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Abstract: A generalization of the minC combination to DSm hyper-power sets
is presented. Both the special formulas for static fusion or dynamic fusion without
non-existential constraints and the quite general formulas for dynamic fusion with
non-existential constraints are included. Examples of the minC combination on
several different hybrid DSm models are presented. A comparison of the generalized
minC combination with the hybrid DSm rule is discussed and explained on examples.

4.1 Introduction

Belief functions are one of the widely used formalisms for uncertainty representation and pro-
cessing. Belief functions enable representation of incomplete and uncertain knowledge, belief
updating and combination of evidence. Originally belief functions were introduced as a principal
notion of Dempster-Shafer Theory (DST) or the Mathematical Theory of Evidence [19].

For combination of beliefs Dempster’s rule of combinations is used in DST. Under strict
probabilistic assumptions, its results are correct and probabilistically interpretable for any cou-
ple of belief functions. Nevertheless these assumptions are rarely fulfilled in real applications.
There are not rare examples where the assumptions are not fulfilled and where results of Demp-
ster’s rule are counter intuitive, e.g. see [2, 3, 20], thus a rule with more intuitive results is
required in such situations.
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114 COMPARISON OF GENERALIZED MINC WITH DSMH

Hence series of modifications of Dempster’s rule were suggested and alternative approaches
were created. The classical ones are Dubois-Prade’s rule [13] and Yager’s belief combination
rule [23]. Among the others a wide class of operators [17] and an analogous idea proposed in [15],
Smets’ Transferable Belief Model (TBM) using so-called non-normalized Dempster’s rule [22],
disjunctive (or dual Dempster’s) rule of combination [12], combination ’per elements’ with its
special case — minC combination, see [4, 8], and other combination rules. It is also necessary
to mention the method for application of Dempster’s rule in the case of partially reliable input
beliefs [14].

A brand new approach performs the Dezert-Smarandache (or Dempster-Shafer modified)
theory (DSmT) with its DSm rule of combination. There are two main differences: 1) mutual
exclusivity of elements of a frame of discernment is not assumed in general; mathematically it
means that belief functions are not defined on the power set of the frame, but on a so-called
hyper-power set, i.e. on the Dedekind lattice defined by the frame; 2) a new combination
mechanism which overcomes problems with conflict among the combined beliefs and which also
enables a dynamic fusion of beliefs.

As the classical Shafer’s frame of discernment may be considered the special case of a so-
called hybrid DSm model, the DSm rule of combination is compared with the classic rules of
combination in the publications about DSmT [11, 20]. For better and objective comparison
with the DSm rule the classic Dempster’s, Yager’s, and Dubois-Prade’s rules were generalized
to DSm hyper-power sets [7].

In despite of completely different motivations, ideas and assumptions of minC combination
and DSm rule, there is an analogy in computation mechanisms of these approaches described
in the author’s Chapter 10 in [20]. Unfortunately the minC combination had been designed for
classic belief functions defined only on the power set of a frame of discernment in that time.
Recently, formulas for computation of minC on general n-element frame discernment has been
published [8], and the ideas of minC combination have been generalized to DSm hyper-power
sets in [10].

A goal of this contribution is to continue [5] using the recent results from [10], and complete
a comparison of minC combination and hybrid DSm rules.

4.2 MinC combination on classic frames of discernment

4.2.1 Basic Definitions

All the classic definitions suppose an exhaustive finite frame of discernment Θ = {θ1, ..., θn},
whose elements are mutually exclusive.

A basic belief assignment (bba) is a mappingm : P(Θ) −→ [0, 1], such that
∑

A⊆Θm(A) = 1,

the values of bba are called basic belief masses (bbm).1 A belief function (BF) is a mapping
Bel : P(Θ) −→ [0, 1], Bel(A) =

∑
∅6=X⊆Am(X), belief function Bel uniquely corresponds to

bba m and vice-versa. P(Θ) is often denoted also by 2Θ. A focal element is a subset X of the
frame of discernment Θ, such that m(X) > 0.

Dempster’s (conjunctive) rule of combination ⊕ is given as

(m1 ⊕m2)(A) = K
∑

X∩Y=A

m1(X)m2(Y )

1 m(∅) = 0 is often assumed in accordance with Shafer’s definition [19]. A classical counter example is Smets’
Transferable Belief Model (TBM) which admits positive m(∅) as it assumes m(∅) ≥ 0.
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for A 6= ∅, where K = 1
1−κ , κ =

∑
X∩Y=∅m1(X)m2(Y ), and (m1⊕m2)(∅) = 0, see [19]; putting

K = 1 and (m1⊕m2)(∅) = κ we obtain the non-normalized conjunctive rule of combination ∩©,
see e. g. [22].

An algebra L = (L,∧,∨) is called a lattice if L 6= ∅ and ∧, ∨ are two binary operations meet
and join on L with the following properties: x∧ x = x, x∨ x = x (idempotency), x∧ y = y ∧ x,
x∨y = y∨x (commutativity), (x∧y)∧z = x∧(y∧z), (x∨y)∨z = x∨(y∨z) (associativity), and
x ∧ (y ∨ x) = x, x ∨ (y ∧ x) = x (absorption). If the operations ∧, ∨ satisfy also distributivity,
i.e. x∧ (y∨ z) = (x∧y)∨ (x∧ z) and x∨ (y∧ z) = (x∨y)∧ (x∨ z) we speak about a distributive
lattice.
We can equivalently write any element of X ∈ L in conjunctive normal form (CNF):
X =

∧
i=1,...,m(

∨
j=1,...,ki

Xij) for some m, k1, ..., km, Xij ∈ L , i.e. meet of joins.

4.2.2 Ideas of the minC combination

The minC combination (the minimal conflict/contradiction combination) is a generalization of
the non-normalized Dempster’s rule ∩©. m(∅) from ∩© is considered as a conflict (or contradiction)
arising by the conjunctive combination. To handle it, a system of different types of conflicts is
considered according to the basic belief masses producing it.

We distinguish contradictions (conflicts) according to the sets to which the original bbms
were assigned by mi. There is only one type of contradiction (conflict) × on the belief functions
defined on a binary frame of discernment, × corresponds to m(∅); hence the generalized level
of minC combination fully coincides with the (non-normalized) conjunctive rule there. In the
case of an n-element frame of discernment we distinguish different types of conflicts, e.g. A ×
B, A × BC, A × B × C, if mi({A}),mj({B}) > 0, mi({A}),mj({B,C}) > 0, mi({A}),
mj({B}), mk({C}) > 0 etc. A very important role is played by so-called potential conflicts
(contradictions), e.g. AB × BC, which is not a conflict in the case of combination of two
beliefs ({A,B} ∩ {B,C} = {B} 6= ∅), but it can cause a conflict in a later combination with
another belief, e.g. real conflict AB ×BC ×AC because there is {A,B} ∩ {B,C} ∩ {A,C} = ∅
which is different from B × AC. Not to have (theoretically) an infinite number of different
conflicts, the conflicts are divided into classes of equivalence which are called types of conflicts,
e.g. A×B ∼ B ×A ∼ A×B ×B ×B ×A×A×A, etc. For more detail see [4].

