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Abstract: This chapter defines and implements a non-Bayesian
fusion rule for combining densities of probabilities, derived from im-
precise knowledge. This rule is the restriction to a strict probabilis-
tic paradigm of the Proportional Conflict Redistribution rule no 6
(PCR6) developed in the DSmT framework for fusing basic belief as-
signments. A sampling method for probabilistic PCR6 (p-PCR6) is
defined. It is shown that p-PCR6 allows to keep the modes of local
densities and preserve as much as possible the whole information in-
herent to each densities to combine. In particular, p-PCR6 is able
of maintaining multiple hypotheses/modes, when they are too distant
for fusion, contrariwise to classical technique. The question of se-
quential filtering by p-PCR6 is addressed, thus implying the necessity
to handle the redundancy of the information.
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138 Chapter 4: Probabilistic PCR6 fusion rule

Notations

• δ[x = y] is the Dirac distribution of variable x on value y ,

• I[b], function of Boolean b, is defined by I[true] = 1 and I[false] = 0 . In
particular, I[x = y] could be seen as a discrete counterpart of the Dirac
δ[x = y].

4.1 Introduction

Bayesian inference is a powerful principle for modeling and manipulating prob-
abilistic information. In many cases, Bayesian inference is considered as an
optimal and legitimate rule for inferring such information. Bayesian filters for
example, and their approximations by means of sequential Monte-Carlo, are
typically regarded as optimal filters [1, 2, 7].

However, Bayesian methods need strong hypotheses, in particular about
the information prior and the independence prior. A degradation of the per-
formance of Bayesian filter occurs if the filter is not correctly initialized or
updated, in accordance to the models in use. Being given a model of the sys-
tem kinematic and of the measurement process, the main issue is to develop
filtering methods which are sufficiently robust against the bias at the initializa-
tion as well as error in modeling. In this paper, a non-Bayesian rule for fusing
the probabilistic information is proposed. This rule, denoted p-PCR6, is the
restriction to the probabilistic paradigm of the Proportional Conflict redistri-
bution rule no.6 (PCR6) which has been proposed in [12] for combining basic
belief assignments. p-PCR6 is also an extension of discrete PCR6 version to
its continuous probabilistic counterpart.

PCR6 has been first established for combining evidences (i.e. discrete be-
lief assignments) in the DSmT framework. In particular, it has been designed
in order to cope with highly conflicting and uncertain information. This rule
could be considered in a probabilistic paradigm by restricting the basic be-
lief assignment involved to only probabilistic belief assignment1, and directly
extended to densities of probabilities. This rule is non-Bayesian by nature. Al-
though Bayesian techniques are widely well known and used in target tracking
community (including authors works in tracking), it is interesting to see how
such new approach can perform to estimate its real interest and potentiality.

1The denomination probabilistic belief assignment is preferred to Bayesian belief as-
signment, generally used in the literature, since we consider that Probability and Bayesian
inference are distinguishable notions.
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Surprisingly, it turns out through our works, that such approach is robust to an
erroneous modeling: in particular, it is able of maintaining multiple hypothe-
ses, when they are too distant for fusion. The resulting p-PCR6-based filter
happens to be essentially non-linear, and has been implemented in our simula-
tion using particle filtering techniques. In particular, the p-PCR6 multisensor
filter developed here is based on a quite simple and direct implementation in
terms of particles drawing and resampling. At the end of this chapter, the
question of sequential filtering is addressed. In this case, it is necessary to take
into account the redundancy of information over the time. Then, p-PCR6 is
adapted in order to remove this redundancy.

Section 4.2 introduces the PCR6 rules, and establishes some results about
probabilistic PCR6. A sampling method is deduced. Section 4.3 compares the
results of the Bayesian rule and of probabilistic PCR6 on a simple example. On
the basis of this comparison, some arguments about the robustness of PCR6
are given. Section 4.4 investigates the sequential filtering issue. Application of
p-PCR6 to distributed filtering is provided as example. Section 4.5 concludes.

4.2 PCR6 formula for probabilities

4.2.1 Definition and justification of PCR6

The Proportional Conflict Redistribution rule no. 6 (PCR6) of combination [5]
is an extension of rule PCR5 [10, 11]. These rules come from the necessity
to manage precisely and efficiently the partial conflicts when combining con-
flicting and uncertain information expressed in terms of (quantitative) belief
assignments. These rule have been proved useful and powerful in several ap-
plications where it has been used [12]. PCR5 and PCR6 are equivalent, when
restricted to only two sources of information.

