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Abstract: We propose in this chapter a content-based information
retrieval framework to select documents in a database, consisting of
several images with semantic information. Information in these doc-
uments is not only heterogeneous, but also often incomplete. So,the
method we propose may cover a wide range of applications. To se-
lect the most relevant cases in the database, for a query, a degree of
match between two cases is defined for each case feature, and these
degrees of match are fused. Two different fusion models are pro-
posed: a Shafer’s model consisting of two hypotheses and a hybrid
DSm model consisting of N hypotheses, where N is the number of
cases in the database. They allow us to model our confidence in
each feature, and take it into account in the fusion process, to im-
prove the retrieval performance. To include images in such a system,
we characterize them by their digital content. The proposed meth-
ods are applied to two multimodal medical databases for computer
aided diagnosis; a comparison with other retrieval methods we pro-
posed recently is provided. A mean precision at five of 81.8% and
84.8% was obtained on a diabetic retinopathy and a mammography
database, respectively: the methods are precise enough to be used in
a diagnosis aid system.
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18.1 Introduction

Case-based reasoning (CBR) [1] was introduced in the early 1980s as a new decision
support tool. It is based on the assumption that analogous problems have similar
solutions: to help interpreting a new case, similar cases are retrieved from a database
and returned to the user. In this chapter, we focus on CBR in multimodal databases.
To retrieve heterogeneous information, some simple approaches, based on early fu-
sion [21, 24] or late fusion [14, 26] have been introduced in the literature. Recently, an
elaborate retrieval method, based on dissimilarity spaces and relevance feedback, has
also been proposed [5]. In the same time, we proposed several other approaches that
do not rely on relevance feedback, and can efficiently manage missing information
and the aggregation of heterogeneous features (symbolic and multidimensional digi-
tal information). The first approach is based on decision trees [15]. The second one
is based on Bayesian networks [16]. We introduce in this chapter a third approach,
based on DSmT: information coming from each case feature Fi, i = 1..M , is used
to derive an estimation of the degree of match between a query case and a case in
the database. A case feature Fi can be either a nominal variable, an image acquired
using a given modality, or any other type of signal. These estimations are then fused,
in order to define a consensual degree of match, which is used to retrieve the most
relevant cases for the query. In order to model our confidence in the estimation pro-
vided by each source of evidence, we propose two fusion models based on DSmT. The
first one is based on a Shafer’s model consisting of two hypotheses. The second one is
based on a hybrid DSm model consisting of N hypotheses, where N is the number of
cases in the database. Finally, the cases in the database maximizing the consensual
degree of match with the query are returned to the user.

The proposed approach is applied to computer-aided diagnosis. In medicine, the
knowledge of experts is a mixture of textbook knowledge and experience through real
life clinical cases. So, the assumption that analogous problems have similar solutions
is backed up by physicians’ experience. Consequently, there is a growing interest in
the development of medical decision support systems based on CBR [4], especially to
assist the diagnosis of physicians. Such systems are intended to be used as follows:
when a physician has doubts about his diagnosis, he sends the available patient data
to the system. The most similar cases, along with their medical interpretations, are
retrieved from the database and returned to the physician, who can then compare his
case to these retrieved cases. Reasoning by analogy, the physician may so confirm or
invalidate his diagnosis.

Medical cases often consist of digital information like images and symbolic in-
formation such as clinical annotations. Diabetic retinopathy experts, for instance,
analyze multimodal series of images together with contextual information, such as
the age, the sex and the medical history of the patient. So, to use all the information
available, we have to manage both digital and semantic information. On one hand,
there are some medical CBR systems designed to manage symbolic information [6].
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On the other hand, some systems, based on Content-Based Image Retrieval [20], have
been designed to manage digital images [13]. However, few attempts have been made
to merge the two kinds of approaches. Actually, in some systems, it is possible to
formulate both textual and digital queries in parallel [2, 11], but the two kinds of
information are processed separately. In another system, a text based and an image
based similarity measure are combined linearly into a common similarity measure [18].
Nevertheless, in our application, none of those solutions is suitable to use at best the
relationships between symbolic and digital information. Our approaches are efficient
solutions for information retrieval based on both clinical descriptors and digital image
features. More, they take into account the fact that the information is often incom-
plete and uncertain.

The objectives are detailed in section 18.2. Shafer’s model is presented in section
18.3 and the hybrid DSm model in section 18.4. The proposed approaches are applied
to computer-aided diagnosis of diabetic retinopathy and mammography in section
18.5: we provide a comparison with the other two multimodal information retrieval
methods we proposed [15, 16]. We end with a discussion and a conclusion in section
18.6.

18.2 Objectives

As mentioned before, we have already proposed methods to manage databases with
heterogeneous information. But they do not take into account the uncertainty of
information and the possible conflicts between some feature values. We propose to
evaluate the contribution of DSmT for medical CBR, in comparison with the other
two multimodal retrieval methods we proposed. For this purpose, let us remind the
evaluation procedure we use. Let (xj)j=1..N be the cases in the database and xq

be a case placed as a query to the retrieval system. The system retrieves k cases
from the database, where k is chosen by the users. The objective is to maximize the
percentage of relevant cases, according to the users, among the k retrieved cases. This
percentage is called the precision at k. For each method, we define a degree of match
(or a similarity measure) between cases, and the k cases in the database maximizing
the degree of match with xq are retrieved. We tune the definition of the degree of
match in order to maximize the percentage of relevant cases among the k retrieved
cases, by training these methods. For this purpose, the cases in the database have
to be classified by the users, in order to catch their perception of relevance between
cases. Then, the database is divided into a training dataset (xT

j )j=1..NT and an

evaluation dataset (xE
j )j=1..NE .

18.3 Shafer’s model for information retrieval

In order to select the k cases to retrieve for a query xq, we compute the similarity
of each case xj in the database, j = 1..N , with xq. For this purpose, we first es-
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timate, for each case feature Fi, the degree of match between xj and xq according
to Fi, denoted dmi(xj , xq). To compute these estimations, we define a finite num-
ber of states fis for each feature Fi, i = 1..M , and we compute the membership
degree of any case y to each state fis of Fi, noted αis(y). y denotes either xq or xj ,
j = 1..N . If Fi is a nominal variable, αis(y) is Boolean; for instance, if y is a male
then α“sex′′,“male′′ (y) = 1 and α“sex′′,“female′′ (y) = 0. If Fi is an image (or any type
of signal), the definition of fis and αis(y) is given in section 18.3.1. The estimation
of the degree of match between xj and xq according to Fi, namely dmi(xj , xq), is
computed as described in section 18.3.2.

