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Abstract

We define the topology atop(χ) on a complete upper semilattice χ = (M,≤).
The limit points are determined by the formula

lim
D

(X) = sup{a ∈M | {x ∈ X| a ≤ x} ∈ D},

where X ⊆M is an arbitrary set, D is an arbitrary non-principal ultrafilter
on X. We investigate lim

D
(X) and topology atop(χ) properties. In particular,

we prove the compactness of the topology atop(χ).

1. Preliminaries

For any set X we use P (X) to denote the set of all subsets of X. For
an arbitrary collection S of sets we use ∪S and ∩S to denote the union and
the intersection of all sets of S respectively.

A cardinal will be identified with the corresponding lowest ordinal. The
cardinality (size) of a set will be identified with the corresponding cardinal.
Example: |ω| = ω = ω0. We assume the axiom of choice.

Let D be an ultrafilter on X and Y ∈ D. D|Y is the ultrafilter on Y ,
where D|Y = {Z ∩ Y |Z ∈ D}.

A principal ultrafilter is an ultrafilter containing a least element. An
ultrafilter is a non-principal, if it does not contain finite sets.

A complete upper semilattice is a partially ordered set in which every
subset has a least upper bound (sup).

A complete lattice is a partially ordered set in which every subset has a
least upper bound (sup) and a greatest lower bound (inf).

1



2. The limit lim
D

(X) and the associated topology

Definition 1. Let χ = (M,≤) be a complete upper semilattice, X ⊆M ,
X 6= ∅ and let D be an arbitrary ultrafilter on X. We denote

lim
D

(X) = sup{a ∈M | {x ∈ X| a ≤ x} ∈ D},

Definition 2. Let χ = (M,≤) be a complete upper semilattice. A set
∆ ⊆M is an approximation base, if for every x ∈M we have

X = sup{α ∈ ∆|α ≤ x}.

Definition 3. Let χ = (M,≤) be a complete upper semilattice, let ∆ be
an approximation base, X ⊆M , X 6= ∅ and let D be an arbitrary ultrafilter
on X. We denote

lim1(∆, D,X) = sup{α ∈ ∆| {x ∈ X|α ≤ x} ∈ D}

.
Remark 1. The approximation base ∆ = M is associated with every

complete upper semilattice χ = (M,≤). In this case we have

lim
D

(X) ≡ lim1(∆, D,X)

Definition 4. Let χ = (M,≤) be a complete lattice, X ⊆ M , X 6= ∅
and let D be an arbitrary ultrafilter on X. We denote

lim2(D,X) = sup{inf(Y )|Y ∈ D}.

Proposition 1. Let χ = (M,≤) be a complete upper semilattice, let ∆
be an approximation base, X ⊆M , X 6= ∅ and let D be an ultrafilter on X.
We have

lim
D

(X) = lim1(∆, D,X).

Proof. Since lim
D

(X) ≡ lim1(M,D,X), it is sufficiently to prove that

lim1(∆, D,X) = lim1(M,D,X). It is easy to see that

lim1(∆, D,X) ≤ lim1(M,D,X).

Let a0 ∈ {a ∈M | {x ∈ X| a ≤ x} ∈ D}. Since ∆ is an approximation base,

a0 = sup{δ ∈ ∆|δ ≤ a0}.
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Let δ0 ∈ {δ ∈ ∆|δ ≤ a0}, i.e. δ0 ≤ a0 and

{x ∈ X| a0 ≤ x} ⊆ {x ∈ X| δ0 ≤ x}.

Since {x ∈ X| a0 ≤ x} ∈ D, we have {x ∈ X| δ0 ≤ x} ∈ D and

δ0 ∈ {δ ∈ ∆|{x ∈ X| δ ≤ x} ∈ D},

{δ ∈ ∆|δ ≤ a0} ⊆ {δ ∈ ∆|{x ∈ X| δ ≤ x} ∈ D},

sup{δ ∈ ∆|δ ≤ a0} ≤ sup{δ ∈ ∆|{x ∈ X| δ ≤ x} ∈ D},

a0 ≤ sup{δ ∈ ∆|{x ∈ X| δ ≤ x} ∈ D}.

