
1 
 

The Collapse of the Wave Function 
Joseph Palazzo 

In the interpretation of Quantum Mechanics, there were four major mistakes done at different 
levels: 

(1) A misinterpretation of Bell’s theorem in which the original intent did not include non-
locality, but as a test to see whether or not a particle has a certain property that can be 
measured. 

(2) A misinterpretation of the disagreement between Einstein and Bohr. Einstein’s objection 
to the collapse of the wave function implied a spooky action at a distance, while Bohr 
insisted on the instantaneous collapse of the wave function which he mistook to be a real 
wave. 

(3) A misinterpretation that the wave function represents a real wave when in actuality it 
represents the possible states of a quantum system before a measurement. 

(4) When Bell’s theorem was violated by a quantum system, those violations were 
misinterpreted as evidence of an instantaneous collapse of the wave function and non-
locality. 

We will argue: there is no collapse of the wave function. Bell’s theorem is not about non-locality. 
There is no spooky action at a distance. And Quantum Mechanics is about measuring quantities 
at the microscopic scales and in doing so, these quantities are altered. So what we get is partial 
knowledge. But in spite of that obstacle, we still get a theory of reality with considerable success. 
 
1. The Heisenberg Uncertainty Principle (HUP) Revisited 
A re-interpretation of the HUP is in order. 
Here’s a thought experiment. Suppose you were God and you could grab an electron and deposit 
at a certain position. As God, you’ve just violated the HUP – but that’s okay, God can do that. 
We could depict this as in Fig. 1.  
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Fig. 1 
 
But as soon as you release the electron, it would look like Fig. 2. 
 
 
 
           
 
 
 
 
 

Fig 2. 
After a time T, the position of the electron has spread out. The question is: what does that tell us? 
It looks like the particle is doing some kind of motion, some jiggling. It means that for 
microscopic particles, they are never at rest. In classical physics, you can have objects at rest. 
The walls in your room are at rest with you. But in QM, no object is at rest. And that’s a 
fundamental difference with classical physics.  
What else does the HUP tells us?  
How do we measure the velocity of a car? I see the car because an enormous number of photons 
are hitting the car in all directions, and some of them reach my eyes. I can then note where it is at 
a given time, call that x1, t1. At a later times, I observe the car at x2, t2. I can get a whole set of 
these points, plot it, get the velocity, determine if it is in uniform motion or accelerate or 
decelerating, etc.  
So it goes for an electron, to find out anything about it, the idea is to shoot a whole bunch of 
photons.  We get lucky as one of those photons hits the electron, and with luck for a second time, 
it bounces in the right way to reach our eyes. But the photon is telling us, “Sir, that electron is 
right there,” call that position X, even though X is really a smeared area as our electron was 
jiggling around when it was hit, “but guess what Sir, I’ve also thrown it off its position, and I 
haven’t a clue in what direction it’s going.” This is the second thing the HUP is saying: if the 
position is known with zero uncertainty, then its momentum is unknown. And likewise, if the 
momentum would be known with absolute certainty, then its position would also be unknown. 
This is characterized as, 
                                                           Δσ୶ Δσ୮   ≥  ħ/2       (1) 
Where σ is the standard deviation. Note that in the case of the car (a classical system), we need 
not to worry that the photons will disturb the trajectory of the car. We will explore more of this 
meaning later. 
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The third thing that the HUP says is that if you make a measurement, the very act of making the 
measurement will alter the system. In our case, we had an electron jiggling about the position X, 
and now, it’s jiggling somewhere else. 
To resume, for a quantum system: 

(1) A particle is never at rest. 
(2) There is an uncertainty in measuring the position and momentum at a given time as 

indicated by equation 1. 
(3) A measurement on the quantum system alters the system in some unpredictable way. 

The net result is that we get partial knowledge of the quantum system, and we have to make do 
with that reality. 
 