These estimations are then combined. The frame of discernment used in the fusion
process is described in section 18.3.3. A belief mass function is first derived from each
estimation of the degree of match, provided by a case feature (see section 18.3.4). It is
designed in order to give more importance in the fusion process to sources of evidence
in which we have more confidence. These belief mass functions are then fused (see
section 18.3.5) and a consensual degree of match between xj and xq is derived: this
consensual degree of match is used to find the k cases in the database maximizing
the similarity with xq (see section 18.3.6).

18.3.1 Image processing

If the case feature is a nominal variable, defining states fis for Fi is straightforward,
it is more difficult for images. To define states for images of a given type, we propose
to follow the usual steps of Content-Based Image Retrieval (CBIR) [20], that is: 1)
building a signature for each image (i.e. extracting a feature vector summarizing their
digital content), and 2) defining a distance measure between two signatures. As a
consequence, measuring the distance between two images comes down to measuring
the distance between two signatures. Similarly, defining states for images of a given
type comes down to defining states for the signatures of the corresponding images.
For this purpose, we cluster similar image signatures, as described below, and we
associate each cluster with a state. By this procedure, images can be processed by
the retrieval method like any other feature.
In previous studies on CBIR, we used a customized wavelet decomposition to ex-
tract signatures from images [10]. These signatures characterize the distribution of
the wavelet coefficients in each subband of the decomposition. Wouwer [25] showed
that the wavelet coefficient distribution, in a given subband, can be modeled by a
generalized Gaussian function. We define the signature as the juxtaposition of the
maximum likelihood estimators of the wavelet coefficient distribution in each sub-
band. To define a distance measure between signatures, we used a symmetric version
of the Kullback-Leibler divergence between wavelet coefficient distributions [8]: the
distance between two images is a weighted sum of these symmetrized divergences [10].
The ability to select a weight vector and a wavelet basis makes this image represen-
tation highly tunable.
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In order to define states for images of a given type Fi, we cluster similar images
with an unsupervised classification algorithm, thanks to the image signatures and
the associated distance measure above. The Fuzzy C-Means algorithm (FCM) [3]
was used for this purpose: each case y is assigned to each cluster s with a fuzzy
membership αis(y), 0 ≤ αis(y) ≤ 1, such that

P

s αis(y) = 1.

Other features can be discretized similarly: the age of a person, monodimensional
signals, videos, etc.

18.3.2 Estimation of the degree of match for a feature Fi

We have to define a similarity measure between two cases from their membership
degree to each state of a feature Fi. We could assume that cases with membership
degrees close to that of xq are the most liable to be relevant for xq. So, a similarity
measure between xj and xq, according to a case feature Fi, may be

P

s αis(xj)αis(xq).
However, this assumption is only appropriate if all cases in a given class tend to be
at the same state for Fi. Another model, more general, is used: we assume that
cases in the same class are predominantly in a subset of states for Fi. So, to estimate
the degree of match, we define a correlation measure Sist between couples of states
(fis, fit) of Fi, regarding the class of the cases at these states. Sist is computed using
the cases (xT

j )j=1..NT in the training dataset. Let c = 1..C be the possible classes for
a case in the database. We first compute the mean membership Disc (resp. Ditc) of
cases xT

j in a given class c to the state fis (resp. fit):

Disc = β

P

j δ(xT
j , c)αis(x

T
j )

P

j δ(xT
j , c)

(18.1)

C
X

c=1

D2
isc = 1,∀(i, j) (18.2)

where δ(xT
j , c) = 1 if xT

j belongs to class c, δ(xT
j , c) = 0 otherwhise, and β is a

normalizing factor chosen so that equation 18.2 holds. Sist is given by equation 18.3:

Sist =

C
X

c=1

DiscDitc (18.3)

So we estimate the degree of match between the two cases xj and xq, with respect to
a case feature Fi, as follows:

dmi(xj , xq) =
X

s

X

t

αis(xj)Sistαit(xq) (18.4)

18.3.3 Designing the frame of discernment

In order to estimate the relevance of a case xj for the query xq, as a consensus
between all the sources of evidence, we define two hypotheses: Q=“xj is relevant for
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xq” and Q̄=“xj is not relevant for xq”. The following frame of discernment is used
in the fusion problem: Θ(1) = {Q, Q̄}. To define the belief mass function associated
with a given source of evidence, i.e. a feature Fi, we assign a mass to each element

in DΘ(1)

=
˘

∅, Q, Q̄, Q ∩ Q̄, Q ∪ Q̄
¯

. In fact, it is meaningless to assign a mass to

Q ∩ Q̄, as a consequence, we only assign a mass to elements in DΘ(1) \ Q ∩ Q̄ =
˘

∅, Q, Q̄, Q ∪ Q̄
¯

= 2Θ(1)

. We are thus designing a Shafer’s model consisting of two
hypotheses.

18.3.4 Defining the belief mass functions

To compute the belief mass functions, we define a test Ti on the degree of match
dmi(xj, xq): Ti is true if dm(xj, xq) >= τi and false otherwise, 0 ≤ τi ≤ 1. The belief
masses are then assigned according to Ti:

• if Ti is true:

• mi(Q) = P (Ti|xj is relevant for xq) → the sensitivity of Ti

• mi(Q ∪ Q̄) = 1 − mi(Q)

• mi(Q̄) = 0

• else

• mi(Q̄) = P (T̄i|xj is not relevant for xq) → the specificity of Ti

• mi(Q ∪ Q̄) = 1 − mi(Q̄)

• mi(Q) = 0

The sensitivity (resp. the specificity) represents the degree of confidence in a positive
(resp. negative) answer to test Ti; mi(Q ∪ Q̄), the belief mass assigned to the total
ignorance, represents the degree of uncertainty: the higher this term, the lower our
confidence in the case feature Fi. The sensitivity and the specificity of Ti, for a
given threshold τi, are estimated using each pair of cases (xT

a , xT
b ) in the training

dataset, one playing the role of xq, the other playing the role of xj . The sensitivity
(resp. the specificity) is estimated by the average number of pairs for which Ti is
true (resp. false) among the pairs of cases belonging to the same class (resp. to
different classes). Ti is appropriate if it is both sensitive and specific. As τi increases,
sensitivity increases and specificity decreases. So, we set τi as the intersection of the
two curves “sensitivity according to τi” and “specificity according to τi”. A binary
search is used to find the optimal τi.

18.3.5 Fusing the belief mass functions

If the ith case feature is available for both xj and xq, the degree of match dmi(xj , xq)
is estimated (see section 18.3.2) and the belief mass function is computed according to
test Ti (see section 18.3.4). The computed belief mass functions are then fused. Let
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M ′ ≤ M be the number of belief mass functions to fuse. Usual rules of combination
have a time complexity exponential in M ′, which might be a limitation. So we
propose a rule of combination for problems consisting of two hypotheses (Q and
Q̄ in our application), adapted from the Proportional Conflict Redistribution (PCR)
rules [19], with a time complexity evolving polynomially with M ′ (see appendix 18.8).