Since a0 ∈ {a ∈M | {x ∈ X| a ≤ x} ∈ D} is arbitrary, we have

sup{a ∈M | {x ∈ X| a ≤ x} ∈ D} ≤ sup{δ ∈ ∆|{x ∈ X| δ ≤ x} ∈ D},

lim1(M,D,X) ≤ lim1(∆, D,X).

Proposition 1 is proved.

Remark 2. From Proposition 1 it follows that lim1(∆, D,X) does not
depend on ∆ actually. But we will use it in the future, because it is easier
to prove certain properties associated with lim

D
(X).

Proposition 2. Let χ = (M,≤) be a complete lattice, let ∆ be an
approximation base, X ⊆ M , X 6= ∅ and let D be an ultrafilter on X. We
have

lim
D

(X) = lim1(∆, D,X) = lim2(D,X).

Proof. First equation lim
D

(X) = lim1(∆, D,X) follows from Proposition 1.

It is necessary to prove that

sup{inf(Y )|Y ∈ D} = sup{α ∈ ∆| {x ∈ X|α ≤ x} ∈ D}.

Let Y ∈ D. Since ∆ is an approximation base,

inf(Y ) = sup{α ∈ ∆|α ≤ inf(Y )}.

Let α0 ∈ {α ∈ ∆|α ≤ inf(Y )}, X0 = {x ∈ X|α0 ≤ x} then α0 ≤ inf(Y )
and Y = {y ∈ Y |α0 ≤ y} ⊆ {x ∈ X|α0 ≤ x} = X0. Since Y ∈ D and
Y ⊆ X0 then X0 ∈ D. We see that

α0 ∈ {α ∈ ∆| {x ∈ X|α ≤ x} ∈ D},

{α ∈ ∆|α ≤ inf(Y )} ⊆ {α ∈ ∆| {x ∈ X|α ≤ x} ∈ D},

inf(Y ) = sup{α ∈ ∆|α ≤ inf(Y )} ≤ sup{α ∈ ∆| {x ∈ X|α ≤ x} ∈ D},
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sup{inf(Y )|Y ∈ D} ≤ sup{α ∈ ∆| {x ∈ X|α ≤ x} ∈ D}.

Let us prove the opposite direction.
Let α0 ∈ {α ∈ ∆| {x ∈ X|α ≤ x} ∈ D} then

{x ∈ X|α0 ≤ x} ∈ D,

α0 ≤ inf{x ∈ X|α0 ≤ x} ≤ sup{inf(Y )|Y ∈ D},

sup{α ∈ ∆| {x ∈ X|α ≤ x} ∈ D} ≤ sup{inf(Y )|Y ∈ D}.

Proposition 2 is proved.

Lemma 1. Let χ = (M,≤) be a complete upper semilattice, X ⊆ M ,
X 6= ∅, let D be an ultrafilter on X. The following are

1) if {a} ∈ D then lim
D

(X) = a;

2) if Y ∈ D then lim
D

(X) = lim
F

(Y ), where F = D|Y ,

D is a principal ultrafilter ⇔ F is a principal ultrafilter;
3) if Z ⊆ M and X ⊆ Z then exist an ultrafilter G on Z that X ∈ G,

G|X = D, lim
D

(X) = lim
G

(Z),

D is a principal ultrafilter ⇔ G is a principal ultrafilter;
4) if X ⊆M is an infinite set, D is a non-principal ultrafilter on X then

for any finite set X ′ ⊆ X we have lim
F

(X \X ′) = lim
D

(X), where F = D|X\X′

is a non-principal ultrafilter.
Proof. Let ∆ = M . We prove 1). If {a} ∈ D then for any Y ∈ D we

have {a} ∩ Y 6= ∅, a ∈ Y . Hence for any δ ∈ ∆ it is

δ ≤ a⇔ {x ∈ X| δ ≤ x} ∈ D,

i.e.
a = sup{δ ∈ ∆| δ ≤ a} = sup{δ ∈ ∆| {x ∈ X| δ ≤ x} ∈ D} =

= lim1(∆, D,X) = lim
D

(X).

