜓3(𝑥, 𝑧, )𝑗 and 𝜙1(𝑎, 𝑏), 𝜙2(𝑎, 𝑏) are defined as constituents of the 

Cayley–Dickson doubling form 𝜓𝐻(𝑝) = 𝜙1(𝑎, 𝑏) + 𝜙2(𝑎, 𝑏)𝑗  of the function 𝜓𝐻(𝑝) , ob-

tained by the replacement 𝜉 → 𝑝 in 𝜓𝐶(𝜉). Making these replacements in (4.65) we get 

                 𝜓𝐻(𝑝)′ = [𝜕𝑎𝜙1(𝑎, 𝑏) + 𝜕𝑎𝜙1(𝑎, 𝑏)] + [𝜕𝑎𝜙2(𝑎, 𝑏) + 𝜕𝑎𝜙2(𝑎, 𝑏)]𝑗                (4.66)     

that is the above expression (4.57) for a derivative of a ℍ-holomorphic function 𝜓𝐻(𝑝) before 

doing the transition 𝑎 = 𝑎 = 𝑥.  

    We see that the differential algorithm (4.65) for finding the complex derivative is the same 

as the differential algorithm (4.66) for finding the quaternionic derivative:  𝜕𝑎 + 𝜕𝑎.  Since upon 

transition from (4.65) to (4.66), the differential algorithm for finding the derivative and a kind 

of function  𝜓, to which this algorithm is applied, remain unchanged, we can state that the 

dependence of the complex derivative on 𝜉, viewed as a function 𝜑(𝜉) (= 𝜓𝐶(𝜉)′), is the same 

as the dependence of the quaternionic derivative on 𝑝, that is, 𝜑(𝑝)(= 𝜓𝐻(𝑝)′). In other words, 

the replacement 𝜉 → 𝑝 in the expression (4.65) for the complex derivative gives the expression 

(4.66) for the quaternionic derivative without change of a kind of a derivative function.  

    Then, taking into consideration the fact that the first derivative (4.63) of the ℂ-holomorphic 

function is also ℂ-holomorphic [2, 9], and using Theorem 4.4 we have proved that the first 

quaternionic derivative 𝜓𝐻(𝑝)′ of the ℍ-holomorphic function is also ℍ-holomorphic in 𝐺4 ⊆

ℍ such that 𝐺4 ⊃ 𝐺2 in the sense that G2 exactly follows from G4 upon transition to the com-

plex case. 

    As usual, a second derivative of  𝜓(𝑝) is defined by differentiation of a first derivative, a 

third derivative by differentiation of a second derivative, and so on. We denote a derivative 

with respect to 𝜉 or 𝑝 by a prime, so that the second derivative is written as 𝜓(𝜉)′′ or  𝜓(𝑝)′′, 

a third as 𝜓(𝜉)′′′ or 𝜓(𝑝)′′′.  Introducing the designation 𝜕𝑎,𝑎 = 𝜕𝑎 + 𝜕𝑎 = 𝜕𝑥 we can briefly 

rewrite the formulae (4.65) and (4.66) as follows:  

                                       𝜓𝐶(𝜉)′ =  𝜕𝑎,𝑎𝜓1 + 𝜕𝑎,𝑎𝜓3𝑗 = 𝜓1
′ + 𝜓3

′ 𝑗,                                  

                                        𝜓𝐻(𝑝)′ =  𝜕𝑎,𝑎𝜙1 + 𝜕𝑎,𝑎𝜙2𝑗 = 𝜙1
′ + 𝜙2

′ 𝑗.                                    

    Further, we can write for the second and third derivatives the following expressions: 

           𝜓𝐶(𝜉)′′ =  𝜕𝑎,𝑎𝜓1
′ + 𝜕𝑎,𝑎𝜓3

′ 𝑗 = 𝜕𝑎,𝑎𝜕𝑎,𝑎𝜓1 + 𝜕𝑎,𝑎𝜕𝑎,𝑎𝜓3 𝑗 =  𝜓1
′′ + 𝜓3

′′𝑗,             (4.67)   

           𝜓𝐻(𝑝)′′ =  𝜕𝑎,𝑎𝜙1
′ + 𝜕𝑎,𝑎𝜙2

′ 𝑗 = 𝜕𝑎,𝑎𝜕𝑎,𝑎𝜙1 + 𝜕𝑎,𝑎𝜕𝑎,𝑎𝜙2𝑗 = 𝜙1
′′ + 𝜙2

′′𝑗,             (4.68) 
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  𝜓𝐶(𝜉)′′′ = 𝜕𝑎,𝑎𝜓1
′′ + 𝜕𝑎,𝑎𝜓3

′′𝑗 = 𝜕𝑎,𝑎𝜕𝑎,𝑎𝜕𝑎,𝑎𝜓1 + 𝜕𝑎,𝑎𝜕𝑎,𝑎𝜕𝑎,𝑎𝜓3𝑗 =  𝜓1
′′′ + 𝜓3

′′′𝑗     (4.69) 

  𝜓𝐻(𝑝)′′′ = 𝜕𝑎,𝑎𝜙1
′′ + 𝜕𝑎,𝑎𝜙2

′′𝑗 = 𝜕𝑎,𝑎𝜕𝑎,𝑎𝜕𝑎,𝑎𝜙1 + 𝜕𝑎,𝑎𝜕𝑎,𝑎𝜕𝑎,𝑎𝜙2𝑗 = 𝜙1
′′′ + 𝜙2

′′′𝑗.       (4.70) 

We assume that all functions occurring in expressions for derivatives possess the sufficient 

differentiability in the corresponding regions (𝐺1, 𝐺2 or 𝐺4), except, possibly, at certain singu-

larities.  

    It is easy to see that the replacement 𝜉 → 𝑝, 𝜓1(𝑥, 𝑧) → 𝜙1(𝑎, 𝑏), 𝜓3(𝑥, 𝑧, ) → 𝜙2(𝑎, 𝑏) in 

the expression (4.67) for the second complex derivative gives the expression (4.68) for the sec-

ond quaternionic derivative. Here the differential algorithm 𝜕𝑎,𝑎𝜕𝑎,𝑎 upon the transition to the 

quaternion case remains unchanged. Similarly, the differential algorithm 𝜕𝑎,𝑎𝜕𝑎,𝑎𝜕𝑎,𝑎 upon the 

transition from the complex expression (4.69) to the quaternion expression (4.70) for the third 

derivative remains unchanged. Since a kind of function 𝜓 (= 𝜓𝐶 = 𝜓𝐻) upon the transition 

𝜉 → 𝑝  remains also unchanged, we can conclude that the replacement 𝜉 → 𝑝 , 𝜓1(𝑥, 𝑧) →

𝜙1(𝑎, 𝑏), 𝜓3(𝑥, 𝑧, ) → 𝜙2(𝑎, 𝑏) in the expressions for the second and third complex derivatives 

carries out the transition to the expressions for the second and third quaternionic derivatives 

without change of a kind of derivatives functions. It is evident that the same is true for all higher 

derivatives. Then, taking into consideration the well-known fact [2, 9] that ℂ-holomorphic func-

tions have ℂ-holomorphic derivatives of all orders, and using Theorem 4.4, we have proved that 

ℍ-holomorphic functions have ℍ-holomorphic derivatives of all orders. 

This completes the proof of the theorem. □     

    From the proof of Theorem 4.5, we can easily see that, by using (4.66) all ℍ-holomorphic 

derivatives of ℍ-holomorphic functions follow from ℂ-holomorphic derivatives of ℂ-holomor-

phic functions when replacing the complex argument 𝜉 by the quaternion argument 𝑝 without 

changing of a kind of derivatives functions. Then we can formulate the following     

Corollary 4.6 All expressions for derivatives of a ℍ-holomorphic function 𝜓𝐻(𝑝) of the same 

kind as a ℂ-holomorphic function 𝜓𝐶(𝜉) have the same forms as the expressions for corre-

sponding derivatives of a function  𝜓𝐶(𝜉).  

    For example, if the derivative of the ℂ-holomorphic function  𝜓𝐶(𝜉) = 𝜉𝑛, where 𝑛 is an 

integer, has the expression 𝜓𝐶(𝜉)′ = 𝑛𝜉𝑛−1, then the derivative of the ℍ-holomorphic function 

𝜓𝐻(𝑝) = 𝑝𝑛, that is, of the same kind of function, when computing by (4.66) must have the 

similar expression 𝜓𝐻(𝑝)′ = 𝑛𝑝𝑛−1.  