18.3.6 Identifying the most similar cases

Once the sources available for xq are fused by the proposed rule of combination,
a decision function is used to compute the consensual degree of match between xj

and xq. We express this consensual degree of match either by the credibility (cf.
equation 18.5), the plausibility (cf. equation 18.6), or the pignistic probability of Q
(cf. equation 18.7).

Bel(A) =
X

B∈DΘ,B⊆A,B 
≡∅
m(B) (18.5)

P l(A) =
X

B∈DΘ,A∩B 
≡∅
m(B) (18.6)

BetP (A) =
X

B∈DΘ,B 
≡∅

CM(A ∩B)

CM(B)
m(B) (18.7)

The notation B �≡ ∅ means that B �= ∅ and B has not been forced to be empty
through the constraints of the model M; CM(B) denotes the number of parts of B
in the Venn diagram of the model M(Θ) [7, 22]. It emerges from our applications
that using the pignistic probability of Q leads to a higher mean precision at k (more
elaborate decision functions might improve the retrieval performance). The pignistic
probability of Q, BetP (Q), is computed according to equation 18.8.

BetP (Q) = mf (Q) +
mf (Q ∪ Q̄)

2
(18.8)

The k cases maximizing BetP (Q) are then returned to the user.

18.3.7 Managing missing values

The proposed method works even if some features are missing for xj and xq: we sim-
ply take into account the sources of evidence available for both xj and xq. However,
it may be more efficient to take also into account information available for only one
of the two cases.

A solution is to use a Bayesian network modeling the probabilistic dependencies
between the features Fi, i = 1..M . The Bayesian network is built from the training
dataset automatically [16]. We use it to infer the posterior probability of the features
Fi unavailable for xj , but available for xq. As a consequence, all the features available
for xj are used to infer the posterior probability of the other features. And all the
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features available for xq are involved in the fusion process: a belief mass function is
defined for each feature available for xq.

18.4 Hybrid DSm model for information retrieval

In the model presented in section 18.3, we have estimated the probability that each
case xj in the database is relevant for the case xq placed as a query, j = 1..N . In this
second model, we slightly reformulate the retrieval problem: we estimate the probabi-
lity that xq is relevant for each case xj in the database, j = 1..N . The interest of this
new formulation is that we can include in the model the similarity between cases xj .
To find the cases maximizing the similarity with the query in the database, we assess
the following hypotheses Xj=“xq is relevant for xj”, j = 1..N , and we select the k
most likely: the k corresponding cases xj are thus returned to the user. As a conse-
quence, a different frame of discernment is used (see section 18.4.1). The likelihood
of each hypothesis Xj , j = 1..N , is estimated for each feature Fi, i = 1..M . These
estimations are based on the same degree of match that was used in the previous
model (see section 18.3.2).

Since we use a new frame of discernment, a new belief mass function is defined
for each feature Fi (see section 18.4.2). These belief mass functions are then fused
(see section 18.4.3). And a consensual estimation of the likelihood of Xj is derived:
this consensual estimation of the likelihood is used to find the cases in the database
maximizing the similarity with xq (see section 18.4.4).

18.4.1 Designing the frame of discernment

The following frame of discernment is used in the new fusion problem: Θ(2) =

{X1, X2, ..., XN}. The cardinal of DΘ(2)

is hyper-exponential in N . As a conse-
quence, to solve the fusion problem, it is necessary to set some constraints in the
model. We are thus designing a hybrid DSm model. These constraints are also jus-
tified from a logical point of view: a priori, if two cases xa and xb are dissimilar,
or if xa and xb belong to different classes (as indicated by the users), then the two
hypotheses Xa and Xb are incompatible.

To design the frame of discernment, we first build an undirected graph Gc =
(V, E), that we call compatibility graph. Each vertex v ∈ V in this graph represents
an hypothesis, and each edge e ∈ E represents a couple of compatible hypotheses. To
build the compatibility graph, each case xj in the database, j = 1..N , is connected in
the compatibility graph Gc to its l nearest neighbors. The distance measure we used to
find the nearest neighbors is simply a linear combination of heterogeneous distance
functions (one for each case feature Fi), managing missing information [24]. The
complexity of the fusion process mainly depends on the cardinality of the largest clique
in Gc (a clique is a set of vertices V such that for every pair of vertices (u, v) ∈ V 2,



Chapter 18: Multimodal information retrieval based on DSmT . . . 479

there is an edge connecting u and v). The number l is closely related to the cardinality
of the largest clique in Gc and consequently to the complexity of the fusion process.
l was set to five in the application (see section 18.5). The Venn diagram of the model
M(Θ(2)) is then built: for this purpose, we identify the cliques in Gc, as described in
figure 18.1.

(a) Compatibility graph (b) Venn diagram

Figure 18.1: Building the frame of discernment from the compatibility graph.
Hypotheses associated with cases in the same class are represented with the
same color.

18.4.2 Defining the belief mass functions

For each feature Fi, the belief mass function mi is defined as follows. We first identify
the set of cases (xj)j=1..N′≤N such that dmi(xj , xq) is greater than a threshold τ ′

i ,
j = 1..N ′ ≤ N :

• a belief mass mi1 is assigned to the set
SN′≤N

j=1 Xj ,

• and a belief mass mi2 = 1− mi1 is assigned to the total ignorance
SN

j=1 Xj .

τ ′
i is searched similarly to threshold τi (see section 18.3.4) with the following test:

Xj is true if dmi(xj , xq) ≥ τ ′
i , otherwise Xj is false; we perform a binary search to

find the threshold maximizing the minimum of the sensitivity and of the specificity of
that test, whatever Xj (a single threshold τ ′

i is searched for each case feature). mi1

is defined as the sensitivity of that test.
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18.4.3 Fusing the belief mass functions

Once the Venn diagram of the model M(Θ(2)) has been designed, we associate a
unique number with each element in this diagram. The belief mass function mi

defined above is then encoded as follows:

• a binary string denoted ei(A) is assigned to each set A ∈ DΘ(2)

such that
mi(A) �= 0,

• the jth character in the string ei(A) is 1 if and only if the jth set in the Venn
diagram is included in A.

In memory, the binary strings are encoded as byte strings: we associate each element
in the diagram with a bit, and bits are grouped eight by eight into bytes. The elements
of the Venn diagram form a partition of Ω =

SN
j=1 Xj , as a consequence, the following

equation holds:
ei(A ∩B) = ei(A) ∩ ei(B) (18.9)

Let us consider the following three-source problem, illustrated in figure 18.2.

The frame of discernment consists of five elements: Θ(2) = {X1, X2, X3, X4, X5},
where X1 = {0, 5, 6, 9}, X2 = {1, 5, 7, 9}, X3 = {2, 6, 7, 9}, X4 = {3, 8} and X5 =
{4, 8}.

