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Abstract: This chapter describes how the conflict encountered by
the PCR6 rule can be utilized in sensor management. We there-
fore discuss the classification model that is used in the fusion prob-
lem and two different types of conflict. To enable operators to exert
constraints on singletons we propose a (slightly) altered PCR6 rule,
dubbed PCR6a. We show how the algorithm works and we illus-
trate how the amount of conflict can be used for sensor management
and/or for operator feedback by using an example.
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12.1 Introduction

In recent decennia, a need has occured to develop support functionalities for obtaining
and maintaining situation awareness within the combat management system aboard
the frigates of the Royal Netherlands Navy. This is due to three factors. Firstly,
because the missions have become more complex in several ways. The mission goals
are more diverse and the political climate in which these goals need to be met, are
more complex compared to the Cold War period. The geographical location where
the mission is executed, has shifted to the littoral, which means the meteorological
conditions can change rapidly and there is much presence of civilian traffic. The latter
makes missions more complex because the threat has shifted from military forces to
asymetrical threats.

Secondly, much more complex and modern sensor systems, like multifunction
radar and optical sensor with staring 360 degrees capabilities, are being placed aboard
the Dutch frigates. This means that deploying these sensors and combining their
information is a difficult and highly knowledge intensive task. Especially in the
littoral environment, choosing the right sensor for the right task at the right time,
given the meteorological conditions, is quite difficult.

Finally, budget cuts have led to reduced training and education time as well
as a tendancy for a reduction in ships’ complement. This means that the readily
available knowledge aboard our frigates is decreasing. This discrepancy between
required and available knowledge requires more support from the CMS for gathering
and combining sensor information and for sensor management. Work has already
been done in the field of automatic classification and how different classifier opinions
can be combined, [3, 6]. This chapter describes how the results from the PCR6 rule
of combination within the Dezert-Smarandache theory (DSmT) can be used as a
feedback mechanism for automated sensor management.

Section 12.2 revisits the general rule of combination from DSmT, [8], and the
PCR6 rule described by Martin and Oswald in [4]. Section 12.3 describes how clas-
sification and sensor management are related within Command and Control. Fur-
thermore, it discusses the classification space within the military domain and shortly
discusses the required interaction with the operator. Section 12.4 introduces how the
conflict can be utilized within the PCR6 algorithm. The way this conflict can be used
as a feedback to sensor management is discussed in section 12.5. Finally, section 12.6
closes with conclusions and future work.

12.2 Combination rules

Within the DSmT framework, the generalized basic belief that is assigned1 by k dif-
ferent and independent sources or experts — E1, E2, . . . , Ek — can be combined using
equation (12.1). This equation holds ∀X ∈ DΘ and X /∈ Ø, where DΘ denotes the
hyper power set of Θ, the belief of each expert Ei with i = [1, 2, . . . , k] is denoted

1This is called a generalized belief assignment, or just a gbba for short.
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mi(X) and Ø denotes the classical empty set. Since this classic rule of combination
only assumes exhaustiveness within the frame of discernment, Θ = {θ1, θ2, . . . , θn},
other rules of combination have been proposed to redistribute the conflict that might
occur for applications in real fusion problems [9]. One of those rules is the PCR6 rule
proposed by Martin and Oswald in [4] and is given in equation (12.2) for ∀X ∈ DΘ

and X /∈ ØM, where ØM denotes both the classical empty set and the set containing
all elements from DΘ that are constrained by fusion model M. In equation (12.2),
Fi is defined by equation (12.3). In equation (12.3) properties for the summation are
given by equation (12.4) and equation (12.5).