    The Cauchy-Riemann equations, in particular (4.60), give four (see, e.g., [9]) different vari-

ants of expressions for computing the derivatives of ℂ-holomorphic functions, for example, one 
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of them 𝜓𝐶(𝜉)′ = 𝜕𝑥𝜓1 − 𝑗𝜕𝑧𝜓1. It is of interest to establish in addition to (4.66) other equiv-

alent expressions for computing the ℍ-holomorphic derivatives of all orders before doing the 

transition 𝑎 = 𝑎 = 𝑥. In order to make this we state the following equations without proof: 

                         𝜕𝑎𝜙2(𝑎, 𝑏) = − 𝜕𝑏𝜙1(𝑎, 𝑏),        𝜕𝑎𝜙2(𝑎, 𝑏) = − 𝜕𝑏𝜙
1

(𝑎, 𝑏),                  (4.71) 

which unlike the ℍ-holomorphicity equations in the form (4.31) or (4.36) are valid before doing 

the transition 𝑎 = 𝑎 = 𝑥  in expressions for derivatives of  ℍ-holomorphic functions. These 

equations can be shown to be true in general, but since the proof is rather long and long-winded, 

we shall not present it here, but merely state them. Note that equations (4.71) together with 

equation (4.43) can be interpreted as the quaternionic generalization of Cauchy-Riemann's 

equations before doing the transition 𝑎 = 𝑎 = 𝑥.    

    Using (4.71) in (4.66) we obtain the following equivalent expressions for derivatives of ℍ-

holomorphic functions: 

                  𝜓𝐻(𝑝)′ = 𝜕𝑎𝜙1(𝑎, 𝑏) + 𝜕𝑎𝜙1(𝑎, 𝑏) + (−𝜕𝑏𝜙1(𝑎, 𝑏) + 𝜕𝑎𝜙2(𝑎, 𝑏)) 𝑗,            (4.72) 

                  𝜓𝐻(𝑝)′ = 𝜕𝑎𝜙1(𝑎, 𝑏) + 𝜕𝑎𝜙1(𝑎, 𝑏) + (𝜕𝑎𝜙2(𝑎, 𝑏) − 𝜕𝑏𝜙
1

(𝑎, 𝑏)) 𝑗,     

                  𝜓𝐻(𝑝)′ = 𝜕𝑎𝜙1(𝑎, 𝑏) + 𝜕𝑎𝜙1(𝑎, 𝑏) − ( 𝜕𝑏𝜙1(𝑎, 𝑏) + 𝜕𝑏𝜙
1

(𝑎, 𝑏)) 𝑗, 

that are valid before doing the transition 𝑎 = 𝑎 = 𝑥.  

    Other equivalent expressions for derivatives before doing the transition 𝑎 = 𝑎 = 𝑥 can be 

obtained by using the equality 

                                                      𝜕𝑎𝜙
1

(𝑎, 𝑏) = 𝜕𝑎𝜙1(𝑎, 𝑏). 

This equality follows from equations (4.71) when differentiating them with respect to 𝑎 and 𝑎, 

and using the commutativity of mixed partial derivatives. Using this equality in expressions 

(4.66) and (4.72) we get the following additional expressions for derivatives of ℍ-holomorphic 

functions before doing the transition  𝑎 = 𝑎 = 𝑥:  

                  𝜓𝐻(𝑝)′ = (𝜕𝑎𝜙1(𝑎, 𝑏) + 𝜕𝑎𝜙
1

(𝑎, 𝑏)) + (𝜕𝑎𝜙2(𝑎, 𝑏) + 𝜕𝑎𝜙2(𝑎, 𝑏))𝑗,        (4.73) 

                  𝜓𝐻(𝑝)′ = (𝜕𝑎𝜙1(𝑎, 𝑏) + 𝜕𝑎𝜙
1

(𝑎, 𝑏)) + (−𝜕𝑏𝜙1(𝑎, 𝑏) + 𝜕𝑎𝜙2(𝑎, 𝑏)) 𝑗,   

                  𝜓𝐻(𝑝)′ = (𝜕𝑎𝜙1(𝑎, 𝑏) + 𝜕𝑎𝜙
1

(𝑎, 𝑏)) + (𝜕𝑎𝜙2(𝑎, 𝑏) − 𝜕𝑏𝜙
1

(𝑎, 𝑏)) 𝑗, 

                  𝜓𝐻(𝑝)′ = (𝜕𝑎𝜙1(𝑎, 𝑏) + 𝜕𝑎𝜙
1

(𝑎, 𝑏)) − ( 𝜕𝑏𝜙1(𝑎, 𝑏) + 𝜕𝑏𝜙
1

(𝑎, 𝑏)) 𝑗. 

    Altogether, the expressions (4.66), (4.72), and (4.73) generalize to the quaternion case the 

known expressions [9] for complex derivatives based on Cauchy-Riemann's equations.  We 

shall not dwell on this here. Each of these expressions may be used in order to formulate the 

general expression for the derivatives of all orders of  ℍ-holomorphic functions. For now it 
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suffices to formulate the general expression in the Cayley–Dickson doubling form based on the 

formula (4.66):  

         𝜓(𝑝)(𝑘) = 𝜙1
(𝑘)

+ 𝜙2
(𝑘)

𝑗 = [𝜕𝑎𝜙1
(𝑘−1)

+ 𝜕𝑎𝜙1
(𝑘−1)

] + [𝜕𝑎𝜙2
(𝑘−1)

+ 𝜕𝑎𝜙2
(𝑘−1)

]𝑗,       (4.74) 

where  𝜓(𝑝)(𝑘) is the 𝑘′th derivative of 𝜓(𝑝); 𝜙1
(𝑘−1)

 and 𝜙2
(𝑘−1)

 are the constituents of the 

(𝑘 − 1)′th derivative of 𝜓(𝑝), represented in the Cayley–Dickson doubling form: 𝜓(𝑝)(𝑘−1) =

𝜙1
(𝑘−1)

+ 𝜙2
(𝑘−1)

𝑗; 𝑘 ≥ 1; 𝜙1
(0)

= 𝜙1(𝑎, 𝑏) and 𝜙2
(0)

= 𝜙2(𝑎, 𝑏) for 𝑘 = 1.   

5   Efficiency examples of the presented theory  
 

    It is clear that "complicated" holomorphic functions are practically representable in terms of 

algebraic operations and compositions, applied to "elementary" holomorphic functions. The 

usual elementary functions are well known [2, 4, 9, 11], for example, the functions 𝑝𝑛 (with 

𝑛 = 0, ±1, ± 2,…), 𝑒𝑧, cos 𝑧, sin 𝑧.  We use here, however, a more generalized concept of el-

ementary functions: the so-called Liouvillian elementary functions. A function of one (com-

plex) variable is said to be the Liouvillian elementary function if it has an explicit representation 

in terms of a finite number of algebraic operations (functions), logarithms, and exponentials 

[13]. Taking into account the linearity of equations (4.31) and the fact that the power functions 

are basic elements of algebraic functions, it suffices only to consider in details the following 

Liouvillian elementary functions: the power function, exponential and logarithmic functions in 

order to demonstrate the rightness of the presented theory of ℍ-differentiability. 

Example 5.1 As the first example, we consider the power function 𝜓(𝑝) = 𝜙1 + 𝜙2 ∙ 𝑗 = 𝑝4. 

The straightforward computation in accordance with the multiplication rule (2.12) yields the 

following expressions for components 𝜙1 and 𝜙2 of this function in the Cayley–Dickson dou-

bling form:  

   𝜙1 = 𝑎4 − (3𝑎2 + 2𝑎𝑎 + 𝑎
2

)𝑏𝑏 + 𝑏2𝑏
2
, 𝜙2 = (𝑎3 + 𝑎2𝑎 + 𝑎𝑎

2
+ 𝑎

3
)𝑏 − 2(𝑎 + 𝑎)𝑏2𝑏   

as well as their conjugates 

    𝜙
1

= 𝑎
4

− (3𝑎
2

+ 2𝑎𝑎 + 𝑎2)𝑏𝑏 + 𝑏2𝑏
2
,𝜙

2
= (𝑎

3
+ 𝑎

2
𝑎 + 𝑎𝑎2 + 𝑎3)𝑏 − 2(𝑎 + 𝑎)𝑏

2
𝑏. 

   Since the function 𝜓(𝜉) = 𝜉4 is ℂ-holomorphic on the complex plane, the function 𝜓(𝑝) =

𝑝4 must be ℍ-holomorphic in the quaternion space in accordance with Theorem 4.4. In order 

to verify the ℍ-holomorphicity of this function we initially compute the partial derivatives: 

𝜕𝑎𝜙1 = 4𝑎3 − (6𝑎 + 2𝑎)𝑏𝑏 , 𝜕𝑏𝜙2 =  𝜕𝑏𝜙
2

=  (𝑎3 + 𝑎2𝑎 + 𝑎𝑎
2

+ 𝑎
3

) − 4(𝑎 + 𝑎)𝑏𝑏 , as 

well as 𝜕𝑎𝜙2 = − 𝜕𝑏𝜙1 = (3𝑎2 + 2𝑎𝑎 + 𝑎
2

)𝑏 − 2𝑏2𝑏 , 𝜕𝑎𝜙2 = − 𝜕𝑏𝜙
1

= (𝑎2 + 2𝑎𝑎 +
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3𝑎
2

)𝑏 − −2𝑏2𝑏. We see that generalized Cauchy-Riemann's equations (4.71) and (4.43) be-

fore doing the transition 𝑎 = 𝑎 = 𝑥 hold.  

