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Abstract: Large distributed sensor networks (DSN) with disparate sensors, pro-

cessors and wireless communication capabilities are being developed for a variety of

commercial and military applications. Minimizing power consumption of the nodes

is a critical issue to their good functioning during the mission or application, to

reduce their size and weight, and their cost so that their deployment is economically

viable. In this chapter, we describe a robust, flexible, and distributed smart fusion

algorithm that provides high decision accuracy and minimizes power consumption

through efficient use of network sensing, communication, and processing resources.

Our approach, developed on information theory-based metrics, determines what net-

work resources (sensors, platforms, processing, and communication) are necessary to

accomplish mission tasks, then uses only those necessary resources. It minimizes the

network power consumption and combines valuable information at features and deci-

sion level using DSmT. We demonstrate the proposed optimal, fully autonomous,

smart distributed fusion algorithm for target detection and classification using a

DSN. Our experimental results show that our approach significantly improves the

detection and classification accuracy using the required high quality sensors and fea-

tures, and valuable fused information.

The part of this work was funded by DARPA/IXO under the contract # F30602-01-C-0192. The authors would like to

thank in particular Dr. Sri Kumar for funding this work under the SensIT program.
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18.1 Introduction

S
patially distributed network of inexpensive, small and smart nodes with multiple onboard sensors

is an important class of emerging networked systems for various defense and commercial applica-

tions. Since this network of sensors has to operate efficiently in adverse environments using limited

battery power and resources, it is important that appropriate sensors process information hierarchically

and share information only if it is valuable in terms of improving the decision accuracy such that highly

accurate decision is made progressively. One way to address this problem is to activate only those sensors

that provide missing and relevant information, to assess the quality of information obtained from the ac-

tivated sensors (this helps in determining the sensor quality), to assess the value of obtained information

in terms of improving the decision (e.g., target detection/track) accuracy, to communicate only relevant,

high quality and valuable information to the neighboring nodes and to fuse only valuable information

that aid in progressive decisions. Information theoretic approaches provide measures for relevance, utility,

missing information, value of information, etc. These measures help in achieving hierarchical extraction

of relevant and high quality of information that enable in selection/actuation of relevant sensors and

dynamically discard information from noisy or dead sensors and, progressive improvement of decision

accuracy and confidence by utilizing only valuable information while fusing information obtained from

neighboring nodes. In this chapter, we describe a minmax entropy based technique for missing informa-

tion (feature) and information type (sensor) discovery, within class entropy based technique for sensor

discrimination (i.e., quality assessment), mutual information for features quality assessment and, mutual

information and other measures for assessing the value of information in terms of improvement in decision

accuracy. In addition, we briefly describe how high quality, relevant and valuable information is fused us-

ing a new theory – DSmT which provides rules for combining two or more masses of independent sources

of information that is dynamically changing in real time which is essential in the network of disparate

sensors that is considered here.

To the best knowledge of this author there is no study on sensor discrimination using within class

entropy metric is reported even though, there is one study on using mutual information for selecting a

subset of features from a bigger set that is described in [2]. The technique described in this chapter uses

within class entropy as a metric to assess the quality (good vs. bad) of a sensor. Unlike our technique,

the technique in [2] is static in nature and cannot handle the case where the dimensionality of the feature

set varies. In [15], the author shows that in general by fusing data from selective sensors the performance

of a network of sensors can be improved. However, in this study, no specific novel metrics for the feature

discovery and feature/sensor discrimination were developed unlike in this chapter. In [10], techniques to

represent Kalman filter state estimates in the form of information – Fisher and Shannon entropy are pro-

vided. In such a representation it is straightforward to separate out what is new information from what is
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either prior knowledge or common information. This separation procedure is used in decentralized data

fusion algorithms that are described in [10]. However, to the best knowledge of this author no study has

been reported on using minmax entropy principle for the feature and information type discovery. Fur-

thermore, to our knowledge the proposed value of information based fusion is not studied by others and is

another significant contribution of this chapter. In addition, the significance of this study is the applica-

tion of feature discovery and sensor discrimination in awakening the required sensor and in the formation

of a cluster of distributed sensors to reduce the power consumption, to improve the decision accuracy and

to reduce the communication bandwidth requirements. This chapter is a comprehensive of our studies

reported in [6, 7, 8] with the addition of application of DSmT for fusion at both feature and decision levels.