2. Incompatible Observables – Conjugate Pairs 
Consider a number of plane waves moving towards a slit as in Fig. 3. 
                                        S 
                           
 
 
                           
 

Fig. 3 
As they go through the open slit, they start to bend and will hit the screen, leaving on it a series of white 
and dark fringes Fig. 4. 
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Fig 4. 
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Fig. 5 
Consider a point one wavelength away from the slit which will travel in a straight line and hit the screen 
at point y and note that the wavelength λ is << L, which doesn’t show in Fig 5. .   

≈ ߠ ݊݅ݏ =  ߠ   (2)       ܮ/ݕ 
Also, when that point was entering the slit, it had only momentum along L. But now it’s moving at an 
angle θ and has developed a momentum along the x-direction, ∆px. 

௫∆   ≈  (3)      ߠ  
Also, the point on the wave is one wavelength λ, and ∆x/2 away from the line of motion, 

ߣ ≈  (4)       ߠ (2/ݔ∆) 
Now, historically, de Broglie had proposed that every particle is associated with a wavelength such that, 

=   ℎ/(5)            ߣ 
Where h is Planck’s constant. Combining 3, 4 and 5, we get 

௫∆ ݔ∆    ≈   2ℎ >  ℎ       (6) 
This is also the HUP, expressed in terms of the uncertainty in the position ∆x, and the uncertainty in the 
momentum ∆p. If we want to reduce the uncertainty in the position by passing the waves through a 
smaller slit, then the bending of the waves will be more pronounced, and so the uncertainty in the 
momentum will be larger. And vice versa, to decrease the uncertainty in the momentum requires less 
bending, and to accomplish that the slit must be wider. We say that the position and the momentum are 
incompatible observables. These are often called conjugate pairs. This is known as Young’s experiment. 
3. Quantum States 
A lot of confusion in Quantum Mechanics is the result from not being able to differentiate between the 
real world and the Hilbert Space.  Vectors in real space – like velocities, accelerations, forces, etc. – are 
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objects one can actually measure in the real world. On the other hand, quantum states are represented by 
vectors (more precisely by rays) in a Hilbert space, but these are NOT subjects of measurement. What we 
measure for a quantum system are probabilities, and those vectors in that Hilbert space are useful 
mathematical tools to calculate those probabilities.  
Suppose we have a beam of electrons flowing from right to left:  
 
 
 
 
 

Fig. 6 
Notice this is a thought experiment as we really don’t know in what direction the spin of each individual 
electron points. We can safely say that these directions are at random. Now physicists are interested in 
measuring these spins. So what is needed is some kind of apparatus, and the good news is that there exists 
one – a magnetic field.  Trouble is that these electrons, with their spin, are tiny magnets, and we know 
that magnets placed in a magnetic field will align (or anti-align) with the magnetic field.  Suppose a 
magnetic field is placed along a certain direction, say the z-axis. Now let’s look at one electron as it 
approaches the magnetic field. 
 
 
       Z                                                                                                                                   Spin before 
 
 

Fig. 7  
When that electron penetrates the magnetic field, it will align its spin such that its z-component will yield 
the value of +ℏ/2 along the z-axis, a spin up, which can be represented as in Fig 8: 
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Fig. 8 
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Fig. 9  
 
 
Note that after passing the magnetic field, the electron’s total spin has been altered. Here’s another 
electron about to penetrate the magnetic field (fig. 10a): 
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                         (a)                                            (b)                                                                    (c)  

Fig. 10  
This time it will anti-align with the magnetic field, with a spin value of -ℏ/2, a spin down, (Fig. 10b). We 
see that again, the total spin has undergone a change in orientation after passing through the magnetic 
field (10c). 
 On the whole, 50% of the electrons will align with the magnetic field (spin =+ℏ/2, or up), and 50% will 
anti-align (spin = -ℏ/2, or down).  
Comments 
(1) Before the measurement, the spin of an electron can be in any direction. Passing the electron through 
the magnetic field forces the electron to change its spin orientation such that it either aligns or anti-aligns 
with its z-component to be ± ℏ/2.  This is what distinguishes quantum physics from classical physics: the 
act of measuring a quantity will disturb the system. 
(2) The other components of the spin are indeterminate: if I were to pass these electrons into another 
magnetic field, say aligned with the x-axis, again it will be found that  50% of the electrons will align 
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with the magnetic field (spin = +ℏ/2), and 50% will anti-align (spin = -ℏ/2), this time along the x-axis. On 
the other hand the spin along the z-axis is no longer known for these particles.   
(3) One way to mathematically represent this quantum system (read, the wave function) is this: 

| ߰ > =  (1/2)½ (|  ↑ >  – | ↓ >)       (7) 
Now as it was already mentioned, this is called a superposition of two quantum states, the up and down 
states. Note that if we want to calculate the probability that the electron has a spin up, we take the product 
of the vector |↑ > with the wave function | ψ>, and square that. 