    The transition 𝑎 = 𝑎 = 𝑥 (the transition to dimension 3) yields the following equalities:  

            1)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙
2

| = 4𝑥3 − 8𝑥𝑏𝑏;   2)  (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙
1

| = 6𝑥2𝑏 − 2𝑏2𝑏; 

            3)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙2| = 4𝑥3 − 8𝑥𝑏𝑏;   4)  (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙1| = 6𝑥2𝑏 − 2𝑏2𝑏. 

Thus the ℍ-holomorphicity equations (4.36) hold, and the function 𝜓(𝑝) = 𝑝4 is ℍ-holomor-

phic everywhere in  ℍ.    

    The first derivative. Computing additionally the derivative  𝜕𝑎𝜙1 = −2(𝑎 + 𝑎)𝑏𝑏,  we ob-

tain in accordance with (4.74) the following expression for the first derivative of 𝜓(𝑝) = 𝑝4 

before we do the transition   𝑎 = 𝑎 = 𝑥:  

  (𝑝4)(1) = 𝜙1
(1)

+ 𝜙2
(1)

𝑗 = (𝜕𝑎𝜙1 + 𝜕𝑎𝜙1) + (𝜕𝑎𝜙2 + 𝜕𝑎𝜙2)𝑗 = [4𝑎3 − (6𝑎 + 2𝑎)𝑏𝑏 −

 2(𝑎 + 𝑎)𝑏𝑏] + [(3𝑎2 + 2𝑎𝑎 + 𝑎
2

)𝑏 − 2𝑏2𝑏 + (𝑎2 + 2𝑎𝑎 + 3𝑎
2

)𝑏 − 2𝑏2𝑏]𝑗  

                       = 4[𝑎3 − (2𝑎 + 𝑎)𝑏𝑏]  + 4[(𝑎2 + 𝑎𝑎 + 𝑎
2

)𝑏 − 𝑏2𝑏]𝑗 = 4𝑝3, 

where  𝑝3 = [𝑎3 − (2𝑎 + 𝑎)𝑏𝑏]  + [(𝑎2 + 𝑎𝑎 + 𝑎
2

)𝑏 −  𝑏2𝑏]𝑗. It is not difficult to obtain the 

last formula for 𝑝3 by means of the direct computation 𝑝3 = (𝑎 + 𝑏𝑗)3 using the multiplication 

formula (2.12) in the Cayley–Dickson doubling form. According to Corollary 4.6, the first de-

rivative  (𝑝4)(1) = 4𝑝3 has the same form as the one in complex (and real) analysis: (𝜉4)(1) =

4𝜉3. The final transition  𝑎 = 𝑎 = 𝑥 yields the following expression for the first derivative:  

           
𝜕(𝑝4)

𝜕𝑝
= [(𝑝4)(1)| = (𝜙1

(1)
| + (𝜙2

(1)
|𝑗 = (4𝑝3| = 4[𝑥3 − 3𝑥𝑏𝑏] + 4[3𝑥2𝑏 − 𝑏2𝑏]𝑗, 

which is "independent of the way of computation" (see Definition 4.1). Therefore, this 3-di-

mensional expression can represent the corresponding conservative vector field in space just as 

the first derivative of the ℂ-holomorphic function 𝜓(𝜉) = 𝜉4  represents some conservative 

vector field in the plane [5, 9]. In all examples below we bear in mind this meaning of the final 

transitions to the 3-dimensional expressions.  

    From the expression for (𝑝4)(1) it follows that the first derivative has the components  𝜙1
(1)

=

4[𝑎3 − (2𝑎 + 𝑎)𝑏𝑏] and  𝜙2
(1)

= 4[(𝑎2 + 𝑎𝑎 + 𝑎
2

)𝑏 − 𝑏2𝑏]. Their conjugates are as follows:  

𝜙1
(1)

= 4[𝑎
3

− (2𝑎 + 𝑎)𝑏𝑏]  and   𝜙2
(1)

= 4 [ (𝑎
2

+ 𝑎𝑎 + 𝑎2)𝑏 −  𝑏
2

𝑏].  

    We get the following partial derivatives:  𝜕𝑎𝜙1
(1)

= 4(3𝑎2 − 2𝑏𝑏) ; 𝜕𝑏𝜙2
(1)

=  𝜕𝑏𝜙2
(1)

= 

4[(𝑎2 +   𝑎𝑎 + 𝑎
2

) − 2𝑏𝑏] ; and 𝜕𝑎𝜙2
(1)

= − 𝜕𝑏𝜙1
(1)

= 4(2𝑎 + 𝑎)𝑏 ; 𝜕𝑎𝜙2
(1)

= − 𝜕𝑏𝜙1
(1)

=
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4(𝑎 + 2𝑎)𝑏 . After performing the transition  𝑎 = 𝑎 = 𝑥 we see that the ℍ-holomorphicity 

equations (4.36) hold: 

            1)  (𝜕𝑎𝜙1
(1)

| = (𝜕𝑏𝜙2
(1)

| = 4(3𝑥2 − 2𝑏𝑏);   2)  (𝜕𝑎𝜙2
(1)

| = − (𝜕𝑏𝜙1
(1)

| = 12𝑥𝑏; 

            3)  (𝜕𝑎𝜙1
(1)

| = (𝜕𝑏𝜙2
(1)

| = 4(3𝑥2 − 2𝑏𝑏);   4)  (𝜕𝑎𝜙2
(1)

| = − (𝜕𝑏𝜙1
(1)

| = 12𝑥𝑏. 

Thus the first derivative (𝑝4)(1) = 𝜙1
(1)

+ 𝜙2
(1)

𝑗 of the ℍ-holomorphic function 𝜓(𝑝) = 𝑝4 is 

ℍ-holomorphic everywhere in ℍ, according to Theorem 4.5. We see that equations (4.71) and 

(4.43) hold too. 

    The second derivative. Using the computed partial derivatives of 𝜙1
(1)

 and 𝜙2
(1)

 as well as  

the derivative 𝜕𝑎𝜙1
(1)

= −4𝑏𝑏,  we find from (4.74) the following expression for the second 

derivative of 𝜓(𝑝) = 𝑝4 before we do the transition   𝑎 = 𝑎 = 𝑥:  

                  (𝑝4)(2) = 𝜙1
(2)

+ 𝜙2
(2)

𝑗 = (𝜕𝑎𝜙1
(1)

+ 𝜕𝑎𝜙1
(1)

) + (𝜕𝑎𝜙2
(1)

+ 𝜕𝑎𝜙2
(1)

)𝑗 = 

                 [4(3𝑎2 − 2𝑏𝑏) − 4𝑏𝑏] + [4(2𝑎 + 𝑎)𝑏 + 4(𝑎 + 2𝑎)𝑏]𝑗 = 4 ∙ 3𝑝2 = 12𝑝2, 

where 𝑝2 = (𝑎 + 𝑏𝑗)2 = (𝑎2 − 𝑏𝑏) + 𝑏(𝑎 + 𝑎)𝑗,  𝜙1
(2)

= 12(𝑎2 − 𝑏𝑏),  and 𝜙2
(2)

= 12(𝑎 +

𝑎)𝑏. According to Corollary 4.6, the second derivative  (𝑝4)(2) = 12𝑝2 has the same form as 

the one in real and complex analysis: (𝜉4)(2) = 12𝜉2. The final transition  𝑎 = 𝑎 = 𝑥 yields 

the following expression for the second derivative: 

                   
𝜕2(𝑝4)

𝜕𝑝2
= [(𝑝4)(2)| = (𝜙1

(2)
| + (𝜙2

(2)
|𝑗 = 12(𝑝2| = 12[(𝑥2 − 𝑏𝑏) + 2𝑥𝑏𝑗]. 

   To test the ℍ-holomorphicity of the second derivative (𝑝4)(2) we compute the partial deriv-

atives of functions 𝜙1
(2)

and 𝜙2
(2)

: 𝜕𝑎𝜙1
(2)

= 24𝑎 ; 𝜕𝑏𝜙2
(2)

=  𝜕𝑏𝜙2
(2)

= 12(𝑎 + 𝑎) ; and 

𝜕𝑎𝜙2
(2)

= − 𝜕𝑏𝜙1
(2)

= 12𝑏 ; 𝜕𝑎𝜙2
(2)

= − 𝜕𝑏𝜙1
(2)

= 12𝑏 . After performing the transition 𝑎 =

𝑎 = 𝑥 we see that the ℍ-holomorphicity equations (4.36) hold: 

                     1)  (𝜕𝑎𝜙1
(2)

| = (𝜕𝑏𝜙2
(2)

| = 24𝑥;    2)  (𝜕𝑎𝜙2
(2)

| = − (𝜕𝑏𝜙1
(2)

| = 12𝑏; 

                     3)  (𝜕𝑎𝜙1
(2)

| = (𝜕𝑏𝜙2
(2)

| = 24𝑥;    4)  (𝜕𝑎𝜙2
(2)

| = − (𝜕𝑏𝜙1
(2)

| = 12𝑏. 