Let be given an universe of events Θ . A distribution of evidence over Θ
is characterized by means of a basic belief assignment (bba) m : P(Θ) → IR+

such that:

m(∅) = 0 and
∑

X⊂Θ

m(X) = 1 ,

where P(Θ) is the set of subset of Θ.2

2In the general case, bba could also be defined over hyper-power sets (Dedekind’s lat-
tice) [12].
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A bba typically represents the knowledge, which can be both uncertain and
imprecise, that a sensor provides about its belief in the true state of the uni-
verse. The question then arising is How to fuse the bba’s related to multiple
sensor responses? The main idea is to corroborate the information of each
sensor in a conjunctive way.

Example: Let’s assume two sources with basic belief assignments m1 and m2

such that m1(A) = 0.6, m1(A∪B) = 0.4 and m2(B) = 0.3, m2(A∪B) = 0.7 .
The fused bba is then characterized in a conjunctive way by:

m∧(A ∩B) = m1(A)m2(B) = 0.18 ,
m∧(A) = m1(A)m2(A ∪B) = 0.42 ,
m∧(B) = m1(A ∪B)m2(B) = 0.12 ,
m∧(A ∪B) = m1(A ∪B)m2(A ∪B) = 0.28 .

The conjunctive consensus works well when there is no possibility of con-
flict. Now, make the hypothesis A∩B = ∅ . Then, it is obtained m∧(∅) = 0.18,
which is not an acceptable result for a conventional interpretation of ∅ as a
contradiction. Most existing rules solve this issue by redistributing the con-
flict m∧(∅) over the other propositions. In PCR6, the partial conflicting mass
m1(A)m2(B) is redistributed to A and B only with the respective proportions
xA = 0.12 and xB = 0.06 , according to the proportionalization principle:

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)

m1(A) +m2(B)
=

0.18

0.9
= 0.2 .

Basically, the idea of PCR6 is to transfer the conflicting mass only to the ele-
ments involved in the conflict and proportionally to their individual masses.

Some theoretical considerations and justifications already briefly aforemen-
tioned led to the following PCR6 combination rule. Being given two bba’s
m1 and m2, the fused bba mPCR6 according to PCR6, or equivalently to PCR5
in this case, is defined for any X ∈ P(Θ) \ {∅} by:

mPCR5/PCR6(X) = m∧(X)

+
∑

Y ∈P(Θ)
X∩Y =∅

(
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )

)
(4.1)

where m∧(·) corresponds to the conjunctive consensus:

m∧(X) �
∑

Y1∩Y2=X
Y1,Y2∈P(Θ)

m1(Y1)m2(Y2) .
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When fusing s ≥ 2 sources of informations, characterized by the bba’s m1 to
ms, the fused bba is defined in [5] by:

mPCR6(X) = m∧(X)

+
s∑

i=1

mi(X)2
∑

Ts−1
k=1 Yσi(k)∩X=∅

Yσi(1)
,··· ,Yσi(s−1)∈P(Θ)

⎛
⎜⎜⎜⎜⎜⎝

s−1∏
j=1

mσi(j)(Yσi(j))

mi(X) +

s−1∑
j=1

mσi(j)(Yσi(j))

⎞
⎟⎟⎟⎟⎟⎠ , (4.2)

where m∧(·) corresponds to the conjunctive consensus:

m∧(X) �
∑

Y1∩···∩Ys=X
Y1,··· ,Ys∈P(Θ)

s∏
i=1

mi(Yi) ,

and the function σi counts from 1 to s avoiding i :

σi(j) = j × I[j < i] + (j + 1)× I[j ≥ i] .

4.2.2 Reformulation of PCR6

Definition (4.2) could be reformulated into a more intuitive expression.

mPCR6(X) = m∧(X) +

s∑
i=1

∑
Ts

k=1 Yk=∅
Y1,··· ,Ys∈P(Θ)

⎛
⎜⎜⎜⎜⎝

I[X = Yi] mi(Yi)

s∏
j=1

mj(Yj)

s∑
j=1

mj(Yj)

⎞
⎟⎟⎟⎟⎠ ,

and then:

mPCR6(X) = m∧(X) +
∑

Ts
k=1 Yk=∅

Y1,··· ,Ys∈P(Θ)

s∏
i=1

mi(Yi)

s∑
j=1

I[X = Yj ] mj(Yj)

s∑
j=1

mj(Yj)

. (4.3)



142 Chapter 4: Probabilistic PCR6 fusion rule

At last, a new formulation of PCR6 is derived for X ∈ P(Θ) \ {∅}:

mPCR6(X) =
∑

Y1,··· ,Ys∈P(Θ)