These belief mass functions are fused sequentially:

• fusion of m1 and m2 by the PCR5 rule → m12 [19],

• fusion of m12 and m3 by the PCR5 rule → m123,

• etc.

As we fuse the belief mass functions, the number of elements A ∈ DΘ(2)

satisfying
mj(A) �= 0 increases. To access these elements and update their mass, we rank them
in alphabetical order of ei(A): we can thus access them quickly with a binary search
algorithm.

Detecting conflicts between two sources is made easier with this representation:

if ei(A) ∩ ei(B) = 0, A ∈ DΘ(2)

, B ∈ DΘ(2)

, then A and B are conflicting. On the
example above, the fused belief mass function we obtain is illustrated in figure 18.3.
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(a) m1

m1(X1 ∪X2) = 0.6, m1(Ω) = 0.4

******98, 76543210
e1(X1 ∪X2) = 00000010, 11100011

e1(Ω) = 00000011, 11111111

(b) m2

m2(X4) = 0.7, m2(Ω) = 0.3

******98, 76543210
e2(X4) = 00000001, 00001000
e2(Ω) = 00000011, 11111111

(c) m3

m3(X2 ∪X5) = 0.8, m3(Ω) = 0.2

******98, 76543210
e3(X2 ∪X5) = 00000011, 10110010

e3(Ω) = 00000011, 11111111

Figure 18.2: Encoding the belief mass functions.
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(a) mass=0.075 (b) mass=0.405

(c) mass=0.101 (d) mass=0.299

(e) mass=0.096 (f) mass=0.024

Figure 18.3: Fused belief mass function: this figure represents the sets to which
a non-zero belief mass has been assigned.
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18.4.4 Identifying the most similar cases

Once the belief mass functions are fused, the pignistic probability of each element
Xj ∈ Θ(2) is computed (see equation 18.7), like in the previous model (see section
18.3.6): it is used as the consensual estimation of the likelihood of Xj . For instance,
the computation of BetP (X4) is given below:

BetP (X4) =
1

1
· 0.405 +

2

2
· 0.101 +

1

6
· 0.096 +

2

10
· 0.024 = 0.527 (18.10)

Then, the k cases xj in the database maximizing BetP (Xj) are returned to the user.

18.4.5 Managing missing values

Like in the previous model, we can use a Bayesian network to better manage missing
information. The Bayesian network described in section 18.3.7 is used to infer the
posterior probability of the features Fi unavailable for the query xq.

18.5 Application to computer-aided medical diagnosis

The proposed methods have been evaluated on two multimodal medical databases, for
computer-aided medical diagnosis. The first one (DRD) is being built at the Inserm
U650 laboratory in collaboration with ophthalmologists of Brest University Hospital.
The second one (DDSM) is a public access database.

18.5.1 Diabetic retinopathy database (DRD)

The diabetic retinopathy database contains retinal images of diabetic patients, with
associated anonymized information on the pathology. Diabetes is a metabolic disorder
characterized by a sustained high sugar level in the blood. Progressively, blood vessels
are affected in many organs, which may lead to serious renal, cardiovascular, cerebral
and also retinal complications. In the latter case, the pathology, namely diabetic
retinopathy, can cause blindness. Patients have been recruited at Brest University
Hospital since June 2003.



484 Chapter 18: Multimodal information retrieval based on DSmT . . .

The database consists of 67 patient records containing 1112 photographs alto-
gether. The disease severity level, according to ICDRS classification [23], was as-
sessed by experts for each patient. The distribution of the disease severity among
the 67 patients is given in table 18.1. Images have a definition of 1280 pixels/line for
1008 lines/image. They are lossless compressed images, acquired by experts using a
Topcon Retinal Digital Camera (TRC-50IA) connected to a computer.

Database Disease severity Number of
patients

DRD no apparent diabetic retinopathy 7
mild non-proliferative 9

moderate non-proliferative 22
severe non-proliferative 9

proliferative 9
treated/non active diabetic retinopathy 11

DDSM normal 695
benign 669
cancer 913

Table 18.1: Patient disease severity distribution.

An example of image sequence is given in figure 18.4. The contextual information
available is the age, the sex and structured medical information about the patient
(see table 18.2). Patient records consist of 10 images per eye (see figure 18.4) and 13
contextual attributes at most; 12.1% of these images and 40.5% of these contextual
attribute values are missing.
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Attributes Possible values

General clinical context
family diabetes, glaucoma,

clinical context blindness, misc.
medical arterial hypertension,

clinical context dyslipidemia, protenuria,
renal dialysis, allergy, misc.

surgical cardiovascular,
clinical context pancreas transplant,

renal transplant, misc.
ophthalmologic cataract, myopia, AMD,
clinical context glaucoma,unclear medium,

cataract surgery,
glaucoma surgery, misc.

Examination and
diabetes context

diabetes type none, type I, type II
diabetes duration < 1 year, 1 to 5 years,

5 to 10 years,> 10 years
diabetes stability good, bad, fast modifications,

glycosylated hemoglobin
treatments insulin injection, insulin pump,

anti-diabetic drug + insulin,
anti-diabetic drug,
pancreas transplant

Eye symptoms before
the angiography test

ophthalmologically none, systematic ophthalmologic
symptomatic screening-known diabetes,

recently diagnosed diabetes by check-up,
diabetic diseases other
than ophthalmic ones

ophthalmologically none, infection, unilateral decreased
asymptomatic visual acuity (DVA), bilateral DVA,

neovascular glaucoma, intra-retinal
hemorrhage, retinal detachment, misc.

Maculopathy
maculopathy focal edema, diffuse edema, none, ischemic

Table 18.2: Structured contextual information for diabetic retinopathy pa-
tients.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Images (a), (b) and (c) are photographs obtained
applying different color filters. Images (d) to (j)
form a temporal angiographic series: a contrast
product is injected and photographs are taken
at different stages (early (d), intermediate (e)-(i)
and late (j)). For the intermediate stage, pho-
tographs from the periphery of the retina are
available.

Figure 18.4: Photograph sequence of a patient’s eye.
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18.5.2 Digital database for screening mammography

The Digital Database for Screening Mammography (DDSM) project [9], involving the
Massachusetts General Hospital, the University of South Florida and the Sandia Na-
tional laboratories, has led to the setting-up of a mammographic image database for
research on breast cancer screening. This database consists of 2277 patient records.
Each one includes two images of each breast, associated with some information about
the patient (the age, rating for abnormalities, American College of Radiology breast
density rating and keyword description of abnormalities) and information about im-
ages (the scanner, the spatial resolution, etc). The following contextual attributes
are taken into account in the system:

• the age of the patient,

• the breast density rating.

Images have a varying definition, of about 2000 pixels/line for 5000 lines/image. An
example of image sequence is given in figure 18.5.