In full version of [8], it is shown that the structure of pure and potential conflicts forms a
distributive lattice L(Ω) = (L(Ω),∧,∨), where X ∈ L(Ω) iff either X = {ωi}, where ωi ∈ Ω,
or X = {ωi1 × ωi2 × .... × ωiki

}, where ωij ∈ Ω for 1 ≤ i ≤ n, 1 ≤ j ≤ ki, or X = U ∧ V or
X = U ∨ V for some couple U, V ∈ L(Ω); ∧ ∨ are defined as it follows:
X ∨ Y = {w | w ∈ X or w ∈ Y and (¬∃w′)(w′ ∈ X ∪ Y, w′ ≤ w)},
X ∧Y = {w | w ∈ X ∩Y or [w = ωw1×ωw2× ...×ωwkw , where (∃x ∈ X)(x ≤ w), (∃y ∈ Y )(y ≤
w) and (¬∃w′ ≤ w)((∃x ∈ X)(x ≤ w′), (∃y ∈ Y )(y ≤ w′))]}.
Where it is further defined: x× x = x, y × x = x× y, and x11 × x12 × ...× x1k1 ≤ x21 × x22 ×
...× x2k2 iff (∀x1k)(∃x2m)(x1k = x2m). Note that X ∧ Y = X ∩ Y if X ⊆ Y or Y ⊆ X.

We can extend L(Ω) with ∅ to L∅(Ω) = (L(Ω) ∪ {∅},∧,∨), where x ∧ ∅ = ∅ and x ∨ ∅ = x
for all x ∈ L(Ω). But we do no need it in classical case as no positive gbbm’s are assigned to ∅
in input BF’s and x ∧ y 6= ∅ and x ∨ y 6= ∅ for any x, y ∈ L(Ω).

The generalized level of minC combination gives non-negative weights to all elements of
L(Θ), i.e. also to the conflicts/contradictions and potential conflicts, i.e. it produces and
combines so-called generalized bba’s and generalized belief functions defined on the so-called
generalized frame of discernment L(Θ), which includes also all corresponding types of conflicts.
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The generalized level of minC combination is associative and commutative operation and
it commutes also with coarsening of frame of discernment. After performance of the general-
ized level of the minC, all bbms of both pure and potential conflicts should be reallocated /
proportionalized among all corresponding non-conflicting elements of P(Θ).

Unfortunately such proportionalizations break associativity of the minC combination. Hence
all the input bba’s must be combined on the generalized level at first, and the proportionalization
may not be performed before finishing of the generalized level combination. So it is useful to
keep also generalized level results because of to be prepared for possible additional source of
belief, which we possibly want to combine together with the present input beliefs.

4.2.3 Formulas for the minC combination

Let
⋂
X = X1 ∩X2 ∩ ... ∩Xk and c(X) = {X1, ...,Xk}, where CNF (X) = X1 ∧X2 ∧ ... ∧Xk,

similarly let
⋃
X = X1 ∪ X2 ∪ ... ∪ Xk, where CNF (X) = X1 ∧ X2 ∧ ... ∧ Xk, it holds that

Xi = Xi1 ∨Xi2 ∨ ... ∨Xiki
for any of these Xis thus it corresponds to {Xi1,Xi2, ...,Xiki

}, and⋃
X ∈ P(Θ), let further p(X) = {Y1∪ ...∪Ym | 1≤ m≤k, Yi ∈ c(X) for i = 1, ...,m}. Let all X

from L(Θ) be in CNF in the following formulas, unless another form of X is explicitly specified.

The generalized level of the minC combination is computed for all A ∈ L(Θ) as

m0(A) =
∑

X∧Y=A

m1(X)m2(Y ).

Reallocation of gbbm’s of potential conflicts: for all ∅ 6= A ∈ P(Θ),

m1(A) = m0(A) +
∑

X∈L(Θ)
X 6=A,

T

X=A

m0(X) =
∑

X∈L(Θ)
T

X=A

m0(X).

Final classic bba m we obtain after proportionalization of gbbm’s of pure conflicts.

m(A) =
∑

X∈L(Θ)
∩X=A

m0(X) +
∑

X∈L(Θ)
∩X=∅, A⊆∪X

prop(A,X)m0(X),

where
prop11(A,X) = prop12(A,X) = m1(A)

P

Y ∈p(X)m
1(Y )

for A ∈ p(X),
∑

Y ∈ p(X)m
1(Y ) > 0,

prop11(A,X) = prop12(A,X) = 0 for A /∈ p(X),
prop11(A,X) = 1

|p(X)|−1 for A ∈ p(X),
∑

Y ∈p(X)m
1(Y ) = 0,

prop12(A,X) = 1 for A =
⋃
X,

∑
Y ∈p(X)m

1(Y ) = 0,

prop12(A,X) = 0 for A ⊂ ⋃X, ∑Y ∈p(X)m
1(Y ) = 0,

prop21(A,X) = prop22(A,X) = m1(A)
cbel1(X) for cbel1(X) > 0,

prop21(A,X) = 1
2|

S

X|−1
for cbel1 = 0,

prop22(A,X) = m1(A)
cbel1(X)

for cbel1(X) > 0,

prop22(A,X) = 1 for cbel1(X) = 0 and A =
⋃
X,

prop22(A,X) = 0 for cbel1(X) = 0 and A ⊂ ⋃X,
where cbel1(X) =

∑
∅6=Y ∈P(Θ), Y⊆S

X m
1(Y ), m(∅) = 0 (= m0(∅) = m1(∅)).
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Proportionalization coefficient function propij( , ) determines the proportionalization ratio
for distribution of conflicting gbbm’s. The first index i indicates whether 1) m0(X) is propor-
tionalized only among elements of p(X), i.e, among all conjuncts from CNF (X) and among all
disjunctions of these conjuncts for i = 1, or 2) m0(X) is proportionalized among all subsets of⋃
X for i = 2. The second index indicates the way of proportionalization when the proportion-

alization ratio is ”0
0”: 1) division of m0(X) to the same parts and distribution of these parts

among all conjuncts in question (for i = 1, j = 1) or among all subsets of
⋃
X (for i = 2, j = 1)

is used, or 2) whole conflicting gbbm m0(X) is relocated to
⋃
X for j = 2. prop1j corresponds

to proportionalization a) from [4, 5] and prop2j corresponds to proportionalization b) from [5]
(resp. to c) from [4]). For another proportionalizations see the full version of [8].