Thus the second derivative (𝑝4)(2) of 𝜓(𝑝) = 𝑝4 is ℍ-holomorphic everywhere in ℍ, accord-

ing to Theorem 4.5. Equations (4.71) and (4.43) hold too. 

    The third derivative. Using the computed partial derivatives of 𝜙1
(2)

 and 𝜙2
(2)

 as well as  the 

derivative 𝜕𝑎𝜙1
(2)

= 0  we find from (4.74)  the following expression for the third derivative of 

the function 𝜓(𝑝) = 𝑝4 before we do the transition   𝑎 = 𝑎 = 𝑥:  

 (𝑝4)(3) = 𝜙1
(3)

+ 𝜙2
(3)

𝑗 = (𝜕𝑎𝜙1
(2)

+ 𝜕𝑎𝜙1
(2)

) + (𝜕𝑎𝜙2
(2)

+ 𝜕𝑎𝜙2
(2)

)𝑗 = 
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                                 = 24𝑎 + 24𝑏𝑗 = 24𝑝 

,whence 𝜙1
(3)

= 24𝑎   and  𝜙2
(3)

= 24𝑏 . According to Corollary 4.6, the third derivative: 

 (𝑝4)(3) = 24𝑝 has the same form as the one in real and complex analysis:  (𝜉4)(3) = 24𝜉. 

    Computing the partial derivatives of 𝜙1
(3)

 and 𝜙2
(3)

 yields 𝜕𝑎𝜙1
(3)

= 24; 𝜕𝑏𝜙2
(3)

=  𝜕𝑏𝜙2
(3)

=

24; and 𝜕𝑎𝜙2
(3)

= − 𝜕𝑏𝜙1
(3)

= 0; 𝜕𝑎𝜙2
(3)

= − 𝜕𝑏𝜙1
(3)

= 0. We see that the ℍ-holomorphicity 

equations (4.36) hold in this case without requiring the transition  𝑎 = 𝑎 = 𝑥: 

                     1)  (𝜕𝑎𝜙1
(3)

| = (𝜕𝑏𝜙2
(3)

| = 24;    2)  (𝜕𝑎𝜙2
(3)

| = − (𝜕𝑏𝜙1
(3)

| = 0; 

                     3)  (𝜕𝑎𝜙1
(3)

| = (𝜕𝑏𝜙2
(3)

| = 24;    4)  (𝜕𝑎𝜙2
(3)

| = − (𝜕𝑏𝜙1
(3)

| = 0. 

Thus the third derivative (𝑝4)(3) = 𝜙1
(3)

+ 𝜙2
(2)

𝑗 of the ℍ-holomorphic function 𝜓(𝑝) = 𝑝4 is 

ℍ-holomorphic everywhere in ℍ too, according to Theorem 4.5. Equations (4.71) and (4.43) 

hold too. 

    The final transition  𝑎 = 𝑎 = 𝑥 yields the following expression for the third derivative: 

                              
𝜕3𝜓

𝜕𝑝3 = [(𝑝4)(3)| = (𝜙1
(3)

| + (𝜙2
(3)

|𝑗 = 24𝑥 + 24𝑏𝑗 = 24(𝑝|. 

    The fourth derivative. We find that 

     (𝑝4)(4) = 𝜙1
(4)

+ 𝜙2
(4)

𝑗 = (𝜕𝑎𝜙1
(3)

+ 𝜕𝑎𝜙1
(3)

) + (𝜕𝑎𝜙2
(3)

+ 𝜕𝑎𝜙2
(3)

)𝑗 = 24 + 0𝑗 = 24, 

whence 𝜙1
(4)

= 24,  𝜙2
(4)

= 0. 

It is not difficult to see that in this case the ℍ-holomorphicity equations (4.36) hold too: 

                     1)  (𝜕𝑎𝜙1
(4)

| = (𝜕𝑏𝜙2
(4)

| = 0;        2)  (𝜕𝑎𝜙2
(4)

| = − (𝜕𝑏𝜙1
(4)

| = 0; 

                     3)  (𝜕𝑎𝜙1
(4)

| = (𝜕𝑏𝜙2
(4)

| = 0;        4)  (𝜕𝑎𝜙2
(4)

| = − (𝜕𝑏𝜙1
(4)

| = 0.  

    According to Corollary 4.6, the fourth derivative:  (𝑝4)(4) = 24 has the same form as the one 

in real and complex analysis: (𝜉4)(4) = 24. The final transition  𝑎 = 𝑎 = 𝑥 yields 

                                       
𝜕4(𝑝4)

𝜕𝑝4
= [(𝑝4)(4)| = (𝜙1

(4)
| + (𝜙2

(4)
|𝑗 = 24. 

Equations (4.71) and (4.43) hold too.  

Example 5.2  Consider the power function  𝜓(𝑝) = 𝑝−1. Using the formulae (4.1) and  (2.11), 

we get the following expression for this function in the Cayley–Dickson doubling form: 

                             𝜓(𝑝) = 𝜙1 + 𝜙2 ∙ 𝑗 = 𝑝−1 =
1

𝑝
=

𝑝

|𝑝|2 =
𝑎

(𝑎𝑎+𝑏𝑏)
−

𝑏

(𝑎𝑎+𝑏𝑏)
𝑗, 

whence 𝜙1 =
𝑎

(𝑎𝑎+𝑏𝑏)
  and 𝜙2 = −

𝑏

(𝑎𝑎+𝑏𝑏)
 as well as 𝜙

1
=

𝑎

(𝑎𝑎+𝑏𝑏)
 and 𝜙

2
= −

𝑏

(𝑎𝑎+𝑏𝑏)
. 

    In accordance with Theorem 4.4, since the complex function 𝜓(𝜉) = 𝜉−1 is ℂ-holomorphic 

at points   𝜉 ∈ ℂ ∖ {0}, the quaternion function 𝜓(𝑝) = 𝑝−1 must be ℍ-holomorphic at points 
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𝑝 ∈ ℍ ∖ {0}. To test the ℍ-holomorphicity of the function 𝜓(𝑝) = 𝑝−1 we compute the partial 

derivatives of functions 𝜙1  and 𝜙2 : 𝜕𝑎𝜙1 = −
𝑎

2

(𝑎𝑎+𝑏𝑏)
2 ; 𝜕𝑏𝜙2 =  𝜕𝑏𝜙

2
= −

𝑎𝑎

(𝑎𝑎+𝑏𝑏)
2 ; and 

𝜕𝑎𝜙2 = − 𝜕𝑏𝜙1 =
𝑎𝑏

(𝑎𝑎+𝑏𝑏)
2; 𝜕𝑎𝜙2 = − 𝜕𝑏𝜙

1
=

𝑎𝑏

(𝑎𝑎+𝑏𝑏)
2. After performing the transition 𝑎 =

𝑎 = 𝑥 we see that the ℍ-holomorphicity equations (4.36) hold: 

              1)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙
2

| = −
𝑥2

(𝑥2+𝑏𝑏)
2 ;        2)  (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙

1
| =

𝑥𝑏

(𝑥2+𝑏𝑏)
2; 

              3)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙2| = −
𝑥2

(𝑥2+𝑏𝑏)
2 ;        4)  (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙1| =

𝑥𝑏

(𝑥2+𝑏𝑏)
2 . 

Thus we have shown that the function 𝜓(𝑝) = 𝜙1 + 𝜙2 ∙ 𝑗 = 𝑝−1 is ℍ-holomorphic at points 

𝑝 ∈ ℍ ∖ {0}. Equations (4.71) and (4.43) hold too. 