(a) LCC (b) LMLO (c) RCC (d) RMLO

Figure 18.5: Mammographic image sequence of the same patient. (a) and (b)
are two views of the left breast, (c) and (d) are two views of the right one.

Each patient record has been graded by a physician. Patients are then classified
into three groups: ’normal’, ’benign’ and ’cancer’. The distribution of grades among
the patients is given in table 18.1.
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18.5.3 Objective of the computer-aided diagnosis system

For each case placed as a query by a user, we want to retrieve the most similar cases
from a given database. In DRD, the number of cases selected by the system is set
to k = 5, at ophthalmologist’s request; they consider this number sufficient for time
reasons and in view of the good results provided by the system. For comparison
purposes, the same number of cases is displayed in DDSM. The satisfaction of the
user’s needs can thus be assessed by the precision at five, the percentage of cases
relevant for the query among the topmost five results.

18.5.4 Features of the patient records

In those databases, each patient record consists of both digital images and contextual
information. Contextual features (13 in DRD, 2 in DDSM) are processed as in the
CBR system. Images need to be processed in order to extract digital features. A
usual solution is to segment images and extract domain specific information (such as
the number of lesions). For DRD, we use the number of microaneurysms (the most
frequent lesion of diabetic retinopathy) detected by the algorithm described in [17],
in conjunction with other features. However, this kind of approach requires expert
knowledge for determining pertinent information in images, and a robust segmenta-
tion of images, which is not always possible because of acquisition variability. This
is the reason why we characterized images as described in section 18.3.1. An image
signature is thus computed for each kind of image (10 for DRD, 4 for DDSM).

18.5.5 Training and evaluation datasets

Both databases are divided randomly into a training dataset (80% of the database)
and an evaluation dataset (20% of the database). To assess the system, each case
in the evaluation dataset is placed sequentially as a query to the system, and the
five closest cases within the training dataset, according to the retrieval system, are
retrieved. The precision at five is then computed. Because the datasets are small,
especially for DRD, we use a 5-fold cross-validation procedure, so that each case in
the database appears once in the evaluation dataset.

18.5.6 Results

The mean precision at five obtained with each method, on the two medical databases,
is given in table 18.3; the proposed methods were compared to an early [24] and a late
fusion method [14], and to the other two multimodal information retrieval methods
we proposed [15, 16], as well. For both databases, we obtain a mean precision at five
greater than 80%: it means that, on average, more than four cases out of the five
cases retrieved by the system are relevant for the query.
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Model DRD DDSM

Early fusion [24] 42.8% 71.4%
Late fusion [14] 39.4% 70.3%
Decision trees [15] 81.0% 92.9%
Bayesian networks [16] 70.4% 82.1%

Shafer’s model 74.3% 77.3%
Shafer’s model + Bayesian networks 80.8% 80.3%
Hybrid DSm model 78.6% 82.1%
Hybrid DSm model + Bayesian networks 81.8% 84.8%

Table 18.3: Mean precision at five for each method.

Clearly, simple early or late fusion methods are inappropriate to retrieve patient
records efficiently: in the rest of the section, we will focus on the other methods.

The mean computation time required to retrieve the five most similar cases, using
each method, is given in table 18.4. All experiments were conducted using an AMD
Athlon 64-bit based computer running at 2 GHz. Most of the time is spent during the
computation of the image signatures. However, note that, if the wavelet coefficient
distributions are simply modeled by histograms, the time required to compute the
signatures can be greatly reduced (0.25 s instead of 4.57 s for DRD, 2.21 s instead of
35.89 s for DDSM).

To study the robustness of these methods, with respect to missing values, the
following procedure has been carried out:

• for each case xj in the database, j = 1..N , 100 new cases are generated as
follows. Let nj be the number of features available for xj , each new case is
obtained by removing a number of features randomly selected in {0, 1, ..., nj}.

• we plot the precision at five according to the number of available features for
each generated case (see figure 18.6).



490 Chapter 18: Multimodal information retrieval based on DSmT . . .

Database DRD DDSM

computing the signatures 4.57 s 35.89 s
(for 1 image)
computing the distance with 0.033 s 1.14 s
each image signature
in the database (for 1 image)

mean retrieval time 17.24 s 99.50 s
(decision trees [15])
mean retrieval time 40.12 s 148.23 s
(Bayesian networks [16])

mean retrieval time 32.21 s 148.13 s
(Shafer’s model)
mean retrieval time 40.58 s 148.27 s
(Shafer’s model + Bayesian networks)
mean retrieval time 33.02 s 149.94 s
(Hybrid DSm model)
mean retrieval time 40.77 s 150.01 s
(Hybrid DSm model + Bayesian networks)

Table 18.4: Computation times.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

pr
ec

is
io

n 
at

 5

decision trees
Bayesian networks

Shafer’s DSm model
hybrid DSm model

percentage of available features

(a) DRD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

pr
ec

is
io

n 
at

 5

decision trees
Bayesian networks

Shafer’s DSm model
hybrid DSm model

percentage of available features

(b) DDSM

Figure 18.6: Robustness with respect to missing values.
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We can see from these plots that, using the two DSmT based methods, a satisfying
precision at five can be obtained faster, as new features are available, than if using
the decision tree based method. However, when the patient records are complete,
the decision tree based method is more efficient. It is the case for DDSM, in which
there are no missing information (see table 18.3). With the proposed methods, a
sufficient precision can be reached before all the features are inputted by the user.
As a consequence, the user can stop formulating his query when the returned results
are satisfactory. On DRD for instance, a precision at five of 60% can be reached
after inputting less than 30% of the features (see figure 18.6): with this precision, the
majority of the retrieved cases (3 out of 5) belong to the right class.