The last equation follows from Proposition 1.
We prove 2). We prove that for every
α ∈ ∆ it is

{x ∈ X|α ≤ x} ∈ D ⇔ {y ∈ Y |α ≤ y} ∈ F. (1)

Let {x ∈ X|α ≤ x} ∈ D. Since Y ⊆ X,

{y ∈ Y |α ≤ y} = Y ∩ {x ∈ X|α ≤ x} ∈ D|Y = F.

We prove in the opposite direction. Let Y0 = {y ∈ Y |α ≤ y} ∈ F . We
suppose the opposite that {x ∈ X|α ≤ x} /∈ D, i.e. {x ∈ X|α � x} ∈ D
and

Y \ Y0 = {y ∈ Y |α � y} = Y ∩ {x ∈ X|α � x} ∈ D|Y = F.
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We obtain the contradictory Y0 ∈ F, Y \ Y0 ∈ F . We conclusion that
{x ∈ X|α ≤ x} ∈ D. We have proved the statement (1). From (1) it follows

{α ∈ ∆|{x ∈ X|α ≤ x} ∈ D} = {α ∈ ∆|{y ∈ Y |α ≤ y} ∈ F},

sup{α ∈ ∆|{x ∈ X|α ≤ x} ∈ D} = sup{α ∈ ∆|{y ∈ Y |α ≤ y} ∈ F},

lim1(∆, D,X) = lim1(∆, F, Y ),

lim
D

(X) = lim
F

(Y ).

As F ⊆ D, if F contains a finite set then D also contains a finite set.
On the other hand, if D contains a finite set Z then ultrafilter F contains
a finite set Z ∩ Y . This implies that D is a principal ultrafilter ⇔ F is a
principal ultrafilter.

We prove 3). Let G = {Y ⊆ Z|Y ∩X ∈ D}. G is an ultrafilter obviously,
G|X = D, X ∈ G. The remaining assertions of the item 3) follow from the
item 2).

Let us prove 4). Let D be a non-principal ultrafilter, i.e. X\X ′ ∈ D. Let
F = D|X\X′ . The ultrafilter F with respect to the item 2) is a non-principal.
According to 2),

lim
F

(X \X ′) = lim
D

(X).

Definition 3. Let χ = (M,≤) be a complete upper semilattice. We
define the operation C() on the subsets of M . Let X ⊆M , we define

C(X) = X ∪ {lim
D

(X)|D is a non-principal ultrafilter on X}. (2)

Lemma 2. Let χ = (M,≤) be a complete upper semilattice. The
operation C() defind by (2) has the following properties:
1) C(X1 ∪X2) = C(X1) ∪ C(X2), where X1, X2 ⊆M ;
2) X ⊆ C(X), where X ⊆M ;
3) if X is finite then C(X) = X, where X ⊆M (particulaly, C(∅) = ∅);
4) if X ⊆ Y then C(X) ⊆ C(Y ) for all X,Y ⊆M .

Proof. Assertions 2) and 3) follow from the definition of the operation
C() and Lemma 1.

We prove 1). If X1 is a finite set then

C(X1) = X1 ⊆ X1 ∪X2 ⊆ C(X1 ∪X2).

Assume that X1 is an infinite set. Let D1 be an arbitrary non-principal
ultrafilter on X1. By Lemma 1 there exists a non-principal ultrafilter D on
X1 ∪X2 that X1 ∈ D,D|X1 = D1 and lim

D
(X1∪X2) = lim

D1

(X1). We see that

C(X1) ⊆ C(X1 ∪X2). Similarly C(X2) ⊆ C(X1 ∪X2), i.e.