(
s∏

i=1

mi(Yi)

)
FPCR6(X |Y1:s) ,

where the function FPCR6 is defined by:

FPCR6(X |Y1:s) = I

[
s⋂

k=1

Yk = X

]
+ I

[
s⋂

k=1

Yk = ∅
] s∑

j=1

I[X = Yj ] mj(Yj)

s∑
j=1

mj(Yj)

=

s∑
j=1

(
I

[
s⋂

k=1

Yk = X

]
+ I

[
s⋂

k=1

Yk = ∅
]
I[X = Yj ]

)
mj(Yj)

s∑
j=1

mj(Yj)

. (4.4)

When considering probabilistic densities instead of belief functions, the com-

ponents
∏s

i=1 mi(Yi) and
Ps

j=1(I[
Ts

k=1 Yk=X]+I[
Ts

k=1 Yk=∅]I[X=Yj ]) mj(Yj)
P

s
j=1 mj(Yj)

have a

straightforward interpretation. The first is interpreted as an independent gen-
eration of answers by each source of information. The second is interpreted as a
random choice among the answers or the consensus, weighted by the respective
evidences.

4.2.3 Definition of probabilistic PCR6 (p-PCR6)

In [12], Dezert and Smarandache proposed a probabilistic version of the PCR5 /
PCR6 rule (4.1) for two sources, by restricting the bba’s m1 and m2 to discrete
probabilities P1 and P2 which are called then probabilistic belief assignments
(or masse1). Probabilistic belief masses are bba’s, which focal elements3 con-
sist only in elements of the frame Θ, i.e. the singletons only. When dealing
with probabilistic belief assignments m1 ≡ P1 and m2 ≡ P2, the conjunctive
consensus is restricted to the same singleton, so that m∧(X) = P1(X)P2(X).

3Focal elements are elements of P(Θ) having a strictly positive mass.
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As a consequence, the PCR5/PCR6 formula (4.1) for two sources reduces to:

PPCR5/PCR6(X) = P1(X)P2(X) + P1(X)
∑

Y ∈Θ\{X}

P1(X)P2(Y )

P1(X) + P2(Y )

+ P2(X)
∑

Y ∈Θ\{X}

P2(X)P1(Y )

P2(X) + P1(Y )
.

Now, it happens that:

P1(X)P2(X) = P1(X)
P1(X)P2(X)

P1(X) + P2(X)
+ P2(X)

P2(X)P1(X)

P1(X) + P2(X)
,

and finally:

PPCR5/PCR6(X) = P1(X)
∑
Y ∈Θ

P1(X)P2(Y )

P1(X) + P2(Y )
+P2(X)

∑
Y ∈Θ

P2(X)P1(Y )

P2(X) + P1(Y )
.

(4.5)

Of course, this formula generalizes in the case of PCR6 for any number of
sources. Since:

m∧(X) =

s∏
i=1

Pi(X) =

s∑
i=1

Pi(X)

∏s
i=1 Pi(X)∑s
i=1 Pi(X)

and, for X,Yσi(k) ∈ Θ,

s−1⋂
k=1

Yσi(k) ∩X = ∅ if and only if Yσi(1) = · · · = Yσi(s) = X , (4.6)

it comes:

PPCR6(X) =

s∑
i=1

Pi(X)2
∑

Yσi(1)
,··· ,Yσi(s−1)∈Θ

⎛
⎜⎜⎜⎜⎜⎝

s−1∏
j=1

Pσi(j)(Yσi(j))

Pi(X) +

s−1∑
j=1

Pσi(j)(Yσi(j))

⎞
⎟⎟⎟⎟⎟⎠ .

(4.7)

Equations (4.5) and (4.7) are however difficult to handle practically. The re-
formulated definition of p-PCR6 is introduced now.
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4.2.4 Reformulation of p-PCR6

From (4.4), it is deduced:

PPCR6(X) =

∑
Y1,··· ,Ys∈Θ

s∏
i=1

Pi(Yi)

s∑
j=1

 
I[X = Y1 = · · · = Ys] + I

"
s\

k=1

Yk = ∅

#
I[X = Yj ]

!
Pj(Yj)

s∑
j=1

Pj(Yj)

.

Now, the property (4.6) implies:

I[X = Y1 = · · · = Ys] + I

[
s⋂

k=1

Yk = ∅
]
I[X = Yj ] = I[X = Yj ] .