Let us present the proportionalization on a small example m0(X), where X = θ1∧ (θ2∨ θ3):
X is already in CNF, i.e. CNF (X) = X, it has two conjuncts singleton θ1 and disjunction
θ2 ∨ θ3, we can construct the only nontrivial disjunction θ1 ∨ θ2 ∨ θ3 from these conjuncts,⋃
X = θ1 ∨ θ2 ∨ θ3.

prop1j proportionalizes conflicting m0(X) among conjuncts θ1, θ2∨θ3, and their disjunction
θ1 ∨ θ2 ∨ θ3:
if m1(θ1) +m1(θ2 ∨ θ3) +m1(θ1 ∨ θ2 ∨ θ3) > 0 we have:

prop1j(θ1,X) =
m1(θ1)

m1(θ1) +m1(θ2 ∨ θ3) +m1(θ1 ∨ θ2 ∨ θ3)

prop1j(θ2 ∨ θ3,X) =
m1(θ2 ∨ θ3)

m1(θ1) +m1(θ2 ∨ θ3) +m1(θ1 ∨ θ2 ∨ θ3)

prop1j(θ1 ∨ θ2 ∨ θ3,X) =
m1(θ1 ∨ θ2 ∨ θ3)

m1(θ1) +m1(θ2 ∨ θ3) +m1(θ1 ∨ θ2 ∨ θ3)

if m1(θ1) +m1(θ2 ∨ θ3) +m1(θ1 ∨ θ2 ∨ θ3) = 0 we have:

prop11(θ1,X) = prop11(θ2 ∨ θ3,X) = prop11(θ1 ∨ θ2 ∨ θ3) = 1/3

prop12(θ1,X) = prop11(θ2 ∨ θ3,X) = 0, prop12(θ1 ∨ θ2 ∨ θ3) = 1.

prop2j proportionalizes conflicting m0(X) among all subsets of
⋃
X = θ1∨θ2∨θ3, i.e. among

θ1, θ2, θ3, θ1 ∨ θ2, θ1 ∨ θ3, θ2 ∨ θ3, θ1 ∨ θ2 ∨ θ3:
if S = m1(θ1) +m1(θ2) +m1(θ3) +m1(θ1∨ θ2) +m1(θ1∨ θ3) +m1(θ2∨ θ3) +m1(θ1∨ θ2∨ θ3) > 0

we have, prop2j(A,X) = m1(A)
S for all A ⊆ ⋃X;

if S = 0 we have, prop21(A,X) = 1/7 for all A ⊆ ⋃X. prop22(A,X) = 0 for all A ⊂ ⋃X,
prop22(

⋃
X) = 1.

4.3 Introduction to DSm theory

Because DSmT is a new theory which is in permanent dynamic evolution, we have to note that
this text is related to its state described by formulas and text presented in the basic publication
on DSmT — in the DSmT book Vol. 1 [20]. Rapid development of the theory is demonstrated
by appearing of the current second volume of the book. For new advances of DSmT see other
chapters of this volume.
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4.3.1 Dedekind lattice and other basic DSm notions

Dempster-Shafer modified Theory or Dezert-Smarandache Theory (DSmT) by J. Dezert and F.
Smarandache [11, 20] allows mutually overlapping elements of a frame of discernment. Thus
a frame of discernment is a finite exhaustive set of elements Θ = {θ1, θ2, ..., θn}, but not nec-
essarily exclusive in DSmT. As an example we can introduce a three-element set of colours
{Red,Green,Blue} from the DSmT homepage2. DSmT allows that an object can have 2 or 3
colours in the same time: e.g. it can be both red and blue, or red and green and blue in the
same time, it corresponds to a composition of general colours from the 3 basic ones.

DSmT uses basic belief assignments and belief functions defined analogically to the classic
Dempster-Shafer theory (DST), but they are defined on so-called hyper-power set or Dedekind
lattice instead of the classic power set of the frame of discernment. To be distinguished from
the classic definitions they are called generalized basic belief assignments and generalized belief
functions3.

The Dedekind lattice, more frequently called hyper-power set DΘ in DSmT, is defined as the
set of all composite propositions built from elements of Θ with union and intersection operators
∪ and ∩ such that ∅, θ1, θ2, ..., θn ∈ DΘ, and if A,B ∈ DΘ then also A∪B ∈ DΘ and A∩B ∈ DΘ,
no other elements belong to DΘ (θi ∩ θj 6= ∅ in general, θi ∩ θj = ∅ iff θi = ∅ or θj = ∅).

Thus the hyper-power set DΘ of Θ is closed to ∪ and ∩ and θi ∩ θj 6= ∅ in general. Whereas
the classic power set 2Θ of Θ with exclusive elements is closed to ∪, ∩ and complement, and
θi ∩ θj = ∅ for every i 6= j.

Examples of hyper-power sets. Let Θ = {θ1, θ2}, we have DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2},
i.e. |DΘ| = 5. For Θ = {θ1, θ2, θ3} we have |Θ| = 3, |DΘ| = 19.

A DSm generalized basic belief assignment (DSm gbba) m is a mapping m : DΘ −→ [0, 1],
such that

∑
A∈DΘ m(A) = 1 and m(∅) = 0. The quantity m(A) is called the DSm generalized

basic belief mass (DSm gbbm) of A. A DSm generalized belief function (DSm gBF) Bel is a
mapping Bel : DΘ −→ [0, 1], such that Bel(A) =

∑
X⊆A,X∈DΘ m(X).

4.3.2 DSm models

If we assume a Dedekind lattice (hyper-power set) according to the above definition without
any other assumptions, i. e. all elements of an exhaustive frame of discernment can mutually
overlap themselves, we speak about the free DSm model Mf (Θ), i. e. about DSm model free
of constraints.

In general it is possible to add exclusivity or non-existential constraints into DSm models,
we speak about hybrid DSm models in such cases.

An exclusivity constraint θ1 ∩ θ2 M1
≡ ∅ says that elements θ1 and θ2 are mutually exclusive

in model M1, whereas both of them can overlap with θ3. If we assume exclusivity constraints

θ1 ∩ θ2 M2
≡ ∅, θ1 ∩ θ3 M2

≡ ∅, θ2 ∩ θ3 M2
≡ ∅, another exclusivity constraint directly follows

them: θ1 ∩ θ2 ∩ θ3 M2
≡ ∅. In this case all the elements of the 3-element frame of discernment

2www.gallup.unm.edu/∼smarandache/DSmT.htm
3 If we want to distinguish these generalized notions from the generalized level of minC combination we

use DSm generalized basic belief assignment, DSm generalized belief mass and function, and analogically minC
generalized basic belief assignment and minC gbbm further in this text, on the other hand no minC generalized
BF has been defined.
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Θ = {θ1, θ2, θ3} are mutually exclusive as in the classic Dempster-Shafer theory, and we call
such hybrid DSm model as Shafer’s model M0(Θ).

A non-existential constraint θ3
M3
≡ ∅ brings an additional information about a frame of

discernment saying that θ3 is impossible, it forces all the gbbm of X ⊆ θ3 to be equal to zero
for any gbba in model M3. It represents a sure meta-information with respect to generalized
belief combination, which is used in a dynamic fusion.

In a degenerated case of the degenerated DSm modelM∅ we always have m(∅) = 1, m(X) = 0
for X 6= ∅. It is the only gbbm on M∅, and it is the only case, where m(∅) > 0 is allowed in
DSmT.