C(X1) ∪ C(X2) ⊆ C(X1 ∪X2).
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Let us prove the item 1) in the opposite direction. LetD be an arbitrary non-
principal ultrafilter on X1 ∪X2. It is obvious that X1 ∈ D or X2 \X1 ∈ D.
If X2 \X1 ∈ D then X2 ∈ D. Hence it is X1 ∈ D or X2 ∈ D. Let X1 ∈ D
for definiteness. From Lemma 1 we have lim

D
(X1 ∪ X2) = lim

D1

(X1), where

D1 = D|X1 . From this it follows that

C(X1 ∪X2) ⊆ C(X1) ∪ C(X2).

The item 1) of the Lemma is proved.
Let us prove the item 4). If X is finite then C(X) = X ⊆ Y ⊆ C(Y ).

Suppose that X is infinite. Let D be an arbitrary non-principal ultrafilter
on X. From Lemma 1 we have that there is a non-principal ultrafilter G on
Y that X ∈ G, G|X = D, lim

D
(X) = lim

G
(Y ), i.e. C(X) ⊆ C(Y ). The item

4) of the the Lemma is proved.

Lemma 3. Let χ = (M,≤) be a complete upper semilattice. The set
of all sets such that X ⊆ M , C(X) = X (we assume that X is closed) is a
topology.

Proof. Let R = {X ⊆ M |C(X) = X}. Obviously ∅, X ∈ R. It is
sufficient to prove:
1) there is ∪P ∈ R for every finite P ⊆ R;
2) there is ∩P ∈ R for each P ⊆ R.

The associativity of the union of a sets implies that property 1) suffices
to prove for two sets in R. Let X1, X2 ∈ R. From Lemma 2 it follows that
C(X1 ∪ X2) = C(X1) ∪ C(X2) = X1 ∪ X2. That is X1 ∪ X2 ∈ R. The
property 1) is proved.

We prove the property 2). Let P ⊆ R. We consider an arbitrary set
Y ∈ P . It is obviously that ∩P ⊆ Y . We obtain by Lemma 2 that
C(∩P ) ⊆ C(Y ) = Y , i.e. C(∩P ) ⊆ Y . As Y ∈ P is arbitrary, we have
C(∩P ) ⊆ ∩P . Since ∩P ⊆ C(∩P ), we have C(∩P ) = ∩P , i.e. ∩P ∈ R.

Definition 4. The topological space is defined by the Lemma 3 will be
denoted by atop(χ).

Lemma 4. Let χ = (M,≤) is a complete upper semilattice, κ is an
infinite cardinal and (Xλ)λ<κ is a not increasing sequence of closed in the
topology atop(χ) sets, i.e. Xλ ⊇ Xλ+1, C(Xλ) = Xλ for all ordinals λ < κ.
If Xλ 6= ∅ for all λ < κ then this sequence has a non-empty intersection.

Proof. If κ is’t a regular cardinal then we can choose some subsequence
of the size of the regular cardinal cf(κ) (cofinality κ) that for any ordinal
λ0 < κ there is an ordinal λ > λ0 corresponding to the element of the selected
subsequence. It is clear that the intersection of the original sequence and
the selected subsequence are the some. Therefore, we can assume without
loss of generality that κ is a regular cardinal.
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Let h : κ → M is an arbitrary mapping for which h(λ) ∈ Xλ for all
λ < κ.

If |Rang(h)| < κ then (in accordance with the regularity of κ) there is
an element a ∈ Rang(h) that |h−1(a)| = κ. For any ordinal λ0 < κ there is
an ordinal λ that λ0 < λ < κ and h(λ) = a. This means that a ∈ Xλ for all
λ < κ, i.e. the sequence (Xλ)λ<κ has a non empty intersection.

Let us assume that |Rang(h)| = κ. Let D be a non-principal ultra-
filter on the set Rang(h) that if Z ∈ D then |Z| = κ. We consider an
arbitrary ordinal λ0 < κ. Let E = {h(λ)|λ < λ0}. It is obvious that the
Rang(h) \ E ∈ D. According to Lemma 1, we have

lim
D

(Rang(h)) = lim
F

(Rang(h) \ E),

where F = D|Rang(h)\E . We note that Rang(h) \ E ⊆ Xλ0 . By lemma 1
there is a non-principal ultrafilter G on the set Xλ0 that

lim
G

(Xλ0) = lim
F

(Rang(h) \ E).