As a consequence, the p-PCR6 rules is equivalently defined by:

PPCR6(X) =
∑

Y1,··· ,Ys∈Θ

s∏
i=1

Pi(Yi)

s∑
j=1

I[X = Yj ] Pj(Yj)

s∑
j=1

Pj(Yj)

. (4.8)

4.2.5 Extension of p-PCR6 on continuous propositions

The previous discrete p-PCR6 formula is now extended to densities of proba-
bilities of random variables. Formula (4.7) is thus adapted for the fusion of
continuous densities p1, · · · , ps:

pPCR6(x) �
s∑

i=1

pi(x)

∫
Θs−1

pi(x)

s−1∏
j=1

pσi(j)(yσi(j))

pi(x) +

s−1∑
j=1

pσi(j)(yσi(j))

s−1∏
j=1

dyσi(j) . (4.9)

Notice that pi(x) is put inside the integration, so as to deal with possible
singularities, when pi(x) = 0. It is also necessary to prove that pPCR6 is a
probabilistic density. And of course, it is possible to guess a reformulated
definition of p-PCR6 for densities by means of (4.8). But, we establish now
these results by calculus. First at all, a result is proved for computing the
expectation based on pPCR6.
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4.2.5.1 Expectation

The expectation of a function according to the fused probability pPCR6 is ex-
pressed from the initial probabilities p1, · · · , ps by:

∫
Θ

pPCR6(y)f(y, z) dy =

∫
Θs

s∏
i=1

pi(yi)

s∑
i=1

pi(yi)f(yi, z)

s∑
i=1

pi(yi)

s∏
i=1

dyi . (4.10)

Proof.

∫
Θ

pPCR6(y)f(y, z) dy

=

s∑
i=1

∫
Θ

pi(y)

∫
Θs−1

pi(y)

s−1∏
j=1

pσi(j)(yσi(j))

pi(y) +

s−1∑
j=1

pσi(j)(yσi(j))

f(y, z)

⎛
⎝s−1∏

j=1

dyσi(j)

⎞
⎠ dy

=

s∑
i=1

∫
Θs

pi(yi)

s∏
j=1

pj(yj)

s∑
j=1

pj(yj)

f(yi, z)

s∏
j=1

dyj

=

∫
Θs

s∏
i=1

pi(yi)

s∑
i=1

pi(yi)f(yi, z)

s∑
i=1

pi(yi)

s∏
i=1

dyi .

���

Corollary. The density pPCR6 is actually probabilistic, since it is derived:

∫
Θ

pPCR6(y) dy = 1 ,

by taking f = 1 .
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4.2.5.2 Reformulated definition

pPCR6(z) =

∫
Θs

(
s∏

i=1

pi(yi)

)
π(z|y1:s)

s∏
i=1

dyi ,

where π(z|y1:s) =

s∑
i=1

pi(yi)δ[yi = z]

s∑
i=1

pi(yi)

.

(4.11)

Proof.
Apply lemma 1 to the Dirac distribution f(y, z) = δ[y = z] .
���

4.2.6 Sampling method

Being able to sample p1, · · · , ps, it is possible to sample pPCR6 by applying
the definition (4.11). The implied sampling process (let z be the sample to be
generated) is sketched as follows:

1. For any k ∈ {1, · · · , s}, generate yk according to pk, together with its
evaluation pk(yk),

2. Generate θ ∈ [0, 1] according to the uniform law,

3. Find j such that

∑j−1
k=1 pk(yk)∑s
k=1 pk(yk)

< θ <

∑j
k=1 pk(yk)∑s
k=1 pk(yk)

,

4. Set z = yj .

It is seen subsequently that p-PCR6 does not preserve the Gaussian distribu-
tions. As a consequence, its manipulation is essentially addressed by means of
a Monte-Carlo method, and the previous sampling method is implemented in
the applications.

The next section is devoted to a comparison of p-PCR6 and Bayesian rules on
very simple examples.
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4.3 Bayes versus p-PCR6

4.3.1 Bayesian fusion rule

In this section, we are interested in the fusion of two independent estimators
by means of the Bayesian inference. Such fusion has to take into account the
prior about the state of the system. Subsequently, this prior is chosen to be
uniform. Although this is just a particular case of application, it is sufficient for
our purpose, i.e. the illustration of essential differences between the Bayesian
and PCR6 approaches.