In the next section, proposed techniques are described. The simulation description and experimental

results are provided in section 18.3. Conclusions and future research directions are provided in section

18.4.

18.2 Description of proposed research

18.2.1 Discovery of missing information

In the case of applications of a distributed network of disparate sensors such as (a) target detection,

identification and tracking, (b) classification, (c) coalition formation, etc., the missing information could

correspond to feature discovery. This helps in only probing (awakening) the sensor node that can provide

the missing information and thus save power and processing by not arbitrarily activating nodes and by

letting the unused sensor be in the sleep mode. We apply the minmax entropy principle described in [9]

for the feature discovery. The details of estimation of missing information in other words feature discovery

and information type using the minmax entropy principle are as follows.

18.2.1.1 Minmax entropy principle

Let N given values corresponds to n different information types. Let zij be the j-th member of i-th

information type (where the information type is defined as a sensor type that gives similar information

measures) so that

i = 1, 2, . . . , n j = 1, 2, . . . ,mi

n∑

i=1

mi = N (18.1)

Then the entropy for this type of classes of information is:

H = −
n∑

i=1

mi∑

j=1

zij
T

ln
zij
T

where T =

n∑

i=1

mi∑

j=1

zij (18.2)
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Let Ti =
∑mi

j=1 zij . Using this, H can be written as:

H =

n∑

i=1

Ti
T
Hi −

n∑

i=1

Ti
T

ln
Ti
T

= HW +HB (18.3)

where Hi = −
mi∑

j=1

zij
T

ln
zij
T

is the entropy of values that belong to information i.

In the equation above, HW and HB are entropy of within classes (information types) and between

classes, respectively. We would like types of information to be as distinguishable as possible and we

would like the information within each type to be as homogenous as possible. The entropy is high if the

values belonging to a type (class) represent similar information and is low if they represent dissimilar

information. Therefore, we would like HB to be as small as possible and HW as large as possible. This

is the principle of minmax entropy.

18.2.1.2 Application of minimax entropy principle for feature discovery

Let z be the missing value (feature). Let T be the total of all known values such that the total of all

values is T + z. Let T1 be the total of values that belong to information type to which z may belong.

T1 + z then is the total of that particular type of information. This leads to:







H = −
∑′ zij

T + z
ln

zij
T + z

− z

T + z
ln

z

T + z

HB = −
∑′′ Ti

T + z
ln

Ti
T + z

− T1 + z

T + z
ln
T1 + z

T + z

(18.4)

Here
∑′

denotes the summation over all values of i, j except that correspond to the missing informa-

tion and
∑′′

denotes over all values of i except for the type to which the missing information belongs,

respectively.

We can then estimate z by minimizing HB/HW or HB/(H − HB) or HB/H , or by maximizing

(H − HB)/HB or H/HB. The estimates of z provide the missing information values (features) and

information (sensor) type. From the above discussion, we can see that we will be able to discover features

as well as type of sensor from which these features can be obtained. This has the advantage of probing

the appropriate sensor in a DSN. The transfer of information and probing can be achieved in such a

network by using network routing techniques. Before trying to use the newly acquired feature set from

the estimated information type i.e., sensor, it is advisable to check the quality of the sensor to make

sure that the sensor from which we are seeking the information is not noisy (not functioning properly)

or “dead” to reduce the cost of processing. In a DSN this has an added advantage of reducing the

communication cost. We measure (see next section) the quality (i.e. discriminate a good sensor vs. bad

sensor) by using an information theoretic measure - the within class entropy.
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18.2.2 Measure of consistency

We measure relevance by measuring consistency. For this we have developed a metric based on within

class entropy that is described in this section. Let there are N events (values) that can be classified in

to m classes and let an event xij be the j-th member of i-th where i = 1, 2, . . . ,m, j = 1, 2, . . . , ni and
∑m

i=1 ni = N . The entropy for this classification is:

H =

m∑

i=1

ni∑

j=1

p(i)p(xij) log(
1

p(i)p(xij)
)