Since Xλ0 is a close set, C(Xλ0) = Xλ0 and

lim
D

(Rang(h)) = lim
F

(Rang(h) \ E) = lim
G

(Xλ0) ∈ Xλ0 .

Since λ0 < κ is an arbitrary ordinal,

lim
D

(Rang(h)) ∈
⋂
λ<κ

Xλ

Lemma is proved.

Theorem 1. Let χ = (M,≤) be a complete upper semilattice then the
topological space atop(χ) is compact.

Proof. We prove this theorem in two ways.
1) By Lemma 2, every point of atop(χ) is a close set, i.e. atop(χ) is a

T1 space. Lemma 4 implies that every well ordered sequence of non-empty
closed decreasing sets is non-empty intersection. The theorem (Alexandrov
P. S. Uryson P.S.,[1, p.26] ) for T1 topological spaces implies that if ev-
ery well ordered sequence of non-empty closed decreasing sets is non-empty
intersection then the topology is a compact. Thus, atop(χ) is a compact
topology.

2) The second proof uses the methods of the proof of the existence of
a finite subcovering of a countable cover of a countably compact (with the
modern interpretation) topological space (F. Hausdorff [3, p.141]). In this
proof we construct a finite subcovering for a arbitrary covering. This proof
is longer, but it is useful for future analysis.

We will show that each open covers of atop(χ) has a subcovering of a
smaller cardinality. Let κ be an infinite cardinal and let (Gλ)λ<κ be an
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open covering of the cardinality κ. Hence (Fλ)λ<κ, where Fλ = G0∪ ...∪Gλ,
is a non-decreasing sequence of open sets, which is covered. We consider
the corresponding sequence of the close sets M \ F0 ⊇ ... ⊇ M \ Fλ ⊇ ...,
where λ < κ. This sequence has empty intersection. By Lemma 4 there
exists an ordinal λ0 < κ that M \ Fλ = ∅ for all λ < κ, which λ > λ0. We
see that the set of open sets G0, ..., Gλ0 is covered and the cardinality of
the cover is |λ0| < κ. If |λ0| is an infinite cardinal then we can repeat the
same procedure and we can get an open covering of a cardinality less than
|λ0| and so on. Thus for a finite number of steps we can get a finite covering.

Theorem 2. Let χ = (M,≤) be a complete upper semilattice, ∆ be an
approximation base, |∆| = ω0, X ⊆M be an infinite, D be a non-principal
ultrafilter on X. There is a countable subset X0 ⊆ X that

lim
D

(X) = sup(∆0) = lim
D0

(X0),

where
∆0 = {α ∈ ∆|{x ∈ X0|α � x} is finite},

∆1 = ∆ \∆0 = {α ∈ ∆|{x ∈ X0|α ≤ x} is finite},

D0 is an arbitrary non-principal ultrafilter on X0.
Proof.
For anyone α ∈ ∆ we denote

Xα = {x ∈ X|α ≤ x},

X̄α = {x ∈ X|α 6≤ x},

∆0 = {α ∈ ∆|Xα ∈ D},

∆1 = {α ∈ ∆| X̄α ∈ D}.

It is obvious that

lim
D

(X) = lim1(∆, D,X) = sup(∆0),

∆0 ∩∆1 = ∅,∆0 ∪∆1 = ∆.

Let the sequence α0, α1, α2, . . . be a list of all elements of ∆. We define
the sequence X(0), X(1), X(2), . . . by the induction.
1) If α0 ∈ ∆0 then X(0) = Xα0 , if α0 ∈ ∆1 then X(0) = X̄α0 .
2) If X(i) is determined then
if αi+1 ∈ ∆0 then

X(i+1) = X(i) ∩Xαi+1 ,

if αi+1 ∈ ∆1 then
X(i+1) = X(i) ∩ X̄αi+1 .
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We note that for all i ∈ N we have

X(i+1) ⊆ X(i) ⊆ X,X(i) ∈ D.