4.3.1.1 General case

In Bayesian filter, the estimator is explained by means of the posterior pro-
bability p(x|z1, z2) conditionally to the observation z1 and z2. Notice that
this posterior estimation should not be confounded with the true state of the
system. Now, our purpose here is to derive a rule for deriving the global es-
timator p(x|z1, z2) from the partial estimators p(x|z1) and p(x|z2). Applying
Bayes’ rule, one gets p(x|z1, z2) ∝ p(z1, z2|x)p(x) .4 To go further in the deriva-
tion, one must assume the conditional independence between the two proba-
bilistic sources/densities, i.e. p(z1, z2|x) = p(z1|x)p(z2|x) . As a consequence,
p(x|z1, z2) ∝ p(z1|x)p(z2|x)p(x) , and then:

p(x|z1, z2) ∝ p(x|z1)p(x|z2)

p(x)
. (4.12)

So, in order to compute p(x|z1, z2), it is needed both p(x|z1), p(x|z2) and the
prior p(x) . If one assumes uniform prior for p(x), and using notations pBayes =
p(·|z1, z2), p1 = p(·|z1) and p2 = p(·|z2), the Bayes’ fusion formula (4.12)
becomes:

pBayes(x) ∝ p1(x)p2(x) . (4.13)

(It is noticed that a discrete counterpart of this result could also be obtained by
applying Dempster Shafer rule to probabilistic belief masses)

4.3.1.2 Gaussian subcase

We investigate here the solution of the problem when p1 and p2 are Gaus-
sian distributions. So assume for simplicity that p1(x) and p2(x) are mono-
dimensional Gaussian distributions:

p1(x) =
1

σ1

√
2π

e
− 1

2
(x−x̄1)2

σ1
2 and p2(x) =

1

σ2

√
2π

e
− 1

2
(x−x̄2)2

σ2
2

4p(α|β) ∝ γ means “p(α|β) is proportional to γ for β fixed”.
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In absence of prior information, one assumes p(x) uniform. The Bayesian rule
requires to compute (4.13). Then, it is easily shown that pBayes is Gaussian:

pBayes(x) =
1

σBayes

√
2π

e
− 1

2

(x−x̄Bayes)2

σBayes
2

,

with

σ2
Bayes =

σ2
1σ

2
2

σ2
1 + σ2

2

,

and

x̄Bayes = σ2
Bayes

(
x̄1

σ2
1

+
x̄2

σ2
2

)
.

When σ1 = σ2 = σ, it is implied then:

σ2
Bayes(x) =

σ2

2
and x̄Bayes =

x̄1 + x̄2

2
.

Hence, the resulting standard deviation σBayes after Bayes fusion is equal to
the initial standard deviation divided by the factor

√
2 and thus σBayes < σ.

This fusion process is optimal, when the model parameters are correct. Now,
imagine that the difference x̄2 − x̄1 is obtained from a bias error of the model.
For example, let us consider that the estimation of sensor 1 is correct but
that the estimation of sensor 2 is erroneous, in regards to the deviation σ.
Assuming x being the true state of the system, it comes most likely: p1(x) �
pBayes(x) � p2(x) . Thus, the Bayesian fusion propagates the errors. This
implies an irrelevant estimation. It is noticed however, that the bias is divided
by two, each time a fusion with a good estimation occurs, while the deviation
is only divided by

√
2. Then, good estimations will make the process converge

correctly after some iteration.

The theoretical plots and those obtained with Monte Carlo simulation are
given in figures 4.1, 4.2 and 4.3. These figures make the comparison with the p-
PCR6 fused densities. This comparison will be discussed subsequently. It is yet
confirmed that the Bayesian rule just concentrates the information, by reducing
the deviation, even when the information are distant (that is putatively false).
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Figure 4.1: p-PCR6 fusion versus Bayesian fusion (theoretical).
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Figure 4.2: p-PCR6 fusion versus Bayesian fusion (theoretical).



150 Chapter 4: Probabilistic PCR6 fusion rule

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
densites approximees par les particules

p
1
(.)

p
2
(.)

p
12

(.)
p

12Bayes
(.)

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
densites approximees par les particules

p
1
(.)

p
2
(.)

p
12

(.)
p

12Bayes
(.)

Figure 4.3: p-PCR6 fusion versus Bayesian fusion (based on 10000 samples).

4.3.2 Fusion based on p-PCR6 for Gaussian distributions

The same Gaussian distribution, p1 and p2, are considered, but are now fused by
p-PCR6 rule (4.9), thus resulting in density pPCR6 . The fused densities are both
computed, figures 4.1 and 4.2, and sampled, figure 4.3. Direct computations
are expensive, and are obtained in two steps:

• Compute Is(x) =
∫ ps(x)ps̄(y)

ps(x)+ps̄(y)dy, where s ∈ {1, 2} and s̄ ∈ {1, 2} \ {s} ,
• Then compute pPCR6(x) = p1(x)I1(x) + p2(x)I2(x) .