The total ignorance on Θ is the union It = θ1 ∪ θ2 ∪ ... ∪ θn. ∅ = {∅M, ∅}, where ∅M is the
set of all elements of DΘ which are forced to be empty through the constraints of the modelM
and ∅ is the classical empty set4. Because we will not work withM∅ in the present contribution,
we will work only ∅ 6= X ∈ DΘ, thus X ∈ ∅ is the same as X ∈ ∅M in this text.

For a given DSm model we can define (in addition to [20]) ΘM = {θi|θi ∈ Θ, θi 6∈ ∅M},
ΘM

M≡ Θ, and IM =
⋃
θi∈ΘM θi, i.e. IM

M≡ It, IM = It ∩ΘM, IM∅ = ∅. DΘM is a hyper-power
set on the DSm frame of discernment ΘM, i.e. on Θ without elements which are excluded by
the constraints of model M. It holds ΘM = Θ, DΘM = DΘand IM = It for any DSm model
without non-existential constraint. Whereas reduced hyper-power set DΘ

M from Chapter 4 in [20]
arises from DΘ by identifying of all M-equivalent elements. DΘ

M0 corresponds to classic power
set 2Θ.

4.3.3 The DSm rule of combination

The classic DSm rule (DSmC) is defined for belief combination on the free DSm model as it
follows5:

mMf (Θ)(A) = (m1 #©m2)(A) =
∑

X∩Y=A, X,Y ∈DΘ

m1(X)m2(Y ).

Since DΘ is closed under operators ∩ and ∪ and all the ∩s are non-empty, the classic DSm
rule guarantees that (m1 #©m2) is a proper generalized basic belief assignment. The rule is
commutative and associative. For n-ary version of the rule see [20].

When the free DSm model Mf (Θ) does not hold due to the nature of the problem under
consideration, which requires to take into account some known integrity constraints, one has
to work with a proper hybrid DSm model M(Θ) 6= Mf (Θ). In such a case, the hybrid DSm
rule of combination DSmH based on the hybrid model M(Θ), Mf (Θ) 6=M(Θ) 6=M∅(Θ), for
k ≥ 2 independent sources of information is defined as: mM(Θ)(A) = (m1 #©m2 #©...#©mk)(A) =
φ(A)[S1(A)+S2(A)+S3(A)], in full generality, see [20]. For a comparison with minC combination
we use binary version of the rule, thus we have:

mM(Θ)(A) = (m1 #©m2)(A) = φ(A)[S1(A) + S2(A) + S3(A)],

where φ(A) is a characteristic non-emptiness function of a set A, i. e. φ(A) = 1 if A /∈ ∅ and
φ(A) = 0 otherwise. S1 ≡ mMf (Θ), S2(A), and S3(A) are defined by

S1(A) =
∑

X,Y ∈DΘ,X∩Y=A

m1(X) ,m2(Y )

4
∅ should be ∅M extended with the classical empty set ∅, thus more correct should be the expression ∅ =

∅M ∪ {∅}.
5 To distinguish the DSm rule from Dempster’s rule, we use #© instead of ⊕ for the DSm rule in this text.
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S2(A) =
∑

X,Y ∈ ∅, [U=A]∨[(U∈ ∅)∧(A=It)]

m1(X)m2(Y )

S3(A) =
∑

X,Y ∈DΘ, X∪Y=A, X∩Y ∈ ∅

m1(X)m2(Y )

with U = u(X) ∪ u(Y ), where u(X) is the union of all singletons θi that compose X and Y ;
all the sets A,X, Y are supposed to be in some canonical form, e.g. CNF. Unfortunately no
mention about the canonical form is included in [20].

As size of hyper-power set DΘ rapidly increase with cardinality of the frame of discern-
ment Θ some readers may be interested in Chapter 2 of [20] on the generation of hyper-power
sets, including subsection about memory size and complexity. For applications of DSmT see
contributions in second parts of both the volumes of DSmT book.

In [20], is was shown that DSm hyper-power set corresponds to minC generalized frame of
discernment extended with ∅, where overlappings of elements in DSm hyper-power set corre-
spond to elementary conflicts in minC generalized frame of discernment and that the classic
DSm rule numerically coincides with the generalized level of minC combination.

4.4 MinC combination on hyper-power sets

4.4.1 Generalized level of minC combination on hyper-power set

From the correspondence of hyper-power set (Dedekind Lattice) DΘ with distributive lattice
L∅(Θ) representing extended minC generalized frame of discernment and from numerical coinci-
dence of the classic DSm rule with generalized level of minC combination, we obtain coincidence
of generalized level of minC on the hyper-power set with the generalized level of the classic minC
combination and with the classic DSm rule (DSmC). Hence the generalized level of the minC
combination on the hyper-power set is given by the following formula:

(m1mC©m2)0(A) = m0(A) =
∑

X∧Y=A

m1(X)m2(Y ) =
∑

X∩Y=A

m1(X)m2(Y ).

4.4.2 MinC combination on the free DSm model Mf

There are no constraints on the free DSm model, all elements of hyper-power set are allowed to
have a positive (DSm generalized) bbm. It means that there are no conflicting bbms in minC
combination generalized to the free DSm model. Thus no reallocation of bbms is necessary in
minC combination generalized to the free DSm model. Thus minC combination generalized to
the free DSm model coincides with its generalized level from the previous subsection:

m(A) = m0(A) =
∑

X∩Y=A

m1(X)m2(Y ).

Hence the generalized level of the minC combination and the minC combination on the free
DSm model is associative and commutative operation on DSm generalized belief functions. The
combination also commutes with coarsening of the frame of discernment.

Let us note that m(∅) = 0 = m0(∅) always holds as X ∩ Y 6= ∅ for any X,Y ∈ DΘ, and
mi(∅) = 0 for any DSm gbba on DΘ.
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4.4.3 Static minC combination on hybrid DSm models

Let us continue our generalization with a static combination, where DSm model is not changed
within the combination process, i.e. all input belief functions are defined on a hybrid model

in question. Let us suppose a fixed DSm model M, thus we can use ≡ instead of
M≡ for

simplification of generalized minC formulas.
As some of the elements of DΘ are equal to other ones in hybrid DSm model M, we have

to reallocate their m0 gbbm’s to a corresponding elements DΘ
M as it follows:

m1(A) = m0(A) +
∑

X 6=A, X∈DΘ, X≡A
m0(X) =

∑

X∈DΘ, X≡A
m0(X),

for all ∅ 6≡ A ∈ DΘ, (i.e. for all A 6∈ ∅M). This step corresponds to relocation of potential
conflicts in classic minC combination.

The rest is reallocation of m0 bbms of sets which are equivalent to ∅; such sets correspond to
pure conflicts in the classic case. Analogically to the proportionalization of gbbm of pure conflict
X to its power set P(

⋃
X) in the classic minC combination, we proportionalize6 conflicting

gbbm m0(X) to substructure of the DSm model M defined by
⋃
X, i.e. to D

S

X
M , we do not

care about Y ≡ ∅M because they are not allowed by model M.

m(A) = m1(A) + reallocated gbbm′s of conflicts.

m(A) =
∑

X∈DΘ

X≡A

m0(X) +
∑

X∈DΘ

X≡∅, A⊆∪X

prop(A,X)m0(X),

where proportionalization coefficient function prop is analogous to the prop in the classic version;
there are only the following differences in notation: we use X ∈ DΘ instead of X ∈ L(Θ),

X ∈ DΘ
M instead of X ∈ P(Θ), bel1M instead of cbel1, |DΘ

M| .... P(Θ) = 2|Θ|, |D
S

X
M | ....