ܲ =  ‖ < ↑ | ߰ > ‖ଶ     (8) 
                =   1/2 [< ↑  | (| ↑ > – | ↓ >)]ଶ 

                     =   1/2 [< ↑  | ↑ >   –  < ↑  |  ↓ >]ଶ  
Using the orthogonality condition, which is a fundamental property of a Hilbert space, 

< ↑  |  ↑ >  =  1 ܽ݊݀ < ↑  |  ↓ > =  0 
 We get, 

ܲ = 1/2,  (9)        ,%50 ݎ
Which is what is observed in the lab. 
(4) Now here comes the real crunch. Writing | ψ> = (1/2)½ (|↑ > – | ↓ >) is called a superposition but it’s 
not meant to mean that the electron “lives” simultaneously in two states and can’t make up its “mind” in 
which one it wants to live.  Those states do not represent ordinary vectors of real objects - like velocities, 
acceleration, forces, was mentioned above. If it were the case, then since these two vectors are equal in 
magnitude and opposite in direction I would be able to claim,| ↑ > = (-1) | ↓ >. And the orthogonality 
condition would no longer hold, and P would not equal to 50% - actually it would turn out to be 100%!!! 
What needs to be reminded is that the two vectors, | ↑ > and | ↓ > represent possible states before the 
measurement takes place. And the beauty of it all is that they form a complete set of orthogonal unit 
vectors, in an abstract space called the Hilbert space, which provides a powerful method of calculating 
probabilities. 
A word on semantics: note that I used the word "apparatus" when that word description is NOT needed. 
For instance at the LHC, one thinks of two beam interacting (colliding), and not as one beam interacting 
with an apparatus - the second beam. Similarly, the beam of electrons described above are interacting 
with a magnetic field (the "apparatus"). Hence, the whole concept of "wave function collapse" is totally 
unnecessary. The so-called measurement between a microscopic system and a macroscopic system is 
illusive as it never happens, it is always a microscopic system interacting with another microscopic 
system. And the wave function cannot collapse as it is not a function of a real wave. QM can do very well 
without this extra baggage.  
4. A Second Look at the Two-Slit Experiment 
Two states will evolve, and we can write this process as, 

ᇱܣ|    →  < ܣ | >, →  < ܤ |  < ′ܤ |  
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By the principle of linear superposition, these two states will also evolve as, 
< ܣ | →   < ܤ |  +   < ′ܣ |                < ′ܤ |  +  

                                                                                                                     n 
 
                                                                                                                             S                                                                                                             
                                                                                                             2 
                                                                         A                                 1 
0·······················································                                 0 
                                                                         B                                -1 
                                                                                                           -2 
 
                                                                                 
                                                                                                           -n  

Fig. 11 
 
We label the position from which the electrons pass through as such: where they leave is 0; the slits are 
labelled A and B; and the screen, S (see fig. 11). The states representing the electron passing in one slit 
are | A > and going through the second slit, | B >. When the electrons leave position 0, from the 
symmetry of the setup, we can say that they arrive at position A and B with equal probability. So we 
write, 

| 0 >  → < ܣ |      < ܤ |  +   
When an electron has arrived at A or B, what happens after that when they hit the screen? Experiments 
show that they can land on any of the points on the screen, so we write, 

→   < ܣ |   < ݊ | ߖ


  

→   < ܤ |    < ݊ | ߔ


 

Where | n > forms a complete set of orthonormal vectors. The whole process can be described as, 
               | 0 >  → < ܣ |     ݊߯ ≡   < ܤ |  +   