In equation (12.3–12.5), ϕ(i) denotes a function that ensures that i is skipped in
a summation and is given by equation (12.6). In [4] this function is denoted σi. We
use a different notation to prevent notational confusion for the classifiers that assume
Gaussian distributions where σi denotes the standard deviation in variable i given
some measurements. In [4], algorithm 3 gives the implementation of the PCR6 rule.

mf
c (X) =

X

Y1,Y2,...,Yk∈DΘ

Y1∩Y2∩...∩Yk=X

k
Y

i=1

mi(Yi) (12.1)

mPCR6
c (X) = mf

c (X) +
k
X

i=1

Fi · mi(X)2 (12.2)

Fi =
X

P1
P2

Qk−1
l=1 mϕi(l)(Yϕi(l))

mi(X) +
Pk−1

l=1 mϕi(l)(Yϕi(l))
(12.3)

P1 :

k−1
[

j=1

Yϕi(j) ∩X ∈ ØM (12.4)

P2 : (Yϕi(1), Yϕi(2), . . . , Yϕi(k−1)) ∈ (DΘ)k−1 (12.5)

ϕi(l) →
j

ϕi(l) = l if l < i
ϕi(l) = l + 1 if l ≥ i

(12.6)

12.3 Classification and sensor management

This chapter discusses how the conflict in combining classification solutions can be
utilized in sensor management. Before modeling the classification model itself and
how solutions are combined, this section will first briefly discuss how this may improve
automated sensor management performance.
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12.3.1 Sensor management

Optimally deploying a total sensor suite requires knowledge about:

• the meteorological and oceanographical conditions;

• the geographical location;

• the available sensor systems and their specifications; and

• the (expected) target characteristics.

The use of the target characteristics is e.g. discussed by Bar-Shalom in [1]. Further-
more, we know that prioritizing sensor functions can be done using risk, as proposed
in [2]. This notion of risk requires characteristics of possible objects in the environ-
ment. Obtaining a good classification solution is therefore important to execute the
process of sensor management.

On the other hand, the classification process itself has a certain need for informa-
tion provided by the available sensor systems. In order to achieve good classification
solutions, the sensor(s) need to be deployed as optimal as possible. This research
therefore focuses on the information requirements of the classification process. In
order to do this, we need to describe the classification model.

12.3.2 Modeling the classification space

In general, the possible solutions for classification are given by a so-called classifi-
cation tree, [5, 7]. The drawback of using such trees is that the branching order is
fixed. Describing the different classes as sets at different levels of specificity provides
more flexibility in reducing the search space [6]. In the case of classification in the
maritime military environment, we define three different levels of specificity. At the
lowest specificity level we define the set of super classe, S = {ϑ1, ϑ2, . . . , ϑs} to con-
tain s exhaustive elements. In this set the different domains are represented: air,
surface, subsurface, land and sea respectively, therefore s = 5 holds.

At the medium specificity level we define generic classes, G = {γ1, γ2, . . . , γg}
with g mutually exclusive and exhaustive elements. At the final level we define the
specific classes, C = {ς1, ς2, . . . , ςc}, with c mutually exclusive and exhaustive ele-
ments. Joined, these three sets define the frame of discernment for classification,
Θ = S � G � C. We define the operator � in a way that when A = {α1, . . . , αa} and
B = {β1, . . . , βb} are joined then A � B = {α1, . . . , αa, β1, . . . , βb}.

Throughout this work we assume an example frame of discernment and three
classifiers that assign generalized belief, given by tables 12.1–12.3. In these tables,
Hh with h = [1, 2, . . . , (s + g + c)] is used to denote elements from the frame of
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discernment Θ. Also, when set A = {α1, . . . , αa} holds, we define bA as:

bA =
a
[

i=1

αi.

H ϑ1 ϑ2 ϑ3 ϑ4 ϑ5

Name Air Surface Subsurface Land Sea
m1(H) 0.15 0.1 0 0.01 0.04
m2(H) 0.13 0.12 0.005 0.02 0.025
m3(H) 0.4 0.4 0.2 0 0

Table 12.1: Super classes in the database with their gbba’s.

H Name m1(H) m2(H) H Name m1(H) m2(H)
γ1 Helo 0.25 0.175 γ4 Frigate 0.041 0.1
γ2 Fighter 0.002 0.002 γ5 Tank 0.005 0.01
γ3 Submarine 0 0.01 γ6 Airliner 0.002 0.003

Table 12.2: Generic classes in the database with their gbba’s.