= −
m∑

i=1

ni∑

j=1

p(i)p(xij log(p(i)p(xij)

= −
m∑

i=1

p(i)

ni∑

j=1

p(xij) log(p(xij)−
m∑

i=1

p(i) log(p(i))

ni∑

j=1

p(xij)

=

m∑

i=1

p(i)Hi −
m∑

i=1

p(i) log(p(i))

= HW +HB

The penultimate equality comes from the definition of Hi = −
m∑

i=1

p(i)

ni∑

j=1

p(xij) log(p(xij) represent-

ing the entropy of a class i and the total probability theorem, i.e.
∑ni

j=1 p(xij) = 1. HW is called the

entropy within classes and HB is called the entropy between classes.

The entropy HW is high if the values or events belonging to a class represent similar information

and is low if they represent dissimilar information. This means HW can be used as a measure to define

consistency. That is, if two or more sensor measurements are similar then their Hw is greater than if they

are dissimilar. Therefore, this measure can be used in sensor discrimination. Note that even though the

definitions of within class and between class entropy here are slightly different from section 18.2.1, they

are similar in concept. Note also that the minmax entropy measure that uses both within and between

class entropies was used earlier in the estimation of missing information; but here, within class entropy

is defined as a consistency measure that can be used in sensor discrimination or selection. These two

metrics have different physical interpretations and are used for different purposes.

18.2.3 Feature discrimination

After making sure about the quality of sensor (the information type) from which missing information can

be obtained, it is necessary to make sure that the observations (features) from that sensor does help in

gaining information as far as the required decision is concerned. This step doubly makes sure that the

estimated missing information is indeed needed. For this, we have developed metrics based on conditional

entropy and mutual information which are described in the following two subsections.
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18.2.3.1 Conditional entropy and mutual information

Entropy is a measure of uncertainty. Let H(x) be the entropy of previously observed x events. Let y

be a new event. We can measure the uncertainty of x after including y by using the conditional entropy

which is defined as:

H(x|y) = H(x, y)−H(y) (18.5)

with the property 0 ≤ H(x|y) ≤ H(x). The conditional entropy H(x|y) represents the amount of

uncertainty remaining about x after y has been observed. If the uncertainty is reduced then there is

information gained by observing y. Therefore, we can measure the importance of observing estimated y

by using conditional entropy. Another measure that is related to conditional entropy that one can use is

the mutual information I(x, y) which is a measure of uncertainty that is resolved by observing y and is

defined as:

I(x, y) = H(x)−H(x|y) (18.6)

To explain how this measure can be used to measure the importance of estimated missing information

(e.g., features) which is referred to as feature discrimination, an example is provided below.

18.2.3.2 Example of feature discrimination based on entropy metrics

Let A = {ak}, k = 1, 2, . . . be the set of features from sensor 1 and let B = {bl}, l = 1, 2, . . . be the set

of features from sensor 2. Let p(ak) be the probability of feature ak and p(bl) the probability of feature

bl. Let H(A), H(B) and H(A|B) be the entropy corresponding to sensor 1, sensor 2 and sensor 1 given

sensor 2, respectively, and they are defined as [9]:






H(A) =
∑

k

p(ak) log(
1

p(ak)
)

H(A|B) = H(A,B)−H(B) =
∑

l

p(bl)H(A|bl) =
∑

l

p(bl)
∑

k

p(ak|bl) log(
1

p(ak|bl)
)

(18.7)

Here, the entropy H(A) corresponds to the prior uncertainty and the conditional entropy H(A|B)

corresponds to the amount of uncertainty remaining after observing features from sensor 2. The mu-

tual information I(A,B) = H(A)–H(A|B) corresponds to uncertainty that is resolved by observing B

in other words features from sensor 2. From the definition of mutual information, it can be seen that

the uncertainty that is resolved basically depends on the conditional entropy. Let us consider two types

of sensors at node 2. Let the set of features of these two sensors be B1 and B2, respectively and let

the set of features estimated by the minmax entropy principle described in the previous section be B1.