2|
S

X| = |p(X)|, A ∈ D
c(X)
M .... A ∈ p(X), Z ∈ ∅M ....

⋃
Z = ∅, and similarly. Where

D
c(X)
M = {Y ∈ DΘ

M | c(Y ) ⊆ c(X)}, i.e. elements of D
c(X)
M are all unions and intersections

constructed from conjuncts from CNF (X) (from Xi such that CNF (X) = X1 ∩ ... ∩Xk). Let
X be such that CNF (X) = (θ1∪θ2)∩(θ1∪θ3)∩θ4 for example, thus c(X) = {θ1∪θ2, θ1∪θ3, θ4},
and D

c(X)

Mf contains e.g. θ1∪θ2∪θ4 and (θ1∪θ2)∩θ4, but neither θ1∪θ4 or θ1∩θ4 nor θ2∪θ3∪θ4
as θ1, θ2, θ3, θ2 ∪ θ3, θ2 ∪ θ4, θ3 ∪ θ4 are not elements of c(X).

For m0(X) > 0 we have that (
⋃
X) 6∈ ∅M in static combination, because X ⊆ ⋃X and

similarly for all input focal elements Xi from which m0(X) is computed Xi ⊆
⋃
X. Thus we

have no problem with cardinality |D∪X
M | which is always ≥ 2.

It is possible to show that
∑

X∈DΘ
M
m(X) = 1, i.e. m(A) correctly defines static combination of

gbba’s on hybrid DSm modelM. We can also show that the above definition coincides with the
classic minC combination on the Shafer’s DSm model M0. Hence the above definition really
generalizes the classic minC combination.

4.4.4 Dynamic minC combination

To make a full generalization of minC combination in the DSm nature. We have to allow
also a change of a DSm model during combination, i.e. to allow input belief functions which

6If a proportionalization ratio is not defined, i.e. if it should be ” 0
0
” then either 1) division to the same parts

or 2) reallocation to
S

X is used, analogically to the classic case.
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are defined on more general model that is the resulting one, i.e. we have to be prepared to
prohibition of some input focal elements. In such a case we have no immediate suggestion
how reallocate m0(X) for X ≡ ∅ such that also

⋃
X ≡ ∅. In correspondence to non-defined

proportionalization ratios we can distribute it among all non-empty elements of DSm modelM
or to relocate it to whole IM. We can represent both these proportionalizations with coefficient
functions prop(A,X) for computation of proportion of conflicting gbbm m0(X) which to be
reallocated to ∅ 6≡ A ∈ D∪X

M and analogical dyn(A,X) for dynamic fusion proportionalization
of m0(X) where

⋃
X ≡ ∅. With respect to two types of proportionalization and two variants of

non-defined proportionalizaton ratios managing we obtain four variants of coefficient function
prop and two variants coefficient function dyn: of prop11(A,X), prop12(A,X), prop21(A,X),
prop22(A,X), dyn1(A,X), and dyn2(A,X). We can summarize the dynamic minC combination
as it follows:

m0(A) =
∑

X,Y ∈DΘ

X∩Y =A

m1(X)m2(Y )

mij(A) =
∑

X∈DΘ

X≡A

m0(X) +
∑

∅≡X∈DΘ

A⊆S

X

propij(A,X)m0(X) +
∑

X∈DΘ
S

X≡∅

dynj(A,X)m0(X)

for all ∅ 6≡ A ∈ DΘ
M, where |DΘ

M| > 1 and where propij(A,X), dynj(A,X) are defined as it
follows:
prop11(A,X) = prop12(A,X) = m1(A)

P

A,Y ∈D
c(X)
M

m1(Y ) for A ∈ Dc(X)
M ,

∑
Y ∈Dc(X)

M
m1(Y ) > 0,

prop11(A,X) = prop12(A,X) = 0 for A /∈ Dc(X)
M ,

prop11(A,X) = 1

|Dc(X)
M |−1

for A ∈ Dc(X)
M ,

∑
Y ∈Dc(X)

M
m1(Y ) = 0,

prop12(A,X) = 1 for A =
⋃
X,

∑
Y ∈Dc(X)

M
m1(Y ) = 0,

prop12(A,X) = 0 for A ⊂ ⋃X, ∑
Y ∈Dc(X)

M
m1(Y ) = 0,

prop21(A,X) = m1(A)
bel1M(X)

for bel1M(X) > 0,

prop21(A,X) = 1
|D∪X

M |−1
for bel1M(X) = 0,

prop22(A,X) = m1(A)
bel1M(X)

for bel1M(X) > 0,

prop22(A,X) = 1 for bel1M(X) = 0 and A =
⋃
X,

prop22(A,X) = 0 for bel1M(X) = 0 and A ⊂ ⋃X,

dyn1(A, ) = m1(A)
P

Z∈DΘ
M
m1(Z)

, if
∑

Z∈DΘ
M

m1(Z)>0,

dyn1(A, ) = 1
|DΘ

M|−1
, if

∑
Z∈DΘ

M

m1(Z) = 0,

dyn2(A, ) = m1(A)
P

Z∈DΘ
M
m1(Z)

, if
∑

Z∈DΘ
M

m1(Z)>0,

dyn2(IM, ) = 1, if
∑

Z∈DΘ
M

m1(Z) = 0,
dyn2(A, ) = 0, if

∑
Z∈DΘ

M

m1(Z) = 0, A 6= IM,

mij(A) = 0 for A ≡ ∅.
Similarly to the classic case we can show that

∑
X∈DΘ

M
m(X) = 1 hence the above formulas

produce a correct gbba also for dynamic combination.
If we want to combine 3 or more (k) gBF’s, we apply twice or more times (k times) the

binary combination on the generalized level (in the classic minC terminology), i.e. on the free
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Mf M1 M2 M2 M3 M3 M4 M4 M5 M5 M6 M7 M7

m1 m2 m0 mij m1j m2j m1j m2j m1j m2j m1j m2j mij m1j m2j

θ1∩θ2∩θ3 0 0 0.16
θ1 ∩ θ2 0.10 0.20 0.22 0.26
θ1 ∩ θ3 0.10 0 0.12 0.14 0.15 0.20 0.18 0.41
θ2 ∩ θ3 0 0.20 0.19 0.23 0.30 0.41 0.42 0.70

θ1∩(θ2∪θ3) 0 0 0 0.00
θ2∩(θ1∪θ3) 0 0 0.05 0.06
θ3∩(θ1∪θ2) 0 0 0.01 0.01 0.01 0.02

2 0 0 0 0
θ1 0.10 0.20 0.08 0.10 0.26 0.14 0.31 0.24 0.39 0.41 0.62 0.67
θ2 0.20 0.10 0.03 0.04 0.10 0.05 0.17 0.09 0.17 0.15 0.27 0.07 0.37 0.33
θ3 0.30 0.10 0.10 0.12 0.13 0.13 0.29 0.23 0.37 0.39 0.31 0.23 1.00

2θ1 0 0 0.02 0.02 0.025 0.03
2θ2 0 0 0 0 0 0
2θ3 0 0 0 0

θ1 ∪ θ2 0.10 0 0 0 0 0 0 0 0 0 0.01 0
θ1 ∪ θ3 0.10 0.20 0.02 0.02 0.025 0.03 0.05 0.03 0.06 0.05
θ2 ∪ θ3 0 0 0 0 0 0 0 0 0 0 0 0
θ1∪θ2∪θ3 0 0 0 0 0 0 0 0 0 0

Table 4.1: MinC combination of gbba’s m1 and m2 on hybrid DSm models M1, ...,M7.