It appears clearly that computed and sampled densities match well, thus con-
firming the rightness of our sampling method. Now, contrariwise to the Bayesian
rule, it is noticed two different behaviors (which are foreseeable mathemati-
cally):

• When the densities p1 and p2 are close, pPCR6 acts as an amplifier of the
information by reducing the variance. However, this phenomena is weaker
than for pBayes. p-PCR6 is thus able to amplify the fused information,
but is less powerful than the Bayesian rule in this task.

• When the densities p1 and p2 are distant, pPCR6 keeps both modes present
in each density and preserves the richness of information by not merging
both densities into only one (unimodal) Gaussian density. This is a very
interesting and new property from a theoretical point of view, which
presents advantages for practical applications.
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In regards to these differences, it is thus foreseeable that the p-PCR6 should
be more robust to potential errors.

4.4 A distributed sequential filtering application

4.4.1 Whitened p-PCR6 rule

It has been seen that the p-PCR6 fusion of the same densities p1 = p2 will
result in an amplified density pPCR6. Of course, this is not practicable when
the densities p1 and p2 are related to correlated variables. Consider for exam-
ple that the state y are measured by z1 and z2. The (distributed) posterior
probabilities are ps(y) = p(y|zs) ∝ p(y)p(zs|y) for s = 1, 2 . It happens that
p1 and p2 are correlated, so that p-PCR6 should not be applied directly. In
particular, the fusion of p1 and p2 by means of p-PCR6 results in a density
pPCR6 stronger than the prior p over y, even when there is no informative mea-
sure, i.e. p(zs|y) = p(zs) ! In order to handle this difficulty, we propose a
whitened p-PCR6 rule, producing a fused density pwhitePCR6 from the updated
information only:

pwhitePCR6(y) =

∫ ∫
Θ2

p1(y1)p2(y2)π(y|y1, y2) dy1dy2 ,

where π(y|y1, y2) =

p(y1|z
1)

p(y1)
δ[y1 = y] + p(y2|z

2)
p(y2) δ[y2 = y]

p(y1|z1)
p(y1)

+ p(y2|z2)
p(y2)

.

(4.14)

In (4.14), the proportion p(y|zs)
p(y) should be considered as the information intrin-

sically obtained from sensor s. It happens that the whitened p-PCR6 does not
change the prior when there is no informative measure, i.e. pwhitePCR6(y) = p(y)
when p(zs|y) = p(zs) for s = 1, 2 .

4.4.2 Theoretical setting

A target is moving according to a known Markov prior law. Let yt be the state
of the target at time t. It is assumed:

p(y1:t+1) = p(yt+1|yt)p(y1:t) .

In order to estimate the state of the target, S sensors are providing some
measurements. Denote zs

t the measurement of the state yt by sensor s. The
measure is characterized by the law p(zs

t |yt), which is known. It is assumed
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that the measure are made independently, conditionally to the state:

p(z1:S
t |yt) =

S∏
s=1

p(zs
t |yt) .

Our purpose is to derive or approximate the optimal estimator, p(yt+1|z1:S
1:t+1) ,

from the distributed retroacted estimators, p(yt+1|z1:S
1:t , zs

t+1), related to sen-
sors s. There is a Bayesian approach to this problem, and we propose some
comparison with a p-PCR6 approach and a whitened p-PCR6 approach.

4.4.2.1 Distributed Bayesian filter

This filter is derived from:

p(yt+1|z1:S
1:t ) =

Z

yt

p(yt+1|yt)p(yt|z1:S
1:t ) dyt , (4.15)

p(yt+1|z1:S
1:t , zs

t+1) ∝ p(zs
t+1|yt+1)p(yt+1|z1:S

1:t ) , (4.16)

p(yt+1|z1:S
1:t+1) ∝

„ S
Y

s=1

p(yt+1|z1:S
1:t , zs

t+1)

p(yt+1|z1:S
1:t )

«

p(yt+1|z1:S
1:t ) . (4.17)

This approach is unstable, when some components of the target state are non-
observable; for example, adaptations of the method are necessary [2] for bearing
only sensors. However, the method will be applied as it is here to bearing only
sensors, in order to compare to the robustness of the PCR6 approach.