If H(A|B1) < H(A|B2) then I(A,B1) > I(A,B2). This implies that the uncertainty is better resolved

by observing B1 as compared to B2. This further implies that indeed the estimated B1 corresponds to

features that help in gaining information that aid in the decision process of sensor 1 and B2 does not and

hence, should not be considered.
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Note that even though in the above example only two sensor nodes are considered for simplicity, this

measure or metric can be used in a network of more than two sensors. In such a case, A would be a set

of features that a node already has from other sensors in a cluster that it is a member of and B would be

a new feature set that it receives from a different sensor type that it has not already received from and

it may be a member or not a member of that particular cluster. If the mutual information increases by

including the set of features B then we make a decision of including that sensor as part of this particular

cluster if it is not a member. In case it is a member and the mutual information does not increase then

it would be discarded from that particular cluster.

18.2.4 Measures of value of information

This section describes the measures of value of information that we have developed to determine when to

fuse information from disparate sources. The value is in terms of improving the decision accuracy. Even

though the mathematics of the metrics described below are not novel, the usage of metrics in the context

of verifying value of information with respect to improving the decision accuracy (e.g., classification

accuracy, detection accuracy) is new.

18.2.4.1 Mutual information

Mutual information defined in section 18.2.3.1 can also be used as a measure of value.

18.2.4.2 Euclidean Distance

Unlike mutual information, Euclidean distance does not evaluate the amount of information available

from a second source. It does, however, measure the similarity between two feature sets in Euclidean

space. This value can then be used to determine when to fuse two sources of information, whether they

are from different types of sensors on the same node or from same type of sensors different nodes. A

simple measure, Euclidean distance is defined as:

d =

√
∑

i

(ai − bi)2 (18.8)

where ai, bi and i are defined in Section 18.2.3.1.

18.2.4.3 Correlation

Correlation is also a well known measure of similarity. We use the standard measure of correlation as

defined by:

ρ =
E[(a− µa)(b − µb)]
E[a− µa]E[b − µb]

(18.9)



390 CHAPTER 18. POWER AND RESOURCE AWARE DISTRIBUTED SMART FUSION

where µa and µb are the means of feature sets a and b, respectively. Note that correlation is very closely

related to mutual information, I(x, y) because (18.6) can be rewritten as:

I(x, y) =
∑

k

p(ak, bk) log(
p(ak, bk)

p(ak)p(bk)
) (18.10)

18.2.4.4 Kullback-Liebler distance

Finally, the Kullback-Liebler (KL) distance is derived from entropy, and again is a measure of the sepa-

ration of two feature sets. It is defined as:

D =
∑

k

p(ak) log(
p(ak)

p(bk)
) +

∑

k

p(bk) log(
p(bk)

p(ak)
) (18.11)

18.2.5 Fusion using DSmT

Since in a network of disparate sensor nodes as is considered here, the sources of information are indepen-

dent and changing dynamically based on which sensor and features are selected, for the smart distributed

fusion we use the new theory of plausible and paradoxical reasoning – DSmT developed in [5]. This

theory provides a hybrid DSm rule which combines or fuses two or more masses of independent sources

of information and takes care of restraints i.e., of sets which might become empty at certain time or new

sets that might arise at some other time. In a network of sensor nodes these situations arise (sometimes

we discard the feature set or decision from the other nodes and sometimes we use features from different

type of sensors based on how the scene is changing dynamically) and hence, the application of hybrid

DSm rule for fusion is very appropriate. In addition, since fusion is not done at a centralized location

but done locally dynamically based on the information received from the neighboring nodes, we propose

to extend the decentralized dynamical fusion by combining dynamical fusion using the hybrid DSm rule

for the chosen hybrid model M. Specifically, at the feature level fusion at each sensor node the frame

under consideration at time tl will be

Θ(tl) , {θ1 = acoustic sensor, θ2 = seismic sensor, θ3 = IR sensor location}

and at decision level fusion, Θ(tl) = {θ1 = vehicle present, θ2 = vehicle not present} in the case of a

detection application and,

Θ(tl) , {θ1 = AAV, θ2 = DW, θ3 = HMMWV}

where AAV, DW, and HMMWV represent the vehicle types that are being classified) for the decision

level fusion in the case of a classification application.