     The first derivative.  Using the expressions for   𝜕𝑎𝜙1, 𝜕𝑎𝜙2, 𝜕𝑎𝜙2 and 𝜕𝑎𝜙1 =
𝑏𝑏

(𝑎𝑎+𝑏𝑏)
2  in 

(4.74), we get the following expression for the first derivative before doing the transition 𝑎 =

𝑎 = 𝑥: 

                     (𝑝−1)(1) = 𝜙1
(1)

+ 𝜙2
(1)

𝑗 = (𝜕𝑎𝜙1 + 𝜕𝑎𝜙1) + (𝜕𝑎𝜙2 + 𝜕𝑎𝜙2)𝑗 =   

                                   = [−
𝑎

2

(𝑎𝑎+𝑏𝑏)
2 +

𝑏𝑏

(𝑎𝑎+𝑏𝑏)
2] + [

𝑎𝑏

(𝑎𝑎+𝑏𝑏)
2 +

𝑎𝑏

(𝑎𝑎+𝑏𝑏)
2] 𝑗 

                                   = −
[𝑎

2
−𝑏𝑏−𝑏(𝑎+𝑎)𝑗]

(𝑎𝑎+𝑏𝑏)
2 = −

𝑝
2

(𝑎𝑎+𝑏𝑏)
2 = −

𝑝
2

|𝑝|4 ,  

 where the expression  𝑝
2

= (𝑎 − 𝑏𝑗) ∙ (𝑎 − 𝑏𝑗) = 𝑎
2

− 𝑏𝑏 − 𝑏(𝑎 + 𝑎)𝑗  is evident. Taking 

into account that  𝑝−2 = 𝑝−1𝑝−1 =
𝑝

2

|𝑝|4 , we get the following expression for the first derivative 

of 𝜓(𝑝) = 𝑝−1 before doing the transition  𝑎 = 𝑎 = 𝑥:  

                                                 (𝑝−1)(1) = 𝜙1
(1)

+ 𝜙2
(1)

𝑗 = −𝑝−2 , 

where 𝜙1
(1)

=
𝑏𝑏−𝑎

2

(𝑎𝑎+𝑏𝑏)
2    and  𝜙2

(1)
=

𝑏(𝑎+𝑎)

(𝑎𝑎+𝑏𝑏)
2  . The complex conjugation of 𝜙1

(1)
 and 𝜙2

(1)
 

yields 𝜙1
(1)

=
𝑏𝑏−𝑎2

(𝑎𝑎+𝑏𝑏)
2  and  𝜙2

(1)
=

𝑏(𝑎+𝑎)

(𝑎𝑎+𝑏𝑏)
2 . According to Corollary 4.6, the first derivative: 

(𝑝−1)(1) = −𝑝−2 has the same form as the one in real and complex analysis: (𝜉−1)(1) = −𝜉−2. 

    To verify the ℍ-holomorphicity of the first derivative (𝑝−1)(1) we compute the partial deriv-

atives of functions 𝜙1
(1)

 and 𝜙2
(1)

: 𝜕𝑎𝜙1
(1)

=
2𝑎(𝑎

2
−𝑏𝑏)

(𝑎𝑎+𝑏𝑏)
3 ; 𝜕𝑏𝜙2

(1)
=  𝜕𝑏𝜙2

(1)
=

(𝑎+𝑎)(𝑎𝑎−𝑏𝑏)

(𝑎𝑎+𝑏𝑏)
3 ; and 

𝜕𝑎𝜙2
(1)

= − 𝜕𝑏𝜙1
(1)

=
𝑏(𝑏𝑏−𝑎𝑎−2𝑎

2
)

(𝑎𝑎+𝑏𝑏)
3 ; 𝜕𝑎𝜙2

(1)
= − 𝜕𝑏𝜙1

(1)
=

𝑏(𝑏𝑏−𝑎𝑎−2𝑎2)

(𝑎𝑎+𝑏𝑏)
3  . Equations (4.71) 

and (4.43) hold. 
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    After performing the transition 𝑎 = 𝑎 = 𝑥  we see that the ℍ -holomorphicity equations 

(4.36) hold for the first derivative of  𝜓(𝑝) = 𝑝−1: 

             1)  (𝜕𝑎𝜙1
(1)

| = (𝜕𝑏𝜙2
(1)

| =
2𝑥(𝑥2−𝑏𝑏)

(𝑥2+𝑏𝑏)
3  ;   2)  (𝜕𝑎𝜙2

(1)
| = − (𝜕𝑏𝜙1

(1)
| =

𝑏(𝑏𝑏−3𝑥2)

(𝑥2+𝑏𝑏)
3 ; 

             3)  (𝜕𝑎𝜙1
(1)

| = (𝜕𝑏𝜙2
(1)

| =
2𝑥(𝑥2−𝑏𝑏)

(𝑥2+𝑏𝑏)
3  ;   4)  (𝜕𝑎𝜙2

(1)
| = − (𝜕𝑏𝜙1

(1)
| =

𝑏(𝑏𝑏−3𝑥2)

(𝑥2+𝑏𝑏)
3  . 

Thus the first derivative of the ℍ-holomorphic function 𝜓(𝑝) = 𝑝−1 is ℍ-holomorphic at the 

points 𝑝 ∈ ℍ ∖ {0}, according to Theorem 4.5. 

    At last, the transition 𝑎 = 𝑎 = 𝑥 gives the final 3-dimensional expression for the first deriv-

ative of 𝑝−1: 

                   
𝜕(𝑝−1)

𝜕𝑝
= [(𝑝−1)(1)| = (𝜙1

(1)
| + (𝜙2

(1)
|𝑗 =

𝑏𝑏−𝑥2

(𝑥2+𝑏𝑏)
2 +  

2𝑥𝑏

(𝑥2+𝑏𝑏)
2 𝑗 = −(𝑝−2|. 

    The second derivative. Using the formula (4.74) and derivatives 𝜕𝑎𝜙1
(1)

, 𝜕𝑎𝜙2
(1)

, 𝜕𝑎𝜙2
(1)

, 

𝜕𝑎𝜙1
(1)

= −
2𝑏𝑏(𝑎+𝑎)

(𝑎𝑎+𝑏𝑏)
3  , we can write the following expression for the second derivative of 

𝜓(𝑝) = 𝑝−1 before doing the transition 𝑎 = 𝑎 = 𝑥:  

           (𝑝−1)(2) = 𝜙1
(2)

+ 𝜙2
(2)

𝑗 = (𝜕𝑎𝜙1
(1)

+ 𝜕𝑎𝜙1
(1)

) + (𝜕𝑎𝜙2
(1)

+ 𝜕𝑎𝜙2
(1)

)𝑗   

                         = [
2𝑎(𝑎

2
−𝑏𝑏)

(𝑎𝑎+𝑏𝑏)
3 −

2𝑏𝑏(𝑎+𝑎)

(𝑎𝑎+𝑏𝑏)
3] + [

𝑏(𝑏𝑏−𝑎𝑎−2𝑎
2

)

(𝑎𝑎+𝑏𝑏)
3 +

𝑏(𝑏𝑏−𝑎𝑎−2𝑎2)

(𝑎𝑎+𝑏𝑏)
3 ] 𝑗 

                         =  
2[𝑎

3
−2𝑎𝑏𝑏−𝑎𝑏𝑏]+2[𝑏2𝑏−𝑎

2
𝑏−𝑎𝑏(𝑎+𝑎)]𝑗

(𝑎𝑎+𝑏𝑏)
3  ,     

whence 𝜙1
(2)

=
2[𝑎

3
−(2𝑎+𝑎)𝑏𝑏]

(𝑎𝑎+𝑏𝑏)
3   , 𝜙2

(2)
=

2[𝑏2𝑏−(𝑎2+𝑎𝑎+𝑎
2

)𝑏]

(𝑎𝑎+𝑏𝑏)
3  .  

    Taking into account    𝑝
2

= (𝑎 − 𝑏𝑗)(𝑎 − 𝑏𝑗) = 𝑎
2

− 𝑏𝑏 − 𝑏(𝑎 + 𝑎)𝑗;   𝑝
3

= 𝑝
2

𝑝 = 

[𝑎
2

− 𝑏𝑏 − 𝑏(𝑎 + 𝑎)𝑗](𝑎 − 𝑏𝑗) = [𝑎
3

− 2𝑎𝑏𝑏 − 𝑎𝑏𝑏] + [𝑏2𝑏 − 𝑎
2

𝑏 − 𝑎𝑏(𝑎 + 𝑎)]𝑗;  𝑝−3 =

𝑝−1𝑝−1𝑝−1 =
𝑝

3

|𝑝|6 =
𝑝

3

(𝑎𝑎+𝑏𝑏)
3 , we obtain the following expression for the second derivative of 

𝜓(𝑝) = 𝑝−1 before doing the transition 𝑎 = 𝑎 = 𝑥:  

                                                   (𝑝−1)(2) = 2
𝑝

3

(𝑎𝑎+𝑏𝑏)
3 = 2𝑝−3, 

which has the same form as the one in complex (and real) analysis: (𝜉−1)(2) = 2𝜉−3. The tran-

sition 𝑎 = 𝑎 = 𝑥  leads to the final 3-dimensional expression for the second derivative of 

𝜓(𝑝) = 𝑝−1 : 

                  
𝜕2(𝑝−1)

𝜕𝑝2 = [(𝑝−1)(2)| = 2(𝑝−3| =
2(𝑝

3
|

(𝑥2+𝑏𝑏)
3 = 2

(𝑥3−3𝑥𝑏𝑏)+(𝑏2𝑏−3𝑥2𝑏)𝑗

(𝑥2+𝑏𝑏)
3  . 
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    To verify the ℍ-holomorphicity of the second derivative (𝑝−1)(2) we compute the partial 

derivatives of components 𝜙1
(2)

 and  𝜙2
(2)