The probability that an electron will arrive at the mth point on the screen is (equ. 8), 
ܲ =   ‖ <  ݉ | ߯݊  > ‖ଶ 
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                  = <  ߯݊ | ݉ > <  ݉ | ߯݊  > 
                                                                     =∑ ∗ᇱߖ)  + ∗ᇱߔ    )  <  ݊′ | ݉ > <  ݉ | ݊ > ߖ)   )ᇱߔ  +   

Using the orthogonality condition, 
<  ݊′ | ݉ > = ;  ᇱߜ    <  ݉ | ݊ > =  ߜ 

ܲ   = ∗ ߖ)    + ∗ߔ   ߖ) (   +  ( ߔ  
∗ߖ   =                                    ߖ  + ∗ߔ   ߔ ∗ߖ +   ߔ  + ∗ߔ      (11)ߖ

The first term ߖ∗   represents the probability if only the first slit was open.  Similarly, the second termߖ
∗ߔ   represents the probability if only the second slit was open. Classically, we should get the sum ofߔ
these two terms if both slits were open. But we do not observe that. The interesting aspect of this result 
from quantum physics is that we get two extra terms, ߖ∗ ∗ߔ andߔ   , that correctly explains theߖ
interference pattern of the double-slit experiment. Another major difference between classical physics and 
quantum physics is that in the first, probabilities are added, while in the second, the amplitudes are added 
first and then we square the amplitudes to get the probabilities. 
5. The Act of Measuring 
Suppose we want to know through which slit the electron has passed. This can be done by 
inserting a detector at position A. Furthermore, we prepare the electron at position 0 with a down 
spin. When it passes through A, its spin is flipped to an up spin, and when it passes through 
position B, nothing happens to the electron and it remains with a spin down (see fig. 12). 
 
                                                                                                          
                                                                                                                              S 
 
 
                                                                        A                                                 
0······················································· 
                                                                         B 
 
 
 
 

Fig. 12 
We need two labels for the states: one for position, and the other for the spin. We describe the 
process as, 
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| 0, ݀ >  → ,ܣ |     < ݑ ,ܤ |  +   ݀ >   →     ,݊ | ߖ < ݑ


  +  ,݊ | ߔ ݀ >


 

Due to the presence of the detector, the electrons are entangled through their spins: one is up, the 
other is down. Entanglement means that if we know a certain property of one particle, we also 
know that property of a second particle. In this case, we know that if the spin at A is up after 
passing through the detector, we also know that if it passed at B, it is spin down. Again to 
calculate the probability of finding the electron at the mth position, we square the amplitudes, or 
multiply the amplitude with their complex conjugate (equ. 8). 

                             ܲ = ∗ߖ)   < ݉, | ݑ  + ∗ߔ  < ݉, ,݉ | ߖ) ( | ݀ ݑ > ,݉ |ߔ +  ݀ >) 
∗ߖ   =         ߖ <  ݉, ,݉ | ݑ < ݑ ∗ߔ  +    ݉ߔ <  ݉, ݀ | ݉, ݀ >      
∗ߖ +         ߔ  <  ݉, ,݉ | ݑ ݀ > ∗ߔ  +  ߖ  <  ݉, ݀ | ݉,  < ݑ

Note that the up and down vector states, because the electrons have opposite spins, are now 
orthogonal to each other.  

<  ݉, ,݉ | ݑ ݀ > =  0 = <  ݉, ݀ | ݉,  < ݑ
<  ݉, ,݉ | ݑ =  < ݑ  1 =<  ݉, ݀ | ݉, ݀ >      

Therefore, 
ܲ = ∗ߖ   ߖ   + ∗ߔ       (12)ߔ 

This result is completely different from equ. 11. We see now that the very act of detecting the 
spin of one electron, that is, making some sort of measurement, destroys the interference pattern. 
Again, this is another markedly difference between a classical system, in which we can always 
make a measurement without disturbing it, and a quantum system, in which a measurement 
entails disturbing the system and getting a different result. 
6. Bell’s Theorem Revisited 
In Bell's theorem[1], we make two assumptions in the proof. These are:  
A. Logic is a valid way to reason. 
B. Body either ad a property or doesn’t have property A. 
This is important to understand. The parameter in question is not necessarily non-locality. It can 
be anything that a particle possesses and can be measured. Consider the set of all measurements, 
for which A, B and C are any three measurements, and are independent property. Examples: A is 
up or down, B is head or tail, C is red or green, etc. Secondly, the theorem is not about hidden 