Both detection and classification applications are described in section 18.3.2. We derive basic belief

assignments based on the observations (a) from the sensor type for feature level fusion, (b) from the
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features extracted from the sensors’ signals for fusion at the decision level in the case of classification

and detection applications. For example, ma(θ1) = 0 and ma(θ2) = 0, if the feature from the acoustic

sensor (a) – energy is well above the threshold level in the case of the detection application. Θ(tl) changes

as the observation is different based on the above described sensor and feature selection and results in

Θ(tl+1). If we discard observations from a sensor (based on the feature discrimination algorithm explained

above) then Θ diminishes and we apply the hybrid DSm rule to transfer the masses of empty sets to

non-empty sets. If we include observations from a new sensor then we use the classical DSm fusion rule to

generate basic belief assignments mtl+1
(.). For the decentralized decision level fusion at the current node,

consider the Θp(tl) obtained from the previous node and the Θ(tl) of the current node and apply the

hybrid DSm rule by taking the integrity constraints in to consideration. These constraints are generated

differently for the fusion between the sensors and for the fusion from node to node. The pseudo-codes

which generate these constraints are given in section 18.3.2. For example, in the case of node to node

fusion for classification application that is described in section 18.3.2.2.1 fuse_4class=1 will indicate

to put the constraint θ1 ∩ θ2 M
= ∅, θ1 ∩ θ3 M

= ∅, θ1 ∩ θ2 ∩ θ3 M
= ∅ at the current node if the classification at

the previous node corresponds to θ1 = AAV since if the vehicle at the previous node is AAV, the vehicle

at the current node which is very close to the previous node has to be AAV.

18.3 Experimental details and results

Above described algorithms have been applied for the feature discovery, sensor and feature evaluation

(discrimination), cluster formation and distributed smart fusion in a network of both simulated radar

sensors and a network of real disparate sensors and sensor nodes that are spatially distributed. First, in

section 18.3.1, the results obtained using a simple simulated network of radar sensors is provided for the

purposes of proving the concepts. In section 18.3.2 however, experimental results obtained by using a

real DSN of disparate sensors is provided.

18.3.1 Simulated network of radar sensors

This network of sensors is used for tracking multiple targets. Each sensor node has a local and global

Kalman filter based target trackers. These target trackers estimate the target states - position and ve-

locity in Cartesian co-ordinate system. The local tracker uses the local radar sensor measurements to

estimate the state estimates while the global tracker fuses target states obtained from other sensors if it

is consistent and improves the accuracy of the target tracks.

For the purposes of testing the proposed algorithms of this chapter, a network of three radar sen-

sors and a single moving target with constant velocity are considered. Two sensors are considered as
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good and one as bad. A sensor is defined as bad if its measurements were corrupted with high noise (for

example SNR = -6 dB) or is biased. In the first set of examples the SNR of a good sensor is set to be 10 dB.

In the case of simulation of a biased sensor, the bias was introduced as the addition of a random

number to the true position of a target. The bias was introduced this way because the biases in azimuth

and range associated with a radar sensor translate into measured target position that is different from

the true target position. In addition, in our simulations, we assume that the sensors are measuring

the target’s position in the Cartesian co-ordinate system instead of the polar co-ordinate system. The

amount of bias was varied by multiplying the random number by a constant k i.e.,measured position =

(true position + k·randn) + measurement noise.

First, the minmax entropy principle was applied to find the missing information, the appropriate

sensor was probed to obtain that information, then the consistency measure – within class entropy was

applied to check whether the new sensor type and the information obtained from that particular sensor

is consistent with the other sensors.

In the following two figures, within class entropy is plotted for features discovered from two unbiased

sensors and, one biased and one unbiased sensor. The measurement noise level was kept the same for all

three sensors. However, the bias k was set to 1.0 in Figure 18.1 and was set to 2 in Figure 18.2. The

within class entropy was computed for different iterations using the definition provided in the previous

section. The probability values needed in this computation were estimated using the histogram approach

which is elaborated below. From these two figures, it can be seen that the within class entropy of two

unbiased sensors is greater than the within class entropy of one biased and one unbiased sensors. This

indicates that the within class entropy can be used as a measure to discriminate between sensors or to

assess the quality of sensors (to select sensors).