H Name m1(H) m2(H) H Name m1(H) m2(H)
ς1 Seahawk 0.15 0.075 ς6 Apache 0.15 0.075
ς2 F-16 0.005 0.01 ς7 M-frigate 0.04 0.0075
ς3 Walrus 0 0.02 ς8 Kilo sub 0 0.002
ς4 7 Provinciën 0.036 0.075 ς9 F-14 Tomcat 0.005 0.02
ς5 Leopard II 0.009 0.01 ς10 Boeing 747 0.005 0.02

Table 12.3: Specific classes in the database with their gbba’s.

12.3.3 Intersection between elements

The set-up of the classification model with three specificity levels immediately im-
poses that not all elements in the frame of discernment are mutually exclusive. This,
of course, fits well within the DSmT framework. Each element at the most specific
level has a parent at a higher level. E.g., the Seahawk and the Apache in table 12.3
are children of the generic class Helicopter. In turn, the helicopter belongs to the air
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domain, ς1∪ ς6 ⊆ γ1 ⊆ ϑ1, where a ⊆ b is used to denote that a is a subproposition of
b which holds if and only if a ∩ b = a. Due to the helicopter’s low-flight capabilities,
it can also belong to the surface domain, γ1 ⊆ (ϑ1 ∩ ϑ2) . Similar reasoning can
be done for all elements at the three specificity levels. From this example, we can
already say that elements in S are not all mutually exclusive. For set S we know
that ϑ1 ∩ ϑ2 /∈ ØM, ϑ1 ∩ ϑ4 /∈ ØM, ϑ1 ∩ ϑ5 /∈ ØM and that ϑ3 ∩ ϑ5 /∈ ØM holds.
Furthermore, we know that (ϑ4 ∪ ϑ5) ∩ ϑ2 = (ϑ4 ∪ ϑ5) and bC ⊂ bG ⊂ bS hold in the
classification solution space.

For the intersections between elements of S and set G we can say that the following
equalities hold: ϑ1 ∩ bG = {γ1, γ2, γ6}, ϑ2 ∩ bG = {γ1, γ3, γ4, γ5}, ϑ3 ∩ bG = {γ3},
ϑ4 ∩ bG = {γ5} and ϑ5 ∩ bG = {γ3, γ4}. Furthermore, we can say that the following
equalities also hold for the intersections of elements from G intersected with elements
from C: γ1 ∩ bC = {ς1, ς6}, γ2 ∩ bC = {ς2, ς9}, γ3 ∩ bC = {ς3, ς8}, γ4 ∩ bC = {ς4, ς7},
γ5 ∩ bC = {ς5} and γ6 ∩ bC = {ς10}.

12.3.4 Interaction with the user

In [3] it was already stated how classifier belief can be combined using the PCR6
rule. Here, we expand the usage of PCR6 by having the user — or operator — as an
additional information source. This user-influence can be exerted in two ways:

1. the operator is an information source and

2. the operator can place additional constraints.

Figure 12.1 depicts the resulting system architecture to achieve the required user in-
teraction. The main difference between the user-imposed constraints (denoted ØU )
and the model constraints is that in ØU singletons can occur as opposed to combina-
tions of elements from DΘ that occur in ØM: ØM∩ bΘ ∈ Ø whereas ØU ∩ bΘ /∈ Ø. This
means that the PCR6 rule needs to be adapted slightly to cope with this, section 12.4
describes how this is done. In [10] the Belief Conditioning Rules (BCR) were intro-
duced to perform simular operations. Here however, we use the known structure of
the frame of discernment to transfer belief. This has the advantage that we do not
need to compute the subsets D1, D2 and D3, where Θ\Ø = D1 ∪D2 ∪D3, where b\a
denotes all elements in b that are not in a. The approach mentioned in this chapter
can therefore be seen as a specific BCR rule (somewhat similar to BCR17) where the
construction of the subsets of Θ is not required since they are already given in the
structure of the classification solution space.