: 𝜕𝑎𝜙1
(2)

=
2[−3𝑎

4
+2𝑎(3𝑎+𝑎)𝑏𝑏−𝑏2𝑏

2
]

(𝑎𝑎+𝑏𝑏)
4 ; 𝜕𝑏𝜙2

(2)
=

 𝜕𝑏𝜙2
(2)

=
2[−𝑎𝑎(𝑎2+𝑎𝑎+𝑎

2
)+2(𝑎2+2𝑎𝑎+𝑎

2
)𝑏𝑏−𝑏2𝑏

2
]

 (𝑎𝑎+𝑏𝑏)
4  ; 𝜕𝑎𝜙2

(2)
= − 𝜕𝑏𝜙1

(2)
=

2𝑎(𝑎2+2𝑎𝑎+3𝑎
2

)𝑏

(𝑎𝑎+𝑏𝑏)
4 −         

               −
4(𝑎+2𝑎)𝑏2𝑏

(𝑎𝑎+𝑏𝑏)
4   ; 𝜕𝑎𝜙2

(2)
= − 𝜕𝑏𝜙1

(2)
=

2[𝑎𝑎(𝑎+2𝑎)𝑏+3𝑎3𝑏−2(𝑎+2𝑎)𝑏2𝑏]

(𝑎𝑎+𝑏𝑏)
4  .  

   After performing the transition 𝑎 = 𝑎 = 𝑥 we see that the ℍ-holomorphicity equations (4.36) 

hold for the second derivative of  𝜓(𝑝) = 𝑝−1: 

   1)  (𝜕𝑎𝜙1
(2)

| = (𝜕𝑏𝜙2
(2)

| =
2[−3𝑥4+8𝑥2𝑏𝑏−𝑏2𝑏

2
]

(𝑥2+𝑏𝑏)
4  ;   2)  (𝜕𝑎𝜙2

(2)
| = − (𝜕𝑏𝜙1

(2)
| =

12𝑥𝑏(𝑥2−𝑏𝑏)

(𝑥2+𝑏𝑏)
4       

   3)  (𝜕𝑎𝜙1
(2)

| = (𝜕𝑏𝜙2
(2)

| =
2[−3𝑥4+8𝑥2𝑏𝑏−𝑏2𝑏

2
]

(𝑥2+𝑏𝑏)
4  ;   4)  (𝜕𝑎𝜙2

(2)
| = − (𝜕𝑏𝜙1

(2)
| =

12𝑥𝑏(𝑥2−𝑏𝑏)

(𝑥2+𝑏𝑏)
4  . 

    Thus the second derivative of the ℍ-holomorphic function 𝜓(𝑝) = 𝑝−1 is ℍ-holomorphic at 

points 𝑝 ∈ ℍ ∖ {0} too, according to Theorem 4.5. Equations (4.71) and (4.43) hold too.  

     Higher derivatives. As the reader can verify, Theorem 4.5 and Corollary 4.6 remain valid 

for the higher derivatives of  𝜓(𝑝) = 𝑝−1.  

Example 5.3 Consider the quaternionic exponential function 𝜓(𝑝) = 𝑒𝑝 = 𝜙1 + 𝜙2 ∙ 𝑗, where 

𝑒 is the base of the natural logarithm. Since this function can be obtained from the principal 

branch of the ℂ-holomorphic function [9, 10, 11] 𝜓(𝑧) = 𝑒𝑧 , 𝑧 ∈ ℂ  by the direct replacement 

of 𝑧 by 𝑝, it follows that  the quaternionic exponential function 𝜓(𝑝) = 𝜙1 + 𝜙2 ∙ 𝑗 = 𝑒𝑝 must 

be ℍ-holomorphic in ℍ, according to Theorem 4.4. To verify the ℍ-holomorphicity of the ex-

ponential function we need first to represent this function in the Cayley–Dickson doubling form 

and then to establish the functions 𝜙1 and  𝜙2.   

    First of all, we represent the quaternion variable 𝑝 =  𝑥 + 𝑦𝑖 + 𝑧𝑗 + 𝑢𝑘 as a sum of real and 

imaginary parts. So we obtain the quaternion representation in the form 𝑝 = 𝑥 + 𝑣𝑟, where 𝑣 =

√𝑦2 + 𝑧2 + 𝑢2  is a real value,  𝑟 =
𝑦𝑖+𝑧𝑗+𝑢𝑘

√𝑦2+𝑧2+𝑢2 
 is a pure imaginary unit quaternion, so its 

square is −1. Since  𝑟2 = −1 as well as  𝑥 and 𝑣 are real values, the quaternion formula 𝑝 =

𝑥 + 𝑣𝑟 is algebraically equivalent to the complex formula 𝑧 = 𝑥 + 𝑦𝑖. Then the complex ex-

pression 𝑒𝑧 = 𝑒(𝑥+𝑦𝑖) = 𝑒𝑥𝑒𝑦𝑖 = 𝑒𝑥(cos 𝑦 + 𝑖 sin 𝑦) , where trigonometric functions cosine 

and sine, and  Euler's formula [2,9] 𝑒𝑦𝑖 = cos 𝑦 + 𝑖 sin 𝑦 are used, can be extended to the qua-

ternion case as follows: 

                         𝜓(𝑝) = 𝜙1 + 𝜙2 ∙ 𝑗 = 𝑒𝑝 = 𝑒(𝑥+𝑣𝑟) = 𝑒𝑥𝑒𝑣𝑟 = 𝑒𝑥(cos 𝑣 + 𝑟sin 𝑣)  

                                   = 𝑒𝑥 (cos 𝑣 +
𝑦𝑖 sin 𝑣

𝑣
 ) + 𝑒𝑥 (𝑧+𝑢𝑖) sin 𝑣

𝑣
∙ 𝑗 , 
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whence  𝜙1 = 𝑒𝑥 (cos 𝑣 +
𝑦𝑖 sin 𝑣

𝑣
 ),  𝜙2 = 𝑒𝑥 (𝑧+𝑢𝑖) sin 𝑣

𝑣
 . In this way a "kind of function" re-

mains unchanged, according to Theorem 4.4.          

    Using expressions 𝑥 =
𝑎+𝑎

2
 , 𝑦 =

𝑎−𝑎

2𝑖
 , 𝑧 =

𝑏+𝑏

2
 , 𝑢 =

𝑏−𝑏

2𝑖
, following from (2.5) - (2.8), we 

rewrite finally the expressions for 𝜙1 and 𝜙2 as functions of 𝑎, 𝑎, b, 𝑏 :  

                                      𝜙1 = 2𝛽 cos 𝑣 +
𝛽(𝑎−𝑎) sin 𝑣

𝑣
,  𝜙2 =

2𝛽𝑏 sin 𝑣

𝑣
  , 

where  𝛽 =
𝑒

𝑎+𝑎
2

2
, |𝑝| = √𝑥2 + 𝑦2 + 𝑧2 + 𝑢2 = √𝑎𝑎 + 𝑏𝑏 ,  and 𝑣 =

√[4(𝑎𝑎+𝑏𝑏)−(𝑎+𝑎)2]

2
 =

√[4|𝑝|2−(𝑎+𝑎)2]

2
 are real values. Thus the expression for the exponential function takes the form 

                      𝜓(𝑝) = 𝜙1 + 𝜙2 ∙ 𝑗 = 𝑒𝑝 = 2𝛽 cos 𝑣 +
𝛽(𝑎−𝑎) sin 𝑣

𝑣
+

2𝛽𝑏 sin 𝑣

𝑣
∙ 𝑗. 

  It is easy to verify that  (𝜙1| = (𝜙
1

| is valid here just as in all the examples.  

    To test the ℍ-holomorphicity of the exponential function 𝜓(𝑝) = 𝑒𝑝 = 𝜙1 + 𝜙2 ∙ 𝑗 we first 

compute the partial derivatives of functions 𝜙1  and 𝜙2 : 𝜕𝑎𝜙1 = 𝛽 [cos 𝑣 +
(𝑎−𝑎+1) sin 𝑣

𝑣
−

(𝑎−𝑎)2(𝑣 cos 𝑣−sin 𝑣)

4𝑣3 ] ; 𝜕𝑏𝜙2 =  𝜕𝑏𝜙
2

= 𝛽 [
2sin 𝑣

𝑣
+

𝑏𝑏(𝑣 cos 𝑣−sin 𝑣)

𝑣3 ] ; and 𝜕𝑎𝜙2 = − 𝜕𝑏𝜙1 =

𝛽𝑏 [
sin 𝑣

𝑣
−

(𝑎−𝑎)(𝑣 cos 𝑣−sin 𝑣)

2𝑣3 ] ;   𝜕𝑎𝜙2 = − 𝜕𝑏𝜙
1

= 𝛽𝑏 [
sin 𝑣

𝑣
+

(𝑎−𝑎)(𝑣 cos 𝑣−sin 𝑣)

2𝑣3 ].  