If αi ∈ ∆0 then αi ≤ x for all x ∈ X(i). If αi ∈ ∆1 then αi 6≤ x for all
x ∈ X(i).

Since X(i) is infinite set, we can construct a sequence x0, x1, x2... of X
for which xi ∈ X(i), xi 6= xj for all i 6= j. Denote X0 the set of all elements
of the sequence. Obviously |X0| = ω0.

Let n ∈ N . If αn ∈ ∆0 then αn ≤ xm for all m ≥ n. If αn ∈ ∆1 then
αn � xm for all m ≥ n. We see that for any α ∈ ∆0 the set {x ∈ X0|α � x}
is finite, for any α ∈ ∆1 the set {x ∈ X0|α ≤ x} is finite.

Since ∆0 ∩∆1 = ∅,∆0 ∪∆1 = ∆, we have

∆0 = {α ∈ ∆| {x ∈ X0|α � x} is finite},

∆1 = {α ∈ ∆| {x ∈ X0|α ≤ x} is finite}.

Let D0 be an arbitrary non-principal ultrafilter on X0.
Obviously if α ∈ ∆0 then

{x ∈ X0|α ≤ x} ∈ D0,

if α ∈ ∆1 then
{x ∈ X0|α � x} ∈ D0,

i.e
∆0 = {α ∈ ∆| {x ∈ X0|α ≤ x} ∈ D0},

∆1 = {α ∈ ∆| {x ∈ X0|α � x} ∈ D0}.

Thus we have

lim
D

(X) = sup(∆0) = sup{α ∈ ∆| {x ∈ X0|α � x} is finite} =

= sup{α ∈ ∆| {x ∈ X0|α ≤ x} ∈ D0} = lim
D0

(X0).

The theorem is proved.

§ 3. Examples

Example 1. Let χ = ([0, 1],≤) be a lattice on the interval [0, 1] with
standard interpretation of the relation ” ≤ ”. Obviously χ is a complete
lattice.
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Let X ⊆ [0, 1], D is an arbitrary non-principal ultrafilter on X. We will
show that the point

a = lim
D

(X)

is a limit point in the usual topology, i.e. any open interval of the point a
contains points of the set X \ {a}. We assume that a 6= 0, a 6= 1. The cases
a = 0, a = 1 are analyzed in the similar way. We suppose the opposite, i.e.
there is an open interval (b, c) ⊂ [0, 1] that a ∈ (b, c) and (b, c) ∩X = {a}.
We will obtain a contradiction.

SinceD is a non-principal ultrafilter, thenX\{a} ∈ D. LetX0 = X\{a}.
By Lemma 2

lim
D

(X) = lim
D0

(X0),

where D0 = D|X0 . For every Y ∈ D0 we have Y ∩ (b, c) = ∅, i.e either
lim2(D0, X0) ≤ b or lim2(D0, X0) ≥ c. By Proposition 2 we have either
lim
D0

(X0) ≤ b or lim
D0

(X0) ≥ c. Thus it is a 6= lim
D

(X). This is a contradiction

with the assumption that the point a is’t a limit point in the usual topology.
Now let the point a is a limit point of the set X in the usual topology,

i.e. any open interval containing the point a intersects with X \ {a}. We
will show that there is a non-principal ultrafilter D on X that lim

D
(X) = a.

We assume that a 6= 0, a 6= 1. The cases a = 0, a = 1 are analyzed in the
similar way.

Since any open interval containing the point a has a non-empty intersec-
tion with X, then this intersection contains an infinite number of elements.
Otherwise it would be possible to pick up an open interval containing the
point a and has no intersection with X. Let

R = {X ∩ (b, c)|a ∈ (b, c), (b, c) ⊂ [0, 1]}.