Another difference is that the belief conditioning rules are used to indicate where
belief should be held and that the methodology presented here indicates where belief
should not be held. In other words: the operator indicates that what is absolutely
not possible given the circumstances. Belief on what can be true is added into the
fusion algorithm as just another source. This is done to keep options open as much
as possible, following the operational credo: expect the unexpected !
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Figure 12.1: System Architecture where the user interacts with the system.

12.4 Conflict

Where belief from different sources is combined, chances are that conflict occurs.
This conflict can be utilized in various ways. Firstly, we can look at which of the
sources is responsible for most of this conflict. This could indicate that a particular
source is malfunctioning. Also, in the case of automated classifiers it could indicate
that an object is behaving unexpectedly, an important discovery when dealing with
asymmetrical threats. By allowing the user to constrain elements from the frame of
discernment, more conflict is introduced. This section describes how the conflict can
be tracked within the PCR6 combination rule.

12.4.1 Tracking conflict in PCR6

In order to take the user-imposed constraints into account we say that equation (12.2)
holds ∀X ∈ DΘ\(ØU ∪ ØM). Furthermore, the property P1 of the summation in
equation (12.4) is changed to equation (12.7). This adaptation ensures that all con-
straints are taken into account during combination. Now, suppose an operator indi-
cates that the object under consideration does not belong to the subsurface domain
ØU = {ϑ3, γ3, ς3, ς8}. Combining the three sources while taking the user-imposed
constraints into account produces the combined gbba’s in figure 12.2. However, there
is a drawback to this approach. Not all conflict is redistributed due to the fact that
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singletons are being constrained, a situation that is usually not taken into account
in applications of PCR6. This is illustrated by the fact that the assignments from
figure 12.2 sum up to 0.756.

P1 →
k−1
[

j=1

Yϕi(j) ∩X ∈ (ØM ∪ØU ) (12.7)

This does however give us a measure of the conflict, namely 0.244, that is produced
by the user constraints. Within the PCR6 algorithm we can track the total conflict
from both the model constraints and the user-imposed constraints. Tracking the total
conflict — that is conflict from both ØU and ØM — to the responsible sources for
this conflict, CEi , produces table 12.4.

Source, i 1 2 3 total
CEi(.) 0.0777 0.0564 0.2514 0.3855

Table 12.4: Conflict produced by each source.

Figure 12.2: Combined generalised belief assignments.

In table 12.4 we see that source three is responsible for a great deal of conflict: an
expected result looking at tables 12.1–12.3. However, the total output does not sum
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up to 1, which is an undesired result. We therefore use a modified PCR6 rule, denoted
mPCR6a

c that is given by equation (12.8), ∀X ∈ DΘ\(ØM ∪ØU ). In equation (12.8),
equations (12.9) and (12.10) hold. In order to keep track of the conflict on each
individual element in ØU , we define equation (12.11) which holds ∀X ∈ (ØU ∩DΘ).
Within equation 12.11, equations (12.12) and (12.13) are defined. The adaptations
on PCR6 proposed here, lead to the algorithm in appendix. In this algorithm the
function call Intersect is used. This function is based on section 12.3.3.

mPCR6a
c (X) = mf

c (X) +

k
X

i=1

Qi ·mi(X)2 (12.8)

Qi =
X

P3
P2

Qk−1
l=1 mσi(l)(Yσi(l))

mi(X) +
Pk−1

l=1 mσi(l)(Yσi(l))
(12.9)

P3 →
k−1
[

j=1

Yϕi(j) ∩X ∈ (ØM\ØU ) (12.10)

CH(X) = mf
c (X) +

k
X

i=1

Ti ·mi(X)2 (12.11)

Ti =
X

P4
P2

 

Qk−1
l=1 mϕi(l)(Yϕi(l))

mi(X) +
Pk−1

l=1 mϕi(l)(Yϕi(l))

!