4.4.2.2 p-PCR6 filter

This filter is derived from (4.15), (4.16) and:

p(yt+1|z1:S
1:t+1) =

Z

y1:S
t+1

„ S
Y

s=1

p(ys
t+1|z1:S

1:t , zs
t+1)

«

π(yt+1|y1:S
t+1)dy1:S

t+1

where π(yt+1|y1:S
t+1) =

PS
s=1 p(ys

t+1|z1:S
1:t , zs

t+1)δ[yt+1 = ys
t+1]

PS
s=1 p(ys

t+1|z1:S
1:t , zs

t+1)
,

(4.18)

and p(ys
t+1|z1:S

1:t , zs
t+1) is an instance of p(yt+1|z1:S

1:t , zs
t+1), obtained by just re-

placing yt+1 by ys
t+1 .

It is noticed that this filter is necessary suboptimal, since it makes use of the p-
PCR6 rule on correlated variables. The whitened p-PCR6 filter will resolve this
difficulty. However, it is seen that the p-PCR6 filter still works experimentally
on the considered examples.
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4.4.2.3 Whitened p-PCR6 filter

This filter is derived from (4.15), (4.16) and:

p(yt+1|z1:S
1:t+1) =

Z

y1:S
t+1

„ S
Y

s=1

p(ys
t+1|z1:S

1:t , zs
t+1)

«

π(yt+1|y1:S
t+1)dy1:S

t+1

where π(yt+1|y1:S
t+1) =

PS
s=1

p(ys
t+1|z1:S

1:t ,zs
t+1)

p(ys
t+1|z1:S

1:t )
δ[yt+1 = ys

t+1]

PS
s=1

p(ys
t+1|z1:S

1:t ,zs
t+1)

p(ys
t+1|z1:S

1:t )

.

(4.19)

Again, ys
t+1 is just an instance of yt+1 for sensor s .

These filters have been implemented by means of particles. The sampling of p-
PCR6 has been explained yet, but it is not the purpose of this paper to explain
all the theory of particle filtering; a consultation of the literature, e.g. [9], is
expected.

4.4.3 Scenario and tests

These examples are retrieved from [4]. This work has been implemented by
Alöıs Kirchner during his internship in our team.

4.4.3.1 Scenario for passive multi-sensor target tracking

In order to test the p-PCR6 fusion rule, we simulate the following scenario: in
a 2-dimensional space, two independent passive sensors are located in (0,100)
and (100,0) in Cartesian coordinates. These sensors provide a noisy azimuth
measurement (0.01 rad. normal noise) on the position of a moving target. We
associate a tracking particle filter to each sensor. The motion model is the
following :

ẋt+1 = ẋt + 0.1 ∗ N(0, 1)
ẏt+1 = ẏt + 0.1 ∗N(0, 1)
xt+1 = xt + dt ∗ ẋt + 0.3 ∗N(0, 1)
yt+1 = yt + dt ∗ ẏt + 0.3 ∗N(0, 1)

(4.20)

where dt = 1 time unit and N(0,1) is the normal distribution.

In our simulations, each local particle filter is implemented by means of 200
particles. At each time step, we proceed to the fusion of the local posterior densities
and then re-inject the fused state density into each local filter (feedback loop). Three
different paradigms are considered for the fusion: Bayesian, p-PCR6 and whitened
p-PCR6 rules. These filters try to estimate both the position and speed of the target
which is assumed to follow a quasi-constant velocity model. It is noticed that we
are dealing directly with both the observable and non-observable components of the
target state.
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4.4.3.2 A simple example

In this first example, the filters are well initialized (we give them good starting speed
and position). The mobile follows a non-linear trajectory (figure 4.4), in order to show
the capability of this distributed filter to converge. On this example, the Bayesian
filter manages to track the target with some difficulties during the last curve in
figure 4.4. On the same example, p-PCR6 and whitened p-PCR6 rules have been
tested with success. While both filters have to reestimate the speed direction at each
turn, it appears that this reestimation is more difficult for p-PCR6. This difference
is also particularly apparent during the last curve.

Figure 4.4: Estimated trajectories using different tracking methods.

Figure 4.5 displays the particle cloud of the whitened PCR6 filter during and
after the last curve. The variance rises along the curve, resulting in the cross-like
cloud of sub-figure 4.5(a), which is characteristic to the p-PCR6 fusion: the branches
correspond to the direction the sensors are looking at. Then, the p-PCR6, by ampli-
fying the zone where the filters are according to see the object, allows the process to
converge again toward the object real position in an expansion-contraction pattern
(figure 4.5(b)).
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(a) Time step 160.

(b) Time step 170.