18.6 Discussion and conclusion

In this chapter, we introduced two methods to include image sequences, with contex-
tual information, in a CBR system. The first method is based on a Shafer’s model
consisting of two hypotheses. It is used to assess the relevance of each case in the
database, independently, for the query. The second model is based on a hybrid DSm
model consisting of N hypotheses, one for each case in the database. This model
takes into account the similarities between cases in the database, to better assess
their relevance for the query. Whatever the model used, the same similarity measure,
between any case in the database and the query, is defined for each feature. Then,
based on these similarity measures, a belief mass function, modeling our confidence
in each feature, is designed. Finally, these belief mass functions are fused, in order
to estimate the relevance of a case in the database for the query, as a consensus be-
tween all the available case features. For both models, a PCR rule of combination
was used to fuse the belief mass functions. For Shafer’s model, a new rule of com-
bination, with a time complexity evolving polynomially with the number of sources
is introduced in appendix 18.8. For the hybrid DSm model, a new encoding of the
elements in the Dedekind lattice is proposed to allow the computation of the PCR5
rule of combination. The use of a Bayesian network is proposed to improve the man-
agement of unavailable features. These methods are generic: they can be extended
to databases containing sound, video, etc: the wavelet transform based signature,
presented in section 18.3.1, can be applied to any n-dimensional digital signal, using
its n-dimensional wavelet transform (n = 1 for sound, n = 3 for video, etc). The
methods are also convenient for they do not require being trained each time a new
case is added to the database.
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These methods have been successfully applied to two medical image data-bases,
for computer aided diagnosis. For this application, the goal of the retrieval system is
to select the five patient records, in a database, maximizing the similarity with the
record of a new patient, examined by a physician. On both databases, a higher mean
precision at five is obtained with the hybrid DSm model than with Shafer’s model.
The mean precision at five obtained for DRD (81.8%) is particularly interesting, con-
sidering the few examples available, the large number of unavailable features and the
large number of classes taken into account. On this database, the methods outper-
form usual methods [14, 24] by almost a factor of 2 in precision. The improvement
is also noticeable on DDSM (84.8% compared to 71.4%). On this database, these
DSmT based methods are less precise than a previously proposed decision tree based
method [15]. However, we showed that a satisfying precision at five can be obtained
faster, as new features are available, using the DSmT based methods: this is interes-
ting in a medical application, where patient records are sometimes incomplete. As a
conclusion, the results obtained on both medical databases show that the system is
precise enough to be used in a diagnosis aid system.
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18.8 Appendix: PCR rule with polynomial complexity

In this appendix, we focus on frames of discernment consisting of two hypotheses Θ =
{θ1, θ2}. We make no assumptions on the model used for the fusion problem: it can
either be Shafer’s model, the free DSm model or a hybrid DSm model. We propose, in
section 18.8.1, an algorithm to compute the conjunctive rule m∩(X),∀X ∈ DΘ (see
equation 18.11), whose complexity evolves polynomially with the number of sources
s.

m∩(X) =
X

(X1,...,Xs)∈(DΘ)s,X1∩...∩Xs=X

s
Y

i=1

mi(Xi) (18.11)

Then we propose a new PCR rule, based on the same principle, in section 18.8.2. Let
k12...s be the total conflicting mass:

k12...s =
X

(X1,...,Xs)∈(DΘ)s,X1∩...∩Xs≡∅

s
Y

i=1

mi(Xi) (18.12)

Each term in this sum is called a partial conflicting mass. The principle of the PCR
rules is to redistribute the total conflicting mass k12...s (PCR1, PCR2) or the partial
conflicting masses (PCR3, ..., PCR6) between the sets Xc ∈ DΘ involved in the con-
flict [12, 19]. The conflict is redistributed to each set Xc proportionally to their belief
mass. We illustrate the PCR5 rule on the following problem with two hypotheses
and two sources. Suppose for instance that θ1 and θ2 are exclusive, as a consequence
mPCR5(θ1 ∩ θ2) = 0 and k12 = m1(θ1)m2(θ2) + m1(θ2)m2(θ1). So m1(θ1)m2(θ2)
is redistributed between mPCR5(θ1) and mPCR5(θ2) proportionally to m1(θ1) and
m2(θ2), respectively. Similarly, m1(θ2)m2(θ1) is redistributed between mPCR5(θ1)
and mPCR5(θ2) proportionally to m2(θ1) and m1(θ2), respectively. Indeed, θ1 ∪ θ2 is
not involved in the conflict. As a consequence, we obtain the following fused mass
function:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

mPCR5(∅) = mPCR5(θ1 ∩ θ2) = 0

mPCR5(θ1) = m∩(θ1) + m1(θ1)
m1(θ1)+m2(θ2)

m1(θ1)m2(θ2)

+ m2(θ1)
m2(θ1)+m1(θ2)

m2(θ1)m1(θ2)

mPCR5(θ2) = m∩(θ2) + m2(θ2)
m1(θ1)+m2(θ2)

m1(θ1)m2(θ2)

+ m1(θ2)
m2(θ1)+m1(θ2)

m2(θ1)m1(θ2)

mPCR5(θ1 ∪ θ2) = m∩(θ1 ∪ θ2)

(18.13)

The algorithms we propose impose a constraint on the belief mass function mi defined
for each source i = 1..s to fuse: only elements X ∈ {θ1, θ2, θ1 ∪ θ2} can have a non-
zero mass. Nevertheless, the set θ1 ∩ θ2 is taken into account within the rules of
combination. The generalization to problems involving more hypotheses is discussed
in section 18.8.3.
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18.8.1 Algorithm for the conjunctive rule

Let m1, m2, ..., ms be the belief mass functions defined for each source of evidence.
From the constraint above, a belief mass mi(X) is assigned to each element X ∈ DΘ

for each source i = 1..s according to:
j

mi(θ1) + mi(θ2) + mi(θ1 ∪ θ2) = 1
mi(θ1 ∩ θ2) = 0

(18.14)

Consequently, the conjunctive rule is simplified as follows:

m∩(X) =
X

(X1,...,Xs)∈{θ1,θ2,θ1∪θ2}s,X1∩...∩Xs=X

s
Y

i=1

mi(Xi) (18.15)

For a two-source problem, we obtain:
8

>

>

<

>

>

:

m∩(θ1 ∪ θ2) = m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)
m∩(θ1) = m1(θ1)m2(θ1) + m1(θ1)m2(θ1 ∪ θ2) + m1(θ1 ∪ θ2)m2(θ1)
m∩(θ2) = m1(θ2)m2(θ2) + m1(θ2)m2(θ1 ∪ θ2) + m1(θ1 ∪ θ2)m2(θ2)
m∩(θ1 ∩ θ2) = m1(θ1)m2(θ2) + m1(θ2)m2(θ1)

(18.16)

Let us interpret the computation of m∩ graphically. For this purpose, we cluster the
different products p =

Qs
i=1 mi(Xi), (X1, ..., Xs) ∈ {θ1, θ2, θ1 ∪ θ2}s according to:

• the number n1(p) of terms mi(θ1), i = 1..s, in p,

• the number n2(p) of terms mi(θ2), i = 1..s, in p.

Precisely, we create a matrix Ts in which each cell Ts(u, v) contains the sum of the
products p =

Qs
i=1 mi(Xi), (X1, ..., Xs) ∈ {θ1, θ2, θ1 ∪ θ2}s such that n1(p) = u

and n2(p) = v. In the case s = 1 and s = 2, we obtain the matrices T1 and T2,
respectively, given in figure 18.7.

From figure 18.7 and equation 18.16, we can see that m∩ can be computed from
Ts:

8

>

>

<

>

>

:

m∩(θ1 ∪ θ2) = Ts(0, 0)
m∩(θ1) =

Ps
u=1 Ts(u, 0)

m∩(θ2) =
Ps

v=1 Ts(0, v)
m∩(θ1 ∩ θ2) =

Ps
u=1

Ps
v=1 Ts(u, v)

(18.17)

The structure of matrix Ts is illustrated on figure 18.8.