(12.12)

P4 →
k−1
[

j=1

Yϕi(j) ∩X ∈ ØU (12.13)

12.4.2 Redistribution of remaining conflict

For the redistribution of conflict introduced by the assumed model M, we use the
adapted PCR6a rule. Since,

X

∀X∈DΘ\(ØU∪ØM)

mPCR6a

c (X) �= 1

holds, we want to distribute the masses in CH to the masses on mPCR6a

c to obtain
mPCR6distr

c ,

mPCR6distr
c = ReDistribute(mPCR6a

c , CH, ØU).

Due to the fact that

X

∀X∈DΘ\ØM

(mPCR6a

c (X) + CH(X)) = 1
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holds, the quantity will sum up to 1 after this operation while maintaining the insights
in the conflict produced by ∅U and ∅M. The distribution of masses from CH is done
based on the same priniciples as the general PCR rules. That means that masses are
distributed to related elements as much as possible. Therefore, when a element with
high specificity is constrained, its gbba is distributed to its parent at the next level
since that element was involved in calculating mf

c (X), equation (12.1). A problem
occurs when elements at the lowest specificity level are constrained since they have no
parent to distribute the mass to. This is solved by looking at the possible intersections
of elements in set S .

from to
ϑ1 ϑ2, ϑ4, ϑ5

ϑ2 ϑ1, ϑ3

ϑ3 ϑ2, ϑ5

ϑ4 ϑ2

ϑ5 ϑ2, ϑ3

Table 12.5: Distributing masses at the highest hierarchical level.

Table 12.5 shows how these transfers should be handled when using this approach.
Only when these distributions are no longer possible, are masses distributed to the
other non-constrained elements. We already mentioned that masses are distributed
based on the principles of PCR, all transfers are therefore done proportionally. Let
us look at the example given in tables 12.1–12.3 and place a user constraint on all
elements of the air domain, note that this also means all underlying children in sets G
and C. When combining the sources using equation (12.8) and distributing CH using
the aforementioned method figure 12.3 is produced.

These results are not very intuitive and a change in transferral methodology is
required. We expand the distribution scheme in order to transfer masses to other
elements on the same specificity levels. To do this, a distribution tree is built based
on ∅U to transfer masses from elements in C to other elements in C according to
its parents and table 12.5, this produces figure 12.4, which corresponds to a more
intuitive result.

Since the elements to which the mass is transferred to is not directly involved
in the original conflict, one could argue that within this redistribution scheme the
transfers do not need to be proportional.
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Figure 12.3: Results for PCR6a after a redistribution of conflict from ØU when
conflict goes to parent elements.

Figure 12.4: Results for PCR6a after a proportional redistribution of conflict
from ØU .
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Figure 12.5: Results for PCR6a after unproportional redistribution of conflict
from ØU .

Figure 12.5 shows the results when masses are not transferred proportionally.
The difference with figure 12.4 is the relative difference between the masses assigned
to elements is maintained better when transferring proportionally. In figure 12.6
we see the results from the different steps combined, first we see the results when
equation (12.1) is used, then the results from PCR6a and finally the results of the
PCR6a after proportionally redistributing masses from CH.

12.5 Utilizing the conflict in sensor management

In previous sections we have seen how belief on classification solutions from different
sources can be combined and how user-imposed constraints on singletons can be taken
into account with a slightly altered PCR6 algorithm. The question of course is: why
do we want to track the conflict?

In essence the answer is simple, once we know where conflict is introduced we can
try to reduce it. In this section we will first discuss tracking the conflict per source
or expert and we will follow up with the conflict traced back to elements in ∅U .

12.5.1 Conflict per source

Where belief from different sources is combined, conflict occurs. Combined belief is
obtained by proportionally redistributing these conflict using by the PCR6a rule. By
tracking the conflicting masses that need to be redistributed, we can say which of the
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Figure 12.6: Results for unconstrained PCR6 (black), constrained PCR6a

(gray) and after redistribution of conflict from ØU (white).

sources is responsible for an amount of conflict. When one specific source produces
the most conflict this could indicate that:

1. a sensor system that provides information to that source is degraded;

2. the classifier is malfunctioning or ill-trained;

3. the object under consideration is behaving unexpectedly.