In view of the above remarks any set of R is infinite, the intersection of two
sets of R also belongs to R. There exists a non-principal ultrafilter D on X
that R ⊆ D. By construction D, we have

lim
D

(X) = lim2(D,X) = a.

Thus the topology atop(χ) coincides with the usual topology on [0, 1],
which is a compact topology.

Example 2. Let M = ω ∪ {ω}, χ = (M,≤). Obviously χ is a complete
lattice. Close sets in the topology atop(χ) are finite sets and sets containing
ω. Consequently open sets are sets that do not contain ω and sets with a
finite supplement. Topology atop(χ) is a compact. Any open covering must
to cover the point ω. The covering must include an open set containing ω
and having finite supplement that is covered by a finite number of open sets
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of the selected covering.

Example 3 Let χ = (P (N),⊆) be the lattice of the subsets of the natural
numbers N by inclusion. Obviously χ is a complete lattice. We consider an
approximation base

∆ = {{n}|n ∈ N} ∪ ∅.

Since |∆| = ω0, according to Theorem 2 the closure of any set X ⊆ P (N) of
atop(χ) can be reduced to the closure of all countable subsets of X.

By Theorem 1 the topology atop(χ) is a compact.

Example 4 Let a, b ∈ R and a < b. Let M be the set of all real functions
f : R → R that a ≤ f(x) ≤ b. Let χ = (M,≤), where ” ≤ ” is a pointwise
comparison of functions. Obviously χ is a complete lattice. By Theorem 1
the topology atop(χ) is a compact.

Example 5. We consider the propositional logic L = L(A,Ω, Z, I),
where A = {p1, p2, . . . } are propositional variables, Ω = {¬,∧,∨,→} are
logical connectives, Z is a set of inference rules (the rule of inference is
modus ponens), I is a set of Hilbert axioms.

Let Φ be a set of all formulas of L. Let Ψ1,Ψ2 ⊆ Φ. We assume
Ψ1 ≺ Ψ2 ⇔ for anyφ ∈ Ψ1 we have I,Ψ2 ` φ.

We denote
[Ψ] = {X ⊆ Φ|Ψ ≺ X andX ≺ Ψ}.

[Ψ] is a class of equivalence of Ψ.
Let χ = (M,≤), where M = {[X]|X ⊆ Φ}, if X1, X2 ⊆ Φ then we

assume [X1] ≤ [X2]⇔ X1 ≺ X2.
It is obvious that if S ⊆ P (M) then sup(S) = [∪S].
Thus, χ is a complete upper semilattice.
It is obvious that
1) [I] = [∅] = [T ], where T is a set of all formulas φ ∈ Φ that I ` φ;
2) [I] ≤ [X] for any X ⊆ Φ, i.e. for any non-principal ultrafilter D on

M we have [I] ≤ lim
D

(X);

3) sup(Φ) = [Φ] = [{p1,¬p1}];
4) for any non-principal ultrafilter D on M we have lim

D
(X) 6= [{p1,¬p1}];

5) if X ⊆ Φ and |X| < ω0 then there exist a non-principal ultrafilter D
on M that lim

D
(X) = [X].

6) if X ⊆ Φ and X is a full set of formulas (for any φ ∈ Φ we have X ` φ
or X ` ¬φ) then [X] is’t a limit point.

By Theorem 2, the topology atop(χ) is a compact.

Example 6 (Semilattice of facts). We consider some set Φ of real
facts. We consider relation ”≺” on Φ. We assume s1 ≺ s2 ⇔ when the fact
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”s2 implies s1” belong to Φ. We define classes of equivalence M on subsets
of Φ similar with Example 6.

Let χ = (M,≤), where M = {[X]|X ⊆ Φ}, if X1, X2 ⊆ Φ then we
assume [X1] ≤ [X2]⇔ X1 ≺ X2.

It is obvious that if S ⊆ P (M) then sup(S) = [∪S].
Thus, χ is a complete upper semilattice. By Theorem 2, the topology

atop(χ) is a compact.
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