Equation 18.17 can be explained from equation 18.15 as follows:

• in cell Ts(0, 0), the intersection of the propositions X1∩...∩Xs is θ1∪θ2 because
the product assigned to this cell does not contain any terms mi(θ1) or mi(θ2),

• in cells Ts(u, 0), u ≥ 1, the intersection of the propositions X1 ∩ ... ∩ Xs is θ1

because each product assigned to these cells contains at least one term mi(θ1)
(u terms, precisely) and does not contain any term mi(θ2),
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(a) T1

(b) T2

Figure 18.7: Matrices T1 and T2

Figure 18.8: Structure of matrix Ts. According to equation 18.17, the black
cells, the dark gray cells, the light gray cells and the white cells contain the
belief mass assigned to θ1 ∪ θ2, θ1, θ2 and θ1 ∩ θ2, respectively.
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• in cells Ts(0, v), v ≥ 1, the intersection of the propositions X1 ∩ ... ∩ Xs is θ2

because each product assigned to these cells contains at least one term mi(θ2)
(v terms, precisely) and does not contain any term mi(θ1),

• in cells Ts(u, v), u, v ≥ 1, the intersection of the propositions X1 ∩ ... ∩ Xs is
θ1 ∩ θ2 because each product assigned to these cells contains at least one term
mi(θ1) (u terms, precisely) and at least one term mi(θ2) (v terms, precisely).

From equation 18.17, we see that if Ts can be built in a time polynomial in s, then
m∩ can also be computed in a time polynomial in s.
We describe below an algorithm to build Tj from Tj−1 in a time polynomial in j,
j = 2..s. Its principle is illustrated on figure 18.9, in the case j = 2. We first compute
three intermediate matrices T θ1

j , T θ2
j and T θ1∪θ2

j :

T θ1
j (u, v) =

j

Tj−1(u− 1, v) × mj(θ1), u = 1..j, v = 0..j
0, u = 0, v = 0..j

(18.18)

T θ2
j (u, v) =

j

Tj−1(u, v − 1) × mj(θ2), u = 0..j, v = 1..j
0, u = 0..j, v = 0

(18.19)

T θ1∪θ2
j (u, v) = Tj−1(u, v) ×mj(θ1 ∪ θ2), u = 0..j, v = 0..j (18.20)

Tj is then obtained as the sum of the three matrices:

Tj = T θ1
j + T θ2

j + T θ1∪θ2
j (18.21)

We first check that all the products
Qj

i=1 mi(Xi), X1, ..., Xj ∈ {θ1, θ2, θ1∪θ2} are
generated by this procedure (hypothesis H1(j)). Then we check that these products
appear in the correct cell of Tj (hypothesis H2(j)). Both hypothesis are checked by
induction.

1. Basis: hypotheses H1(1) and H2(1) can be easily checked on figure 18.7 (a).

2. Suppose hypothesis H1(j−1) is true. Each term p =
Qj

i=1 mi(Xi), (X1, ..., Xj) ∈
{θ1, θ2, θ1 ∪ θ2}j , can be written as the product of a term q =

Qj−1
i=1 mi(Xi),

(X1, ..., Xj−1) ∈ {θ1, θ2, θ1 ∪ θ2}j−1, which appears in Tj−1, according to
hypothesis H1(j − 1), and a belief mass m: m is either mj(θ1), mj(θ2) or
mj(θ1 ∪ θ2). According to m, p appears either in T θ1

j , or in T θ2
j , or in T θ1∪θ2

j

(see equations 18.18, 18.19 and 18.20). As a consequence, p appears in Tj (see
equation 18.21): hypothesis H1(j) is true.

3. Suppose hypothesis H2(j−1) is true. Let p =
Qj

i=1 mi(Xi), (X1, ..., Xj) ∈ {θ1,
θ2, θ1∪θ2}j . If Xj is θ1, then by definition of n1 and n2, n1(p) = n1(

p
mj (θ1)

)+1

and n2(p) = n2(
p

mj (θ1)
). According to equation 18.18, p appears in T θ1

j (and

in Tj , consequently) one row below p
mj (θ1)

in Tj−1. Since p
mj (θ1)

appears in

the correct cell of Tj−1 (hypotheses H2(j − 1)), p appears in the correct cell of
Tj . A similar reasoning is applied if Xj is θ2 (using equation 18.19) or θ1 ∪ θ2

(using equation 18.20). As a consequence, hypothesis H2(j) is true.
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To compute Tj from Tj−1, 3( j(j+1)
2

) multiplications are required. Therefore,
3
2

Ps
j=1 j(j + 1) = O(s3) multiplications are required to compute Ts: the complexity

of the proposed algorithm is polynomial in s.

18.8.2 Proposed PCR rule of combination

If hypotheses θ1 and θ2 are exclusive, then the belief mass assigned to θ1 ∩ θ2 by
the conjunctive rule is conflicting: k12...s = m∩(θ1 ∩ θ2). θ1 ∪ θ2 is not involved in
the conflict, as a consequence k12...s should be redistributed between θ1 and θ2. In
view of the number of partial conflicting masses

Qs
i=1 mi(Xi), (X1, ..., Xs) ∈ {θ1, θ2,

θ1 ∪ θ2}s, which is exponential in s, it is impossible to redistribute them individually
(according to the PCR5 rule, for instance), if s is large. On the other hand, one
could redistribute the total conflicting mass k12...s (according to the PCR2 rule, for
instance). Anyway a better solution is possible, taking advantage of the algorithm
above: the conflicting mass can be redistributed more finely using matrix Ts.

As we build matrix Ts with the algorithm above, we compute in each cell c the
percentages p1(c) and p2(c) of the belief mass in c that should be assigned to θ1 and
θ2, respectively, in case of conflict. These percentages are initialized according to
equation 18.22.