Tracking the conflict does not answer the question as to which one of these three
is the case, but it gives a trigger to take actions to find out. Especially the case
when the classification solution is visually confirmed and all sensors are performing
correctly is operational important. Section 12.1 already mentioned the amount of
civil traffic in the current mission environments. When the conflict based on a subset
of attributes indicates that one of those objects is behaving strangely, this is valuable
in situations where asymetrical threats are expected.

Another option for a large conflicts between different sources occurs when a lot
of uncertainty resides in the sensor measurements. By looking at the source that
produces most conflicting information and combining that with the knowledge about
the source, namely the attributes it uses to find solutions, we know which types of
sensor measurements are required to reduce the conflict between sources, which in
turn improves the combined classification solution.
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12.5.2 Conflict per hypotheses

When the operator imposes constraints, ØU /∈ Ø, the conflict that each of these
constraints introduces can be tracked. When combined with a machine learning algo-
rithm, this conflict can be used to do some online training of automated classification
algorithms to have them adapt to the current situation. On the other hand, it can
be used to train personnel aboard during transit to the mission area. In order to
find out whether the system was mistaken or if the user was mistaken, sensor func-
tions can be requested to reduce the conflict on each of the elements in ØU . If the
newly obtained sensor measurements confirm the combined belief of the sources (the
conflict increases) the operator can be alerted to further investigate this conflict and
then remove the constraint for instance. When the operator is certain about the con-
straint, the conflict on the specific hypothesis can indicate a malfunctioning sensor
or ill-trained classifiers although this is not very probable if the sources do not have
much conflict amongst themselves. The most likely option then is an object that is
behaving very unexpectedly.

12.6 Conclusions

This papes shows that it is possible to combine the information of different automated
classifiers using the PCR6 rule of combination. By introducing an addition to the
PCR6 rule we show that constraints on singletons can be taken into account. By
tracking the conflict during the execution of the PCR6, the sources of the conflict can
be identified. Furthermore, the quantity of the conflict can be utilised in automated
sensor management and provides valuable feedback to the operator.

Future work is to implement more accurate sensor models and objects in order
to validate this methodology in more realistic scenarios. After this validation it will
be implemented in an actual combat management system in order to further test the
system with real operators. In this stage a comparison is planned to validate the
improved performance of our system compared to the systems currently in use.
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Appendix

The PCR6 algorithm with embedded conflict tracking and that enables constraints
on singletons.

Data : k experts ex: ex[i], ... , ex[n]

: User-imposed constraints UC

Results : Fusion of ex by PCR6, ep

: Conflict on each hypothesis, CH

: Conflict per expert, CE

for i = 1 to k do
foreach c in ex[i] do append c to cl[i];

foreach ind in [1,size(cl[1])] x . . . x [size(cl[k])] do
[c,u] ← Intersect (s, ind);
if s ≡ Ø then
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lconf ← 1; sum ← 0;
for i=1 to k do
lconf ← lconf * ex[i](cl[i][ind[i]]);
sum ← sum + ex[i](cl[i][ind[i]]);

for i=1 to k do
if u ∩UC ≡ Ø then
ep(ex[i][ind[i]]) ← ep(ex[i][ind[i]]) +
ex[i](cl[i][ind[i]]) * lconf/sum;

if u �= Ø then
CE(i) ← CE(i) + ex[i](cl[i][ind[i]]) * lconf/sum;

endif
else
CH(u) ← CH(u) + (ex[i](cl[i][ind[i]] * lconf/sum)/size(u);

endif
else
lconf ← 1;
for i = 1 to k do
lconf ← lconf * ex[i](cl[i][ind[i]]);
ep(s) ← ep(s) + lconf;

endif