11 
 

parameters but whether it has a property or not. Making it about non-local hidden parameters is 
to doubly compound the error in misinterpreting Bell’s theorem.  
Derivation of Bell’s inequality 
Definition: if an object has property A, we denote that as A+; if not, we denote it by A- 
(i) ܰ (ܣ+, (−ܤ  = ,+ܣ) ܰ  ,−ܤ (+ܥ  + ,+ܣ) ܰ  ,−ܤ  this is true since an object must have ;(−ܥ
the property C or does not have it. 
(ii) So ܰ (ܣ+, (−ܤ  ≥ ,+ܣ) ܰ  ,−ܤ ;(−ܥ ,+ܣ) ܰ ݁ܿ݊݅ݏ  ,−ܤ  .cannot be smaller than zero (+ܥ
(iii) (ܤ+, (−ܥ  = ,+ܣ) ܰ  ,+ܤ + (−ܥ ,−ܣ) ܰ  ,+ܤ  similar reasoning to step i, an object ;(−ܥ
must have the property A or does not have it. 
(iv)  ܰ (ܤ+, (−ܥ  ≥ ,+ܣ) ܰ  ,+ܤ  .similar reasoning to step ii ; (−ܥ
(v) So (ܣ+, (−ܤ  + ,+ܤ) ܰ  (−ܥ  ≥ ,+ܣ) ܰ  ,−ܤ (−ܥ  + ,+ܣ) ܰ  ,+ܤ  adding inequalities ;(−ܥ
ii and iv together. 
(vi) But the RHS of v gives: (ܣ+, ,−ܤ + (−ܥ ,+ܣ) ܰ  ,+ܤ (−ܥ  = ,+ܣ) ܰ   similar ;(−ܥ
reasoning to steps i and iii, an object must have the property B or does not have it. 
(vii) Substituting vi into v, we get, ܰ (ܣ+, (−ܤ  + ,+ܤ) ܰ  (−ܥ  ≥ ,+ܣ) ܰ   which ; (−ܥ
completes the proof. 
To reiterate: a body has a proper or it does not have it. For instance, looking at the earth at a 
distance, one can observe its spin around an axis and measure it. On the other hand, looking at 
the moon, we observe it has no spin. So either a body has spin (the earth) or it doesn’t have spin 
(the moon). On the other hand, the electron has spin, but only one component can be measured. 
The other two components remain indeterminate once one component is measured as it was 
discussed through fig. 6-7-8-9-10. It is in that mind frame that we must interpret Bell’s theorem. 
It goes without saying that a classical system will not violate Bell’s theorem, while a quantum 
system will. In Alain Aspect experiment[2], Bell’s inequality theorem was tested by measuring 
the polarization of photons along different axes. The inequality was violated as the system 
understudied was a quantum system. To attribute this violation to non-locality is a major blunder. 
The violation is strictly due to the HUP: along the three axes, the components of the spin are 
incompatible observables, and Bell’s theorem applies only to a classical system. So applying 
Bell’s theorem to a quantum system will inevitably result into a violation. 
The EPR Revisited 
It’s time to go back to the 1927 Solvay Conference when the disagreement between Einstein and 
Bohr first surfaced and began the debate that has lasted ever since. 
The first disagreement centered on the notion of a wave collapse. Einstein was on the right side 
as he correctly deduced that such collapse would mean the existence of a spooky action at a 
distance. 
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The EPR[3] that came subsequently proposed that there were hidden parameters to explain what 
Einstein thought was the unexplainable. On that, history has shown that Einstein was wrong. 
 
Here’s your typical argument that has come through the decades since this disagreement started. 
 