    Performing the transition 𝑎 = 𝑎 = 𝑥 and taking into consideration that  𝑏𝑏 = |𝑏|2,  we have 

𝑣 = |𝑏| and  𝛽 =
𝑒𝑥

2
 . Then, it follows that the ℍ-holomorphicity equations (4.36) hold:  

        1)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙
2

| =
𝑒𝑥(cos|𝑏|+|𝑏|−1 sin|𝑏|)

2
 ;   2)  (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙

1
| =

𝑒𝑥𝑏|𝑏|−1 sin|𝑏|

2
 ; 

        3)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙2| =
𝑒𝑥(cos|𝑏|+|𝑏|−1 sin|𝑏|)

2
 ;   4)  (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙1| =

𝑒𝑥𝑏|𝑏|−1 sin|𝑏|

2
.  

Thus, according to Theorem 4.4, the quaternion exponential function 𝜓(𝑝) = 𝑒𝑝  is ℍ-holo-

morphic everywhere in ℍ except, possibly, at certain singularities if they exist. Equations 

(4.71) and (4.43) hold too. 

     The first derivative.  Substituting the expressions for derivatives  𝜕𝑎𝜙1, 𝜕𝑎𝜙2, 𝜕𝑎𝜙2 as well 

as 𝜕𝑎𝜙1 = 𝛽 [
(𝑣 cos 𝑣−sin 𝑣)

𝑣
+

(𝑎−𝑎)2(𝑣 cos 𝑣−sin 𝑣)

4𝑣3 ] into (4.74), we get, after some algebra, the ex-

pression for the first derivative of  𝜓(𝑝) = 𝑒𝑝 before doing the transition 𝑎 = 𝑎 = 𝑥: 

                         (𝑒𝑝)(1) = 𝜙1
(1)

+ 𝜙2
(1)

𝑗 = (𝜕𝑎𝜙1 + 𝜕𝑎𝜙1) + (𝜕𝑎𝜙2 + 𝜕𝑎𝜙2) ∙ 𝑗   

      = 𝛽cos 𝑣 +
𝛽(𝑎−𝑎+1) sin 𝑣

𝑣
−

𝛽(𝑎−𝑎)2(𝑣 cos 𝑣−sin 𝑣)

4𝑣3 +
𝛽(𝑣 cos 𝑣−sin 𝑣)

𝑣
+

𝛽(𝑎−𝑎)2(𝑣 cos 𝑣−sin 𝑣)

4𝑣3 +   

                        + [
𝛽𝑏sin 𝑣

𝑣
−

𝛽𝑏(𝑎−𝑎)(𝑣 cos 𝑣−sin 𝑣)

2𝑣3 +
𝛽𝑏sin 𝑣

𝑣
+

𝛽𝑏(𝑎−𝑎)(𝑣 cos 𝑣−sin 𝑣)

2𝑣3 ] ∙ 𝑗  
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                        = 2𝛽 cos 𝑣 +
𝛽(𝑎−𝑎) sin 𝑣

𝑣
+

2𝛽𝑏 sin 𝑣

𝑣
∙ 𝑗 = 𝑒𝑝, 

where the above expression for 𝑒𝑝 is used. According Corollary 4.6, this formula has the same 

form as the one in complex (and real) analysis: (𝑒𝑧)(1) = 𝑒𝑧. The transition 𝑎 = 𝑎 = 𝑥 leads 

to the final 3-dimensional expression for the first derivative of (𝑝) = 𝑒𝑝 :  

                                                        
𝜕(𝑒𝑝)

𝜕𝑝
= [(𝑒𝑝)(1)| = (𝑒𝑝|. 

     Higher derivatives. Since the function 𝑒𝑝 is its own derivative, it follows that all higher de-

rivatives of the quaternionic exponential function, according to Theorem 4.5, are ℍ-holomor-

phic everywhere in ℍ except, possibly, at certain singularities. According to Corollary 4.6, each  

𝑘′th derivative has the same form (𝑒𝑝)(𝑘) = 𝑒𝑝, 𝑘 = 1, 2, …  as the one in complex (and real) 

analysis: (𝑒𝑧)(𝑘) = 𝑒𝑧 , 𝑘 = 1, 2, … . 

Example 5.4 Consider the quaternion natural logarithmic function 𝜓(𝑝) = ln 𝑝. The initial 

complex logarithmic function is given by (𝑧) = ln 𝑧 = ln|𝑧| + 𝑖arg𝑧 = ln|𝑧| + 𝑖arccos
𝑧+𝑧

2|𝑧|
 , 

where arg 𝑧 is defined up to an additive multiple of 2𝜋. We consider the principal branch (see, 

e.g., [9, 11]) of  arg 𝑧. Arguing as in Example 5.3, we can write the initial expression for the 

quaternion natural logarithmic function as  𝜓(𝑝) = ln 𝑝 = ln|𝑝| + 𝑟 ∙ Arccos
𝑝+𝑝

2|𝑝|
 , where |𝑝| 

and  𝑟 are defined as in Example 5.3. Using (2.5) - (2.8), we finally obtain the expression for 

the quaternion logarithmic function as a function of variables  𝑎, 𝑎, b, 𝑏: 

                       𝜓(𝑝) = ln 𝑝 = 𝜙1 + 𝜙2 ∙ 𝑗 = ln|𝑝| +
(𝑎−𝑎)Arccos

𝑎+𝑎

2|𝑝|

2𝑣
+

𝑏∙Arccos
𝑎+𝑎

2|𝑝|

𝑣
∙ 𝑗 , 

where  𝑣 is the same as in Example 5.3: 𝑣 =
√[4|𝑝|2−(𝑎+𝑎)2]

2
 = √𝑎𝑎 + 𝑏𝑏 −

(𝑎+𝑎)2

4
  ,  whence  

                            𝜙1 = ln|𝑝| +
(𝑎−𝑎)Arccos

𝑎+𝑎

2|𝑝|

2𝑣
 ;   𝜙2 =

𝑏∙Arccos
𝑎+𝑎

2|𝑝|

𝑣
 , 𝑝, 𝑣 ≠ 0.  

    The computation results can be represented as follows. The partial derivatives are  𝜕𝑎𝜙1 =

+
𝑎

2|𝑝|2 +
𝜃

2𝑣
−

(𝑎−𝑎)[2|𝑝|2−(𝑎+𝑎)𝑎]

2|𝑝|2[4|𝑝|2−(𝑎+𝑎)2]
+

(𝑎−𝑎)2𝜃

(2𝑣)3  , 𝜕𝑏𝜙2 =  𝜕𝑏𝜙
2

= 𝜃 (
1

𝑣
−

|𝑏|2

2𝑣3) +
(𝑎+𝑎)|𝑏|2

|𝑝|2[4|𝑝|2−(𝑎+𝑎)2]
 ,  

𝜕𝑎𝜙2 = − 𝜕𝑏𝜙1 = −
𝑏[2|𝑝|2−(𝑎+𝑎)𝑎]

|𝑝|2[4|𝑝|2−(𝑎+𝑎)2]
+

(𝑎−𝑎)𝑏𝜃

4𝑣3  , 𝜕𝑎𝜙2 = − 𝜕𝑏𝜙
1

= −
𝑏[2|𝑝|2−(𝑎+𝑎)𝑎]

|𝑝|2[4|𝑝|2−(𝑎+𝑎)2]
−

(𝑎−𝑎)𝑏𝜃

4𝑣3  , where  𝜃 = Arccos
𝑎+𝑎

2|𝑝|
 .  For  𝑎, 𝑏 ≠ 0, after performing the transition 𝑎 = 𝑎 = 𝑥 we 

have relations |𝑝| = |𝑝3| = √𝑥2 + 𝑧2 + 𝑢2 = √𝑥2 + |𝑏|2 ≠ 0, 4|𝑝|2 − (𝑎 + 𝑎)2 = 4|𝑝3|2 −

4𝑥2 = 4|𝑏|2 ≠ 0, 𝑣 = √𝑏𝑏 = |𝑏| ≠ 0,  𝜃 = Arccos
𝑥

|𝑝3|
 . Then we see that ℍ-holomorphicity 

equations (4.36) hold:  

https://en.wikipedia.org/wiki/Derivative
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           1)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙
2

| =
𝑥

2|𝑝3|2
+

Arccos
𝑥

|𝑝3|

2|𝑏|
 ;   2)  (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙

1
| = −

𝑏

2|𝑝3|2
; 

           3)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙2| =
𝑥

2|𝑝3|2
+

Arccos
𝑥

|𝑝3|

2|𝑏|
 ;   4)  (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙1| = −

𝑏

2|𝑝3|2
 . 

Hence, the quaternion (natural) logarithmic function 𝜓(𝑝) = ln 𝑝 is ℍ-holomorphic (according 

to Theorem 4.4) everywhere in ℍ ∖ {0}.  Equations (4.71) and (4.43) hold too.  