DSm model, (or equivalently k-ary combination on the free DSm model), and after it we use
some proportionalization in the same way as in the case of the minC combination of two gBF’s.
Hence we can see that the minC combination is defined on any DSm model for any k generalized
belief functions.

4.5 Examples of minC combination

Three simple examples for both the static and dynamic fusion on Shafer’s DSm modelM0 have
been presented in [10]. Nevertheless, for an illustration of all main properties of the generalized
minC rule it is necessary to see, how the rule works on general hybrid DSm models. Therefore
we present examples of fusion on seven different hybrid DSm models M1, ...,M7 in this text,
see Table 4.1.

For easier comparison of the generalized minC combination with the hybrid DSm rule we use
the models from Examples 1 — 7, see DSm book Vol. 1 [20], Chapter 4. All the combinations are
applied to two generalized belief functions on a 3-element frame of discernment Θ = {θ1, θ2, θ3}.
The hybrid DSm models from the examples are given as it follows:

M1 : θ1 ∩ θ2 ∩ θ3
M1≡ ∅,

M2 : θ1 ∩ θ2
M2≡ ∅, thus also θ1 ∩ θ2 ∩ θ3

M2≡ ∅,
M3 : θ2 ∩ (θ1 ∪ θ3)

M3≡ ∅ and hence also θ1 ∩ θ2
M3≡ θ2 ∩ θ3

M3≡ θ1 ∩ θ2 ∩ θ3
M3≡ ∅,

M4 =M0: θ1 ∩ θ2
M4≡ θ2 ∩ θ3

M4≡ θ1 ∩ θ3
M4≡ ∅ and hence also θ1 ∩ θ2 ∩ θ3

M4≡ θ1 ∩ (θ2 ∪ θ3)
M4≡

θ2 ∩ (θ1 ∪ θ3)
M4≡ θ3 ∩ (θ2 ∪ θ3)

M4≡ 2
M4≡ ∅, and further 2θ1

M4≡ θ1, 2θ2
M4≡ θ2, 2θ3

M4≡ θ3,

M5 : θ1
M5≡ ∅ (θ1 is removed from Θ = {θ1, θ2, θ2} in fact) thus all X ∈ DΘ which include

intersection with θ1 are forced to be empty ( i.e. X
M5≡ ∅), and all Y ∈ DΘ which include union

with θ1 are forced to be equivavent to some element of DΘ
M5

,

M6 : θ1
M6≡ θ2

M6≡ ∅, thus θ1 ∪ θ3
M6≡ θ2 ∪ θ3

M6≡ θ1 ∪ θ2 ∪ θ3
M6≡ θ3 ∪ (θ1 ∩ θ2)

M6≡ θ3, and all
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other X ∈ DΩ are forced to be empty ( i.e. X
M6≡ ∅),

M7 : θ3 ∪ (θ1 ∩ θ2)
M7≡ ∅, i.e. also θ3

M7≡ ∅ and θ1 ∩ θ2
M7≡ ∅, thus only θ1 ∪ (θ2 ∩ θ3)

M7≡
θ1

M7

6≡ ∅, θ2 ∪ (θ1 ∩ θ3)
M7≡ θ2

M7

6≡ ∅, θ3 ∪ (θ1 ∩ θ2)
M7≡ θ3

M7

6≡ ∅, and all the other X ∈ DΘ are
constrained, for more details see [20].

We use the following abbreviations for 4 elements of DΘ: 2 for (θ1∩θ2)∪(θ1∩θ3)∪(θ2∩θ3) =
(θ1 ∪ θ2)∩ (θ1 ∪ θ3)∩ (θ2 ∪ θ3), 2θ1 for θ1 ∪ (θ2∩ θ3) = (θ1 ∪ θ2)∩ (θ1 ∪ θ3), 2θ2 for θ2∪ (θ1 ∩ θ3),
and 2θ3 for θ3 ∪ (θ1 ∩ θ2). Thus 2 is not any operator here, but just a symbol for abbreviation;
it has its origin in the papers about minC combination [4, 10], see also Chapter 10 in DSm book
Vol. 1 [20].

The generalized BF’s Bel1 and Bel2 are represented by generalized bba’s m1 and m2 from
the referred Examples 1—7 again. For the values of gbbm’s mi(A) see the 2nd and 3rd column
of Table 4.1. All elements of the hyper-power set DΘ, which correspond to the given frame of
the discernment Θ, are placed in first column of the table.

For better comparison of different results of the generalized minC combination on different
DSm models we put all the results into one table. Every row of the table body contain an element
A of DΘ, corresponding values of source gbba’s mi(A), value m0(A), which corresponds to the
free DSm model Mf , and gbbm’s mij(A) corresponding to hybrid DSm models M1 — M7

referred in the first row of the table head. The fourth column of Table 4.1 present values m0(A)
of the generalized level of the generalized minC combination. These values coincide with the
resulting values m(A) on the free DSm model Mf , where values for all elements A ∈ DΘ are
defined and printed.

To space economizing, we present the DSm models Mi together with the resulting gbbm
values mij(A) in the corresponding columns of Table 4.1: only values for A ∈ DΘ

Mi
are printed.