                                                              ←  e-   •     ●     •   e+ → 

Alice                                                           O                                                              Bob 
Fig. 13 

A particle at O decays and sends two particles: an electron e- towards Alice, and a positron e+ 
towards Bob. 
Each particle flies off in opposite direction with opposite momentum (conservation of 
momentum) and opposite spin (conservation of angular momentum). 
Case A      
Alice is going to measure the spin of her particles with a magnetic field along the z-axis, likewise 
for Bob. So both are performing an experiment depicted in Fig 6-7-8-9-10. In each case, consider 
one particle at a time. As the electron (positron) approaches the magnetic field, the orientation of 
the spin with the magnetic field is totally unknown to our two observers. Now the particle goes 
through the magnetic field. There are only two possibilities for each particle, 
(1A) Alice measures a spin up and Bob measures a spin down. 
(2A) Alice measures a spin down and Bob measures a spin up. 
There are NO other alternatives. 
There is no mystery here, there is no spooky action at a distance, there is no weirdness, there is 
no communication traveling faster than light. There are only two possibilities, and this is what 
will be observed, which is explained entirely by the conservation laws. 
On the whole, Alice will measure 50% of all the electrons coming her way with spin up, and 
50% with spin down. Bob will measure similar results for his positrons. 
Case B 
Alice is going to measure the spin of her particles with a magnetic field along the z-axis, but this 
time, Bob will measure his particles along a different axis, say the x-axis. 
The situation doesn’t change in regard to the particle approaching the magnetic field: the 
orientation of the particle’s spin is still unknown to both Alice and Bob. 
Consider one particle at a time. 



13 
 

(1B) Alice measures the first particle with a spin up along the z-axis. 
(2B) Bob measures his first particle with a spin up along the x-axis. 
Can Bob conclude that he also knows that his particle has a spin down along the z-axis, since 
Alice measured her particle with a spin up along that axis? 
No, he doesn’t know. His experiment is different than Alice’s as his particle’s orientation was 
forced along the x-axis, by what amount is unknown. And Alice’s particle was forced to align 
along the z-axis by also an unknown quantity. The only conclusion that Bob can make is what he 
measured: a spin up along the x-axis. Secondly the components of the spin of his particle along 
the y and z axis remains unknown to him, just as Alice doesn’t know the x and y components of 
her particle. 
As in case A, Alice will measure 50% of all the electrons coming her way with spin up, and 50% 
with spin down, but keep in mind, she has only measured the spin along the z-axis. She has no 
knowledge of the other components of the spin of her particles – the x and y components. 
Likewise Bob will also measure 50% of all the electrons coming his way with spin up, and 50% 
with spin down, but keep in mind, he has only measured the spin along the x-axis. He has no 
knowledge of the other components of the spin of his particles – the y and z components. 
Again there is no mystery here, there is no spooky action at a distance, there is no weirdness, 
there is no communication traveling faster than light. 
Conclusion 
How can we explain the confusion that has reigned for more than nine decades? 
There were mistakes done at different levels: 

(5) A misinterpretation of Bell’s theorem in which the original intent did not include non-
locality, but as a test to see whether or not a particle has a certain property that can be 
measured. 

(6) A misinterpretation of the disagreement between Einstein and Bohr. Einstein’s objection 
to the collapse of the wave function implied a spooky action at a distance, and Bohr 
should have listened to that.  

(7) A misinterpretation that the wave function represents a real wave when in actuality it 
represents the possible states of a quantum system before a measurement. 

(8) When Bell’s theorem was violated by a quantum system, those violations were 
misinterpreted as evidence instantaneous collapse of the wave function and non-locality. 

Those who were carrying the torch for Einstein thought that Bell’s theorem confirmed non-
locality (which Bell’s theorem doesn’t really say) because that also confirmed that Einstein was 
right (a wave function collapse implied a spooky action at a distance, but the wave function isn’t 
a real wave to begin with) leading to the idea that an instantaneous collapse (nothing can travel 
faster than the speed of light) makes the universe weird. 
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Here’s the real deal: there is no instantaneous collapse of the wave function, and there is no 
spooky action at a distance.  
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