Figure 4.5: Particle clouds for whitened p-PCR6 in the last curve.
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In more difficult cases, with poor initialization for instance (see figure 4.6), both
p-PCR6 and whitened p-PCR6 manage to follow the target, while the Bayesian filter
diverges in about one third of the cases and give mitigate results otherwise.

Figure 4.6: Estimated trajectories using different tracking methods. Poor ini-
tialization: null speed and 10 units away starting position.

Next sections investigate more thoroughly the properties of the whitened p-PCR6
filtering.

4.4.3.3 Whitened p-PCR6 robustness against poor initialization

In order to test the capability of (whitened) p-PCR6 to recover from erroneous mea-
surements or from a total contradiction of the local estimations, we considered two
scenarios in which the filters are badly initialized at various degrees. In these scenar-
ios, the real trajectory of the object is the same: it starts from (200, 0) and moves
toward (200, 150) at a constant speed (0, 1).

In the first scenario (figure 4.7), the first filter, which sensor is placed at (0, 100),
is initialized at position (190, 10) and at speed (0, 0). The second filter, which sensor
is at (100, 0), is initialized at position (210, 10) and at the same speed (figure 4.7(a)).
As the estimated positions are far from the real one and both sensors are looking
at the object from a remote position, the particle cloud quickly spread horizontally
(figure 4.7(b)). Then the (whitened) PCR6 begins to find zones where both filters es-
timate a non-negligible probability of presence and amplifies them until convergence
(figure 4.7(c)). Though the particle cloud still seems to be fairly spread (because of
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sensors remote position), the global estimate is very close from the real position and
speed, and will remain so until the last time step (figure 4.7(d)).

x y x speed y speed

First Filter 1 190 10 0 0

example Filter 2 210 10 0 0

Second Filter 1 190 10 0.1 -1

example Filter 2 210 10 0.5 1.5

Table 4.1: Initialization data.

(a) Time step 1. (b) Time step 10.

(c) Time step 20. (d) Time step 60.

Figure 4.7: The real mobile starts at (200, 0) and moves upward at constant
speed (0, 1); poor filters initialization.
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Our second example (figure 4.8) is an extreme case: the initialization is quite worse
(see table 4.1), since our motion model assumes nearly constant speed and therefore
makes it hard to recover from such erroneous and contradictory speed initialization.
An interesting point is that, for a tight prediction noise, p-PCR6 sometimes does not
converge on this example, while whitened p-PCR6 usually does. Artificially raising
the prediction noise solves this problem for ‘standard’ p-PCR6, showing its trend to
over-concentrate the particle cloud.

(a) Time step 1. (b) Time step 10.

(c) Time step 20. (d) Time step 60.

Figure 4.8: The real mobile starts at (200, 0) and moves upward at constant
speed (0, 1); bad filters initialization.
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4.4.3.4 Whitened p-PCR6 versus mean

As seen before, the PCR6-fusion of two probabilistic densities amplifies the areas
where both densities have a non-negligible value. Otherwise, it usually works like just
averaging the two densities. In order to measure the impact of the amplification, we
reprocessed the first example of previous subsection while using the mean, pmean =
p1+p2

2
, instead of p-PCR6. The result (figure 4.9) is self explanatory: the same

expansion as with p-PCR6 occurs (figure 4.7), but contraction never happens.

(a) Time step 1. (b) Time step 30. (c) Time step 45.

Figure 4.9: Using mean instead of p-PCR6. Red dots are the positions of the
particles after fusion. The real mobile starts from (200,0) at time step 0 and
moves at the constant speed (0,1).

4.4.3.5 Concluding remarks

The results presented here have clearly shown that p-PCR6, and especially whitened
p-PCR6, filters are more robust than the Bayesian filter against bad initialization.
However, it is clear that Bayesian filters are the best, when the priors are correctly
defined. The real interest of p-PCR6 is that it does not need a precise prior knowledge
about the antedating local particle filters.

4.5 Conclusions

This paper has investigated a new fusion rule, p-PCR6, for fusing probabilistic den-
sities. This rule is derived from the PCR6 rule for fusing evidences. It has a simple
interpretation from a sampling point of view. p-PRC6 has been compared to the
Bayesian rule on a simple fusion example. Then, it has been shown that p-PCR6 was
able to maintain multiple hypothesis in the fusion process, by generating multiple
modes. Thus, more robustness of p-PCR6 were foreseeable in comparison to Bayes’
rule. This robustness has been tested successfully on examples of distributed target
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tracking. It is expected that this new rule will have many applications, in particular
in case of ill-posed filtering problems.
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