The 0 values for A ∈ DΘ which are constrained (forced by constraints to be empty) are not

printed, similarly the 0 values for X ∈ DΘ which are Mi-equivalent to some A ∈ DΘ
Mi

(A
Mi≡

X 6= A) are also not printed. Thus for example θ1 ∩ θ2 ∩ θ3
M1≡ ∅, θ1 ∩ θ2 ∩ θ3

M2≡ θ1 ∩ θ2
M2≡ ∅

consequently mij(θ1 ∩ θ2 ∩ θ3) = 0 in both models M1 and M2 and mij(θ1 ∩ θ2) = 0 in model

M2, hence the corresponding cells in the table are blank. Similarly θ1 ∩ (θ2 ∪ θ3)
M2≡ θ1 ∩ θ3,

θ2 ∩ (θ1 ∪ θ3)
M2≡ θ2 ∩ θ3, 2θ3 = θ3 ∪ (θ1 ∩ θ2)

M2≡ θ3, and 2
M2≡ θ3 ∩ (θ1 ∪ θ2), thus values

m0(X) are added to values m0(A) and m1(X) = mij(X) = 0 for all such Xs and corresponding

As (A
M2≡ X 6= A), i.e. mij(θ1 ∩ (θ2 ∪ θ3)),mij(θ2 ∩ (θ1 ∪ θ3)),mij(2θ3)mij(2) are forced to

be 0 in DSm model M2, hence the corresponding cells in the 6th and 7th columns of the table
are also blank. On the other hand there are printed 0 values for mij(θ1 ∪ θ2) = mij(θ2 ∪ θ3) =
mij(θ1 ∪ θ2 ∪ θ3) = mij(2θ2) = 0 because these 0 values are not forced by constraints of the
model M2 but they follow values of input gbba’s m1 and m2. M4 ≡ M0 is Shafer’s DSm
model thus the values are printed just for A ∈ 2Θ in the 10-th and 11-th columns. For details
on equivalence of A ∈ DΘ on hybrid DSm models M3,M5,M6,M7, see Chapter 4 in DSm
book Vol. 1 [20]; for the model M3 see also Example 6 in Chapter 3 of this volume, specially
the 5-th column of Table 3.6 as the modelM3 coincides with DSm modelM4.3 there. There is
no row for ∅ in Table 4.1 as all the cells should be blank there.

Because of the values mi(A) of the used gbba’s m1 and m2, there is no difference between
mi1 and mi2 on all the models M1, ...,M7, moreover, there is also no difference between m1j

and m2j on model M1. Trivially, there is no difference on trivial DSm model M6 which have
the only element θ3 not equivalent to empty set (DΘ

M6
= {θ3, ∅}) thus there is the only possible



4.6. COMPARISON OF THE GENERALIZED MINC COMBINATION AND HYBRID
DSM COMBINATION RULES 125

gbbm m(θ3) = 1 on the model M6. Trivially, there is also no difference among mij on the free
DSm model Mf because there is no constraint and consequently no proportionalization there.

To economize space in the table again, only columns with different values are printed. Results
m1 of the combination step which groups together values m0(X) of Mi-equivalent elements of
DΘ are not presented from the same reason.

4.6 Comparison of the generalized minC combination and

hybrid DSm combination rules

There is presented minC combination of generalized BF’s Bel1 and Bel2 on the free DSm model
and on 7 hybrid DSm models in the previous section. For a comparison of the generalized minC
combination rule with the hybrid DSm rule (DSmH rule), we compute or recall the DSm rule
results on the same DSm models from the examples in DSm book 1 [20], Chapter 4. We
present the results in the same way as there were presented the results of the generalized minC
combination in the previous section, see Table 4.2. From the definitions of the both the rules

Mf M1 M2 M3 M4 M5 M6 M7

m1 m2 mMf mDSmH mDSmH mDSmH mDSmH mDSmH mDSmH mDSmH

θ1∩θ2∩θ3 0 0 0.16
θ1 ∩ θ2 0.10 0.20 0.22 0.22
θ1 ∩ θ3 0.10 0 0.12 0.12 0.14 0.17
θ2 ∩ θ3 0 0.20 0.19 0.19 0.26 0.33

θ1∩(θ2∪θ3) 0 0 0 0.02
θ2∩(θ1∪θ3) 0 0 0.05 0.07
θ3∩(θ1∪θ2) 0 0 0.01 0.03 0.03

2 0 0 0 0
θ1 0.10 0.20 0.08 0.08 0.12 0.16 0.18 0.43
θ2 0.20 0.10 0.03 0.03 0.08 0.12 0.13 0.24 0.24
θ3 0.30 0.10 0.10 0.10 0.17 0.23 0.24 0.39 1.00

2θ1 0 0 0.02 0.04 0.04
2θ2 0 0 0 0.01 0.01 0.01
2θ3 0 0 0 0.07

θ1 ∪ θ2 0.10 0 0 0 0.09 0.11 0.11 0.33
θ1 ∪ θ3 0.10 0.20 0.02 0.02 0.06 0.08 0.17
θ2 ∪ θ3 0 0 0 0 0 0.05 0.05 0.04
θ1∪θ2∪θ3 0 0 0 0 0 0.07 0.12

Table 4.2: DSmH combination of gbba’s m1 and m2 on hybrid DSm models M1, ...,M7.

it is obvious that the minC and DSmH rules coincide themselves on the free DSm model and
that they coincide also with the classic DSm (DSmC) rule and with the conjunctive rule of
combination of gBF’s on DSm hyper-power sets. In the examples we can compare the fourth
columns in both the tables.

Trivially, both the rules coincide also on trivial DSm models with the only non-empty
element, see e.g. M6 and the corresponding columns in the tables.

The presented examples are not enough conflicting to present differences between proportion-
alizations propi1 and propi2. Therefore we add another example for presentation of their differ-
ences and for better presentation of their relation to DSmH rule. For this reason we use a mod-
ified Zadeh’s example on Shafer’s model on 4-element frame of discernment Θ = {θ1, θ2, θ3, θ4}:
M8 =Mf (Θ). The small non-conflicting element is split to two parts θ3 and θ4 and similarly
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its bbms. In the same time, it is a modification of the example from subsection 5.4.1 from
Chapter 5 in DSm book Vol. 1, where small parts of m(θ3 ∪ θ4) are more specified to θ3 and
θ4 in inputs bba’s, see Table 4.3. When coarsening {θ1, θ2, θ3, θ4} to {θ1, θ2, θ3 ≡ θ4} in our
present example, we obtain an instance of the classic Zadeh’s example. Hence our example in
Table 4.3 is just one of many possible refinements of Zadeh’s example.

The structure of the table is analogous to that of previous tables. As the whole table
representing DΘ has 167 rows, all the rows which include only 0s and blank cells are skipped.
Different results of minC using 4 proportionalizations are presented in 5-8th columns of the table.
DSmH results are presented in 9-th column. As it is already mentioned in the introduction,
we cannot forget that Dempster’s rule produces correct results for combination of any 2 belief
functions which correctly represent mutually probabilistically independent evidences, which are
not in full contradiction, on Shafer’s model. Therefore we present also the result of application
of Dempster’s rule in the last column of Table 4.3.