8

>

>

<

>

>

:

p1(T1(0, 0)) = p1(T1(0, 1)) = 0
p1(T1(1, 0)) = 1
p2(T1(0, 0)) = p2(T1(1, 0)) = 0
p2(T1(0, 1)) = 1

(18.22)

At iteration j, after computing T θ1
j (u, v) = Tj−1(u − 1, v) × mj(θ1), we compute for

u + v > 1 and u + v ≤ j:

(

p1(T
θ1
j (u, v)) =

p1(Tj−1(u−1,v))Tj−1(u−1,v)+mj(θ1)

Tj−1(u−1,v)+mj(θ1)

p2(T
θ1
j (u, v)) =

p2(Tj−1(u−1,v))Tj−1(u−1,v)

Tj−1(u−1,v)+mj(θ1)

(18.23)

Similarly, after computing T θ2
j (u, v) = Tj−1(u, v−1)×mj(θ2), we compute for u+v >

1 and u + v ≤ j:

(

p1(T
θ2
j (u, v)) =

p1(Tj−1(u,v−1))Tj−1(u,v−1)

Tj−1(u,v−1)+mj(θ2)

p2(T
θ2
j (u, v)) =

p2(Tj−1(u,v−1))Tj−1(u,v−1)+mj(θ2)

Tj−1(u,v−1)+mj(θ2)

(18.24)

Then, after computing Tj(u, v) = T θ1
j (u, v) + T θ2

j (u, v) + T θ1∪θ2
j (u, v), we compute

for u + v > 1 and u + v ≤ j:
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8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

p1(Tj(u, v)) = β(u, v)(p1(Tj−1(u, v))+
p1(T

θ1
j

(u,v))T
θ1
j

(u,v)+p1(T
θ2
j

(u,v))T
θ2
j

(u,v)

T
θ1
j (u,v)+T

θ2
j (u,v)

)

p2(Tj(u, v)) = β(u, v)(p2(Tj−1(u, v))+
p2(T

θ1
j (u,v))T

θ1
j (u,v)+p2(T

θ2
j (u,v))T

θ2
j (u,v)

T
θ1
j (u,v)+T

θ2
j (u,v)

)

(18.25)

β(u, v) is a normalization factor, chosen so that p1(Tj(u, v)) + p2(Tj(u, v)) = 1
∀ u, v. Finally, the belief mass in each cell (Ts(u, v))u>0,v>0 is redistributed between
θ1 and θ2 proportionally to p1(Ts(u, v)) and p2(Ts(u, v)), respectively.

Note that, for a two-source problem, the proposed rule of combination is equiva-
lent to PCR5. The only cell of T2 involved in the conflict is T2(1, 1) (see figure 18.9
(e)), as a consequence, the mass redistributed to θ1 and θ2 is m′

1 = p1(T2(1, 1))(T θ1
2 (1, 1)+

T θ2
2 (1, 1)) and m′

2 = p2(T2(1, 1))(T θ1
2 (1, 1) + T θ2

2 (1, 1)), respectively.

p1(T
θ1
2 (1, 1)) = p1(T1(0,1))T1(0,1)+m2(θ1)

T1(0,1)+m2(θ1)
= m2(θ1)

m1(θ2)+m2(θ1)
(18.26)

p2(T
θ1
2 (1, 1)) = p2(T1(0,1))T1(0,1)

T1(0,1)+m2(θ1)
= m1(θ2)

m1(θ2)+m2(θ1)
(18.27)

p1(T
θ2
2 (1, 1)) = p1(T1(1,0))T1(1,0)

T1(1,0)+m2(θ2)
= m1(θ1)

m1(θ1)+m2(θ2)
(18.28)

p2(T
θ2
2 (1, 1)) = p2(T1(1,0))T1(1,0)+m2(θ2)

T1(1,0)+m2(θ2)
= m2(θ2)

m1(θ1)+m2(θ2)
(18.29)

From equation 18.25 (with p1(T1(1, 1)) = p2(T1(1, 1)) = 0), we obtain the following
expression for m′

1 and m′
2:

j

m′
1 = p1(T

θ1
2 (1, 1))T θ1

2 (1, 1) + p1(T
θ2
2 (1, 1))T θ2

2 (1, 1)

m′
2 = p2(T

θ1
2 (1, 1))T θ1

2 (1, 1) + p2(T
θ2
2 (1, 1))T θ2

2 (1, 1)
(18.30)

(

m′
1 = m2(θ1)

m1(θ2)+m2(θ1)
m1(θ2)m2(θ1) + m1(θ1)

m1(θ1)+m2(θ2)
m1(θ1)m2(θ2)

m′
2 = m1(θ2)

m1(θ2)+m2(θ1)
m1(θ2)m2(θ1) + m2(θ2)

m1(θ1)+m2(θ2)
m1(θ1)m2(θ2)

(18.31)

which is what we obtained for PCR5 (see equation 18.13).
The proposed PCR rule is compared qualitatively with other rules of combination,
on a two-source problem supposing hypotheses θ1 and θ2 incompatible, in table 18.5.

The number of operations required to compute p1(c) and p2(c), for each cell c
in Ts, is proportional to the number of operations required to compute Ts. Once p1

and p2 have been computed, the number of operations required to redistribute the
conflicting mass is proportional to s(s−1)

2
(the number of white cells in figure 18.8).

As a consequence, the complexity of this algorithm is also polynomial in s. It is thus
applicable to a large class of fusion problems: for instance, it is applied to a problem
involving 24 sources of evidence in section 18.5.1.
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(a) T1(u, v)

(b) T θ1
2 (u, v) = T1(u − 1, v) × m2(θ1)

(c) T θ2
2 (u, v) = T1(u, v − 1) × m2(θ2)

(d) T θ1∪θ2
2 (u, v) = T1(u, v) × m2(θ1 ∪ θ2)

(e) T2(u, v) = T θ1
2 (u, v) + T θ2

2 (u, v) + T θ1∪θ2
2 (u, v)

Figure 18.9: Computation of T2 from T1.
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set θ1 ∪ θ2 θ1 θ2 θ1 ∩ θ2

m1 0.7 0.1 0.2 0
m2 0.3 0.4 0.3 0

conjunctive rule 0.21 0.35 0.33 0.11
Dempster’s rule 0.24 0.39 0.37 0
PCR2 0.21 0.405 0.385 0
PCR5 0.21 0.411 0.379 0
proposed PCR rule 0.21 0.411 0.379 0

Table 18.5: Qualitative comparison with other rules of combination.

The memory requirements for the proposed rule of combination are also inte-

resting compared to PCR5:
“

7 s(s+1)
2

+ 3 (s−1)s
2

”

× 8 bytes for the proposed method

(which corresponds to the cumulated size of matrices Ts, p1(Ts), p2(Ts), p1(T
θ1
s ),

p2(T
θ1
s ), p1(T

θ2
s ), p2(T

θ2
s ), Ts−1, p1(Ts−1) and p2(Ts−1): the largest amount of mem-

ory needed at the same time), compared to 3s×8 for PCR5, if we use double precision
real numbers.

18.8.3 Conclusion

In this appendix, we proposed an algorithm to compute the conjunctive rule in a
time evolving polynomially with the number of sources. From this first algorithm, we
derived a new Proportional Conflict Redistribution (PCR) rule of combination with a
similar complexity. This rule is equivalent to the PCR5 rule for two-source problems
(it is also equivalent to PCR6, in this case [12]). We restricted our algorithms to
fusion problems consisting of two hypotheses: our goal was to reduce the complexity
regarding the number of sources. However, the same principle could be applied to
problems consisting of n hypotheses, using n-dimensional matrices.