Next, the conditional entropy and mutual information measures described in the previous section are

used to make sure the estimated features obtained from the selected sensors indeed aid in the decision

process.

For this, the target states that were estimated from the measurements of a simulated radar at each

sensor node using the local Kalman filter algorithm is used as feature sets. The estimated target states

at each sensor node were transmitted to other nodes. For this simulation, only estimated position was

considered for simplicity.
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Figure 18.1: The plot of within class entropy of sensors 1 & 2 (unbiased sensors) and, 1 (unbiased) and

3 (biased). Bias constant k = 1

Figure 18.2: The plot of within class entropy of sensors 1 & 2 (unbiased sensors) and, 1 (unbiased) and

3 (biased). Bias constant k = 2
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We considered the estimated state vector as the feature set here. Since the goal of this simulation

is proof of concept, the feature discrimination algorithm was implemented at sensor node 1 with the

assumption it is a good sensor. Let the state estimate outputs of this node be Ag. Let the state estimate

outputs of a second sensor correspond to Bg and a third sensor correspond to Bb.

For the computation of entropy, the probability values are needed as seen from the equation above.

To obtain these values, ideally, one would need probability distribution functions (pdfs). However, in

practice it is hard to obtain closed form pdfs. In the absence of knowledge of actual pdfs it is a general

practice to estimate them by using histograms [11]. Researchers in signal and image processing use this

technique most commonly [13]. Another practical solution to estimate the probability and conditional

probabilities is by using the counting or frequency approach [12]. However, it is well known that the

estimates of probabilities and conditional probabilities are more accurate if they are estimated by using

the pdfs that are approximated from the histograms. Therefore, we use the histogram approach here. In

order to obtain the histograms, initially, we need some data (features) to know how it is distributed. For

this purpose, it was assumed that initially N state estimate vectors were accumulated at each sensor node

and this accumulated vector was transmitted to other nodes. Note also that the accuracy of probability

estimates using the histogram approach depends on the amount of accumulated (training) data. Also

for non-stationary features, it depends on how often the histograms are updated. In practice, since the

training data is limited we have set N to 10 in this simulation. To take care of the non-stationarity of

the features, initially, we wait till N estimates are obtained at each node. From then on we update the

histograms every time instant using the new state estimate and previous nine state estimates. At each

time instant we discard the oldest feature (oldest state estimate).

To get the probability of occurrence of each feature vector, first the histogram was computed. For

this, bin size Nbin of 5 was used. The center point of each bin was chosen based on the minimum and

maximum feature values. In this simulation the bin centers were set as:

min(feature values) + (0 : Nbin − 1) · max(feature values)−min(feature values)

Nbin
(18.12)

Since the histogram provides the number of elements in a given bin, it is possible to compute the

probabilities from the histogram. In particular it is computed as:

Number of elements in a particular bin

Totalnumberofelements

Hence, from these histograms, probabilities were computed. Similarly, conditional probabilities of

p(Ag|Bg) and p(Ag|Bb) were computed from the conditional histograms and these conditional probabilities

are plotted in Figures 18.3 and 18.4, respectively.
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Figure 18.3: Conditional probability of position estimates of sensor 2 at node 2 given position estimates

of sensor 1 at node 1

Figure 18.4: Conditional probability of position estimates of sensor 3 at node 3 given position estimates

of sensor 1 at node 1
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Each colored line in these two plots represents one conditional probability distribution function. Note

that both A and B are vectors and there would be one pdf for each member of set A. Since we have

chosen bin size as 5 there would be 5 members in set A and hence, there are 5 subplots in Figures 18.3

and 18.4.

Using these probabilities, conditional entropies H(Ag|Bg) and H(Ag|Bb), and mutual information

I(Ag, Bg) and I(Ag, Bb) were computed using the equations mentioned above for one set of features from

sensor at node 2 and node 3. After this kind of initial computation of probabilities, conditional entropy

and mutual information, whenever a sensor estimates a new feature it is replaced by the oldest feature

in the feature set and transmitted to other sensors. Subsequently, histograms, probabilities, conditional

entropy and mutual information were computed using this updated feature set. This would take care

of the non-stationarties of features. Thus each new feature can be verified to make sure it is relevant

in terms of aiding in the decision process (e.g., track accuracy) and it is obtained from a good sensor.