Mf M8 M8 M8 M8 M8 M8

m1 m2 m0 m11 m12 m21 m22 mDSmH m⊕
θ1 ∩ θ2 0 0 0.9506

θ1 ∩ θ3 0 0 0.0098

θ2 ∩ θ4 0 0 0.0097

θ3 ∩ θ4 0 0 0.0001

θ1∩(θ3∪θ4) 0 0 0.0196

θ2∩(θ3∪θ4) 0 0 0.0097

θ1 0.98 0 0 0.31686 0 0.31686 0 0 0

θ2 0 0.97 0 0.31686 0 0.31686 0 0 0

θ3 0 0.01 0.0001 0.00992 0.00992 0.01578 0.01578 0.0001 0.20

θ4 0.01 0 0.0002 0.00994 0.00994 0.02166 0.02166 0.0002 0.40

θ1 ∪ θ2 0 0 0 0.31686 0.95060 0.31686 0.95060 0.9506 0

θ1 ∪ θ3 0 0 0 0 0 0 0 0.0098 0

θ2 ∪ θ4 0 0 0 0 0 0 0 0.0097 0

θ3 ∪ θ4 0.01 0.02 0.0002 0.02954 0.02954 0.01196 0.01196 0.0003 0.40

θ1∪θ3∪θ4 0 0 0 0 0 0 0 0.0196 0

θ2∪θ3∪θ4 0 0 0 0 0 0 0 0.0097 0

Table 4.3: Comparison of minC combination, hybrid DSm and Dempster’s rules on a modified
Zadeh’s example on Shafer’s model M8 ≡ M0(Θ) for a 4-element frame of discernment Θ =
{θ1, θ2, θ3, θ4}. (Only non-empty non-zero rows of the table are printed.)

Results of the minC combination are usually more specified (i.e. gbbm’s are located to less
focal elements) in general cases, compare the columns corresponding to the same DSm models in
Tables 4.1 and 4.2, see also comparison in Table 4.3. It holds more when using proportionaliza-
tions propi1, which produce more specified results than proportionalizations propi2 do. There
are also examples, where it is not possible to say which rule produces more of less specified
results. It is in cases of totally conflicting focal elements, where all input gbbm’s corresponding
to these elements are assigned to X ≡ ∅ by m0 ≡ mMf .

Moreover the counter examples arise in a special cases of input gBF’s with focal elements
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which are all totally conflicting and some of them assign(s) gbba to overlapping element(s)
of frame of discernment. For example, let us assume hybrid DSm model M2 and gBF’s
Bel3, Bel4, Bel5 given by gbba’s m3(θ1) = 1, m4(θ2 ∩ θ3) = 1 and m5(θ1 ∩ θ2 ∩ θ3) = 1.

When combining Bel3 and Bel4 using prop22 we obtain a counter example for static fusion:
m11(θ1) = m11(θ2 ∩ θ3) = m11(θ1 ∪ (θ2 ∩ θ3)) = 1/3, m12(θ1 ∪ (θ2 ∩ θ3)) = 1, m21(X) =
1/12, m22(θ1 ∪ θ2 ∪ θ3) = 1, whereas for DSmH we obtain mDSmH(θ1 ∪ (θ2 ∩ θ3)) = 1, i.e.
mDSmH(2θ1) = 1. We can immediately see that θ1∪θ2∪θ3 ⊃ θ1∪ (θ2∩θ3). When using prop21

it not possible to say which of the rules produces more specified results as m21 assigns 1/12 to
every element of modelM: one of them is equal to 2θ1 = θ1∪ (θ2∩ θ3) (to what DSmH assigns
1), 4 of them are subset of 2θ1, 3 of them are supersets of 2θ1 and 4 of them are incomparable.

When combining Bel3 and Bel5 using prop21 we obtain a similar case for dynamic fusion:
m11(θ1) = m12(θ1) = m22(θ1) = mDSmH(θ1) = 1 and m21(X) = 1/12 for all ∅ 6≡ X ∈ DΘ

M2
.

m21 assigns 1/12 to every element of model M again: one of them is equal to θ1 (to what
DSmH assigns 1, 1 of them θ1 ∩ θ3 is subset of θ1, 4 of them (2θ1, θ1 ∪ θ2, θ1 ∪ θ3, θ1 ∪ θ2 ∪ θ3)
are supersets of θ1 and other 6 of them are incomparable.

A detail study of situations where it is not possible say whether minC combination produces
more specified results and situations where DSmH rule produces more specified results is an
open problem for future.

The principal difference between the minC combination and the hybrid DSm rule is the
following: DSmH rule handles separately individual multiples of gbbm’s m1(X)m2(Y ) and
assign them to intersection (if non-empty) or to union (if non-empty) of focal elements X and Y .
Whereas the minC combination groups together all the multiples, where X∩Y are mutuallyM-
equivalent and assigns the result to X∩Y (if non-empty) or proportionalizes it to focal elements
derived from

⋃
(X ∩ Y ). Hence multiples mi(θ1)mj(θ2 ∩ θ3),mi(θ1)mj(θ1 ∩ θ2 ∩ θ3),mi(θ1 ∩

θ2)mj(θ2 ∩ θ3),mi(θ1 ∩ θ2)mj(θ1 ∩ θ2 ∩ θ3) and other M-equivalent are reallocated all together
in the minC combination. Similarly multiples mi(θ1)mj(θ2),mi(θ1)mj(θ1∩θ2),mi(2θ1)mj(θ1∩
θ2),mi(θ1 ∩ θ2)mj(θ1 ∪ θ2),mi(θ1 ∩ θ2)mj(θ1 ∪ θ2 ∪ θ3) and other M-equivalent are reallocated
also all together in the minC combination. This is also the reason of minC results in the special
cases, where X ∪ Y ⊂ ⋃(X ∩ Y ) and m1(Z) = 0 for all Z ∈ DΘ

M, as in the previous paragraph.

The other principal difference is necessity of n-ary version of the rule for DSmH. Whereas
we can apply (n-1) times computation of binary m0 and some proportionalization after, in the
case of the binary minC combination.

4.7 Related works.

We have to remember again the comparison of classic minC with DSmH on Shafer’s DSm model
at first, see Chapter 10 in [20].

To have a solid theoretical background for comparison of DSm rules with the classic ones,
a generalization of Dempster’s rule, Yager’s rule [23], and Dubois-Prade rule [13] has been
presented in [6, 7], see also Chapter 3 in this volume, and the generalized minC combination
in [8].

We cannot forget for new types of DSm rules, especially Proportional Conflict Redistribution
Rules [21], which are ”between” DSmC and DSmH rules on one side and minC approach on the
other side. Comparison of these rules with the generalized minC approach is a very interesting
task for forthcoming research.
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We have to mention also works by Besnard [1] and his collaborators Jaouen [16] and Perin
[18], who propose to replace the classical Boolean algebras with a distributive lattice, hoping it
might solve Smets’ bomb issue. Their distributed lattice generated on a frame of discernment is
the free DSm model in fact, it also coincides with a lattice L(Θ) in minC combination. Moreover
these authors use a conflicting relation for a construction of their evidential structure. There
is no concept of negation similarly to DSm approach. Comparison of the conflicting relation
with DSm constraints and of the evidential structures with hybrid DSm models is still an open
problem for future research to formulate a relation between the two independently developed
approaches to belief combination on distributive lattices. Nevertheless neither this issue really
new as it has been started and unfortunately unfinished by Philippe Smets in 2004/2005.

4.8 Conclusion

The minC combination rule generalized to DSm hyper-power sets and general hybrid DSm
models has been presented both for static and dynamic fusion of generalized belief functions.

Examples of the generalized minC combination on several hybrid DSm models have been
presented and discussed. After it, a comparison of the generalized minC combination and the
hybrid DSm rule has been performed and several open problems for a future research has been
defined.

A step for inclusion of minC combination into family of DSm combination rules has been
done.
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