     The first derivative.  Taking into consideration the fact that 𝜕𝑎𝜙1 =
𝑎

2|𝑝|2 −
𝜃

2𝑣
−

(𝑎−𝑎)2𝜃

(2𝑣)3 −  

−
(𝑎−𝑎)[2|𝑝|2−(𝑎+𝑎)𝑎]

2|𝑝|2[4|𝑝|2−(𝑎+𝑎)2]
  we get the following expression for the first derivative of the function 

𝜓(𝑝) = ln 𝑝 before doing the transition 𝑎 = 𝑎 = 𝑥:   

                   (ln 𝑝)(1) = 𝜙1
(1)

+ 𝜙2
(1)

∙ 𝑗 = (𝜕𝑎𝜙1 + 𝜕𝑎𝜙1) + (𝜕𝑎𝜙2 + 𝜕𝑎𝜙2) ∙ 𝑗 =   

                =
(𝑎+𝑎)

2|𝑝|2 −
(𝑎−𝑎)[4|𝑝|2−(𝑎+𝑎)2]

2|𝑝|2[4|𝑝|2−(𝑎+𝑎)2]
−

𝑏[4|𝑝|2−(𝑎+𝑎)2]

|𝑝|2[4|𝑝|2−(𝑎+𝑎)2]
∙ 𝑗 =

𝑎

|𝑝|2 −
𝑏

|𝑝|2 ∙ 𝑗 =
𝑝

|𝑝|2 =
1

𝑝
 . 

    According Corollary 4.6, this formula has the same form as the one in complex (and real) 

analysis: (ln 𝑧)(1) =
1

𝑧
. Since the function 

1

𝑝
 according to Example 5.2 above is ℍ-holomorphic, 

the first derivative of the function ln 𝑝 is ℍ-holomorphic too.  The transition 𝑎 = 𝑎 = 𝑥  leads 

to the final 3-dimensional expression for the first derivative of  𝜓(𝑝) = ln 𝑝 :  

                                                        
𝜕(ln 𝑝)

𝜕𝑝
= [(ln 𝑝)(1)| =

1

(𝑝|
 . 

     Higher derivatives. Since the first derivative of the function ln 𝑝 is  
1

𝑝
 ,  the computation of 

the higher derivatives of this function repeats the results of Example 5.2. Thus the quaternion 

logarithmic function 𝜓(𝑝) = ln 𝑝 possesses the ℍ-holomorphic derivatives of all orders every-

where in ℍ ∖ {0}.  Equations (4.71) and (4.43) hold too. According to Corollary 4.6, each  𝑘′th 

derivative, 𝑘 = 2,3 …, has the same form as the one in the complex (and real) analysis.      

    As a result, we conclude that the presented theory is totally confirmed by the considered 

examples of Liouvillian elementary functions. 

    It is not difficult to see that the function 𝜙2(𝑎, 𝑏) satisfying equation (4.43) as the constituent 

of any ℍ-holomorphic function 𝜓𝐻(𝑝) = 𝜙1(𝑎, 𝑏) + 𝜙2(𝑎, 𝑏) ∙ 𝑗 can only include those forms 

of dependence on variables 𝑎 and  𝑎 that are invariant under complex conjugation. Since the 

quaternionic derivatives of ℍ-holomorphic functions are ℍ-holomorphic too, the same is valid 

for functions 𝜙2
(1)

, 𝜙2
(2)

, 𝜙2
(3)

 and so on. From examples discussed above it follows that such 

forms are 𝑎𝑎  and  (𝑎𝑎)𝑚 = 𝑎𝑚 + 𝑎𝑚−1 ∙ 𝑎 + 𝑎𝑚−2 ∙ 𝑎
2

+. . . +𝑎2 ∙ 𝑎
𝑚−2

+ 𝑎 ∙ 𝑎
𝑚−1

+ 𝑎
𝑚

, 

where 𝑚 is some positive integer and by "∙" is denoted the complex multiplication.  
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    If we consider, for example,  the first derivative of the function 𝜓(𝑝) = 𝑝4, then we have 

𝜙2
(1)

= (𝜕𝑎𝜙2 + 𝜕𝑎𝜙2)  = 4[(𝑎2 + 𝑎𝑎 + 𝑎
2

)𝑏 − 𝑏2𝑏] = 4[(𝑎𝑎)2𝑏 − 𝑏2𝑏] with the "invari-

ant" (symmetric in variables 𝑎 and 𝑎 ) form (𝑎𝑎)2. The next examples, the functions 𝜓(𝑝) =

𝑝−1 and  𝜓(𝑝) = 𝑒𝑝, have, respectively, 𝜙2
(1)

=
𝑏(𝑎+𝑎)

(𝑎𝑎+𝑏𝑏)
2 =

𝑏(𝑎𝑎)1

(𝑎𝑎+𝑏𝑏)
2  and  𝜙2

(1)
=

2𝛽𝑏 sin 𝑣

𝑣
=

𝑒
𝑎+𝑎

2 ∙
𝑏 sin √𝑎𝑎+𝑏𝑏−

(𝑎+𝑎)2

4
 

√𝑎𝑎+𝑏𝑏−
(𝑎+𝑎)2

4
   

  with the symmetric forms 𝑎𝑎  and  (𝑎𝑎)1 = 𝑎 + 𝑎. In addition, we 

consider one more example of the function  𝜓(𝑝) = 𝑝6. Omitting some algebra we can see that 

this function possesses 𝜙2 = (𝑎𝑎)5𝑏 − 2[2(𝑎𝑎)3 + 𝑎𝑎(𝑎𝑎)1]𝑏2𝑏 + 3(𝑎𝑎)1𝑏3𝑏
2
 and  𝜙2

(1)
=

6(𝑎𝑎)4𝑏 − 2[9(𝑎𝑎)2 + 3𝑎𝑎]𝑏2𝑏 + 6𝑏3𝑏
2
. In this case we have the symmetric invariant forms  

𝑎𝑎, (𝑎𝑎)1, (𝑎𝑎)3, (𝑎𝑎)5 and 𝑎𝑎, (𝑎𝑎)2, (𝑎𝑎)4, respectively.  

    We can state that the constituent  𝜙2
(1)

 of the complete quaternion derivative 𝜓(𝑝)(1) =

𝜙1
(1)

+ 𝜙2
(1)

𝑗 puts together its "left and right fragments", namely, the derivative (𝜕𝑎𝜙2), belong-

ing to the left quaternionic derivative (4.15) and the derivative (𝜕𝑎𝜙2), belonging to the right 

quaternionic derivative (4.23). The analogous statement is valid, of course, for the constituent 

𝜙2 of an initial ℍ-holomorphic function. On the other hand, note that the functions  𝜙1, 𝜙1
(1)

, 

𝜙1
(2)

, … are  symmetric in variables 𝑏 and 𝑏 and may be interpreted as a sum of the correspond-

ing parts of the left and right quaternionic derivatives too. 

6   Conclusions 
 

    A corner stone of our work has been the independence of the quaternionic derivative (as a 

limit of a difference quotient) of the "way of its computation", that is, the independence not 

only of the limiting path but also of the way of quaternion division: on the left or on the right. 

Such a requirement based on the general concept of essentially adequate differentiability ex-

tends the complex derivative definition to the definition in space in the natural way. To develop 

the theory of quaternionic differentiability similar to a complex one, we have generalized the 

basic notions of the complex theory based on the derivative definition as a limit of a difference 

quotient to the quaternion case step by step.  

    The main stumbling block to develop the quaternion differentiability theory – the impossi-

bility to obtain a wide class of differentiable functions by the separate consideration of the left 

and right versions due to their incomplete adequacy to properties of space – is eliminated, since 



 

 - 45 - 

the complete essentially adequate quaternionic derivative puts together the partial derivatives 

contained in the left and right quaternionic derivatives. 

    According to theorems proved, the expressions for ℍ-holomorphic functions and their deriv-

atives are similar to the corresponding expressions for ℂ-holomorphic functions and their de-

rivatives. Each of ℍ-holomorphic functions (and its derivatives) can be now created from the 

corresponding ℂ- holomorphic function (and its derivatives) by the direct replacing of variables.  

In principle, this solves the known problem of Fueter's polynomials, for which the reduction to 

the complex case gives the incorrect power functions  (−𝑖𝑧)𝑛 instead of 𝑧𝑛 [2].  

    The complete quaternionic derivative connecting the left and right differentiation versions 

contains the symmetric in variables 𝑎 and 𝑎 as well as 𝑏 and 𝑏  forms, representing undoubt-

edly the harmony of space symmetry.  

    A study of many other matters is beyond the scope of the present article.  Primarily, there is 

a need to explore the essentially adequate quaternionic generalization of antiholomorphic func-

tions, Laplace's equation and harmonic functions, scalar potential function for the fluid flow in 

space and for other applications that, hopefully, will be represented in subsequent articles.   
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