Therefore, this technique is dynamic in nature.

18.3.1.1 Versatility of the algorithm

To verify the versatility of this algorithm we considered a different feature sets namely, the sensor measure-

ments itself instead of the position estimates and the first difference in position estimates. We performed

similar simulation that is described above using these two types of feature sets and the associated his-

tograms for the probability, entropy and mutual information computations. In these two cases also we

always obtained I(Ag, Bg) > I(Ag, Bb) for all the 100 runs of Monte Carlo simulations.

18.3.1.2 Sensitivity of the algorithm for sensor discrimination

Next, noise level at sensor 2 and 3 were varied to determine the sensitivity of the sensor discrimination

algorithm. The SNR at sensor 1 was fixed at 10 dB. The algorithm was able to discriminate between

good and bad sensor 100 % of the time when the noise level at sensor 2 is 8 dB and at sensor 3 is 3

dB. The algorithm was able to discriminate about 80 % of the time if the noise level at sensor 3 is 5

dB when the noise level at sensor 2 is fixed at 8 dB. If the noise level at both sensor 1 and 2 is 10 dB

then the algorithm was able to discriminate 100 % of the time when the noise level at sensor 3 is 5 dB.

However, when the noise level at sensor 3 was changed to 7 dB, the percentage of correct discrimination

was dropped to 82 %. Therefore, if the minimum difference between the noise level at sensor 2 and 3

is 5 dB then the discrimination accuracy is 100 %. If the noise level at both sensor 2 and 3 is close (a

difference of 1 dB) then the algorithm cannot discriminate as expected.
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18.3.1.3 Mutual information versus track accuracy

To check indeed when mutual information metric is used to evaluate the information gain by observing

the estimated missing features (information) and it aids in the improvement of the accuracy of decision

(e.g., track accuracy), the following experiment was conducted.

As before, mutual information I(Ag , Bg) and I(Ag , Bb) was computed using measurements as feature

set. If I(Ag,Bg) > I(Ag,Bb) then the state estimates from the good sensor was fused with sensor 1 using

the global Kalman filter algorithm and the DSm combination rule that is described in section 18.2.5. The

position estimation error was computed by comparing the fused state estimate with the true position. To

compare the track accuracies, the state estimates from the bad sensor and good sensor were also fused.

The position estimation error was then computed the same way as explained above.

In Fgure 18.5, the position estimation error using the fused state estimates of sensor 1 & a good sensor

(blue plot) and sensor 1 & a bad sensor (red plot) are plotted. From this figure, it can be seen that the

track accuracy after fusing state estimates from good sensors (1 & 2) is much better than fusing state

estimates from a good sensor and a bad sensor (1 & 3). This implies that better mutual information

correlates to better track accuracy.

In Figure 18.6, the position error is plotted for the case when the noise level at sensor 2 and 3 differs

by 5 dB. In this case also it can be seen that the track accuracy is better when the state estimates from

good sensors is fused as compared to the track accuracy of fused state estimates of a good sensor and a

bad sensor.

We then form a cluster of sensors that are consistent and apply the mutual information metric.

We have shown above that by fusing information from sensors when the mutual information increases,

the decision accuracy improves. We transmit the fused decision (which requires much lower bandwidth

compared to the transmission of decision of each sensor to every other in the network) to other clusters

of sensors and thus reduce the communication bandwidth requirement.
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Figure 18.5: Track accuracy comparison - Noise level at sensor 1 and 2 = 10dB and at sensor 3=0dB

Figure 18.6: Track accuracy comparison - Noise level at sensor 1 and 2 = 10dB and at sensor 3=0dB
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18.3.2 A real network of spatially DSN with disparate sensors

The proposed algorithms described in section 18.2 was implemented on sensor nodes that consists of

multiple sensors, a communication radio and a Sharc processor. These sensor nodes were distributed in

a rough terrain such as a desert. This network was used in detecting, tracking and classifying targets.

Even though we verified the algorithms that estimate the missing information, sensor selection, sensor

and feature assessment in this network of sensor node, in the following subsections, we are concentrating

on the value of information based smart fusion that is described in sections 18.2.4 and 18.2.5 since the

experimental results for the other algorithms are provided in the last section. We provide the experimental

details and the results. We begin with the review of detection and classification algorithms that were

used in this context.

18.3.2.1 Review of algorithms used to check the value of information based smart fusion

The metrics described in section 2.4 are used to measure the value of information obtained from other

sources such as multiple sensors on a single node and from the neighboring nodes in the context of target

detection and classification. For target detection, energy based detector was used and for classification,

maximum likelihood based classifier was used. As mentioned before the value of information is in terms

of improvement in the decision accuracy which corresponds to classification accuracy for a classifier and

detection accuracy or probability of detection for a detector. Note that in this study, we did not develop a

classifier or a detector; however, used those developed by others since the goal of this part of the study is

to develop measures of value of information and verify them in terms of improvement in decision accuracy

when they were used to make a decision of whether to fuse information obtained from the other source or

not. In the following two sections we review the classifier and the detector that were used in this study.

18.3.2.1.1 Maximum likelihood based classifier The classifier we used for the verification of

measures of value of information in terms of improving the decision accuracy is a maximum likelihood

based classifier developed by the University of Wisconsin [16] as part of DARPA’s sensor information

technology (SensIT) program. For a given training features and target labels a Gaussian mixture model

is determined during the training phase of the classifier. During testing the distance between the test

feature vector and ith class Gaussian mixture is computed. This corresponds to negative log likelihood.

Then a priori probability is used to obtain the maximum a posterior classification. The features’ set that

is used here consists of twenty features from the power spectral density. This is computed using 1024

FFT. The feature set is collected by summing up the values over equal length segments of the power

spectrum. For the acoustic and seismic sensors the maximum frequency used was 1000 and 200 Hz,

respectively.
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18.3.2.1.2 Energy based detector An energy based detector is also used for the verification of

improvement in decision accuracy when the value of information based fusion architecture is used. This

detector is developed by BAE, Austin [3]; also as part of the SensIT program. A brief description of this

detector is provided below.

For every block of a given signal the energy of the down sampled version of the power spectral density

is computed. For the computation of the power spectral density, 1024 point FFT is used. This energy is

compared with a threshold value. Whenever the energy is above the threshold it was declared that the

target was detected. The threshold value is adaptively changed based on the background energy.

18.3.2.2 Experimental details

The above described classifier and detector, and measures of value of information and the fusion algorithm

which uses these measures while deciding when to and when not to fuse information were implemented

and were tested using real data that was obtained by distributing sensor nodes along the east-west and

south-north road at Twentynine Palms, CA during one of the field tests (SITEX’02) as shown in Figure

18.7. These sensor nodes are manufactured by Sensoria. On each sensor node, three sensors - acoustic,

seismic and IR sensors, a four channel data acquisition board and a processing board are available. These

nodes also have communication capabilities. For more details on the sensor node, refer to [14].

Figure 18.7: Sensor node distribution at Twenty nine Palms, CA
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Three vehicles – AAV, Dragon Wagon (DW) and HMMWV were driven along the east-west and north-

south road as shown in Figure 18.7 while conducting the experiments. In this figure, nodes placements are

also provided. Totally twenty four nodes were considered in our experiments. We used both seismic and

acoustic data from these nodes when it is appropriate. In the next section, the classification experimental

details and the results are provided and in section 18.3.2.2.2 the detection experiments and the results

are provided. In both these sections experimental details and results are provided with and without value

of information based fusion technique that was developed in this study.

18.3.2.2.1 Classification experiments First, acoustic data from each node is considered. The

maximum likelihood classifier is trained using only acoustic data from individual nodes. The challenges

in the classification experiments are threefold: 1) when to reject a source of data, 2) when to propagate

data between sequential nodes, and 3) when to share individual sensor data within the same node. Using

only acoustic data, we investigated the effectiveness of the four measures of value of information outlined

in Section 18.2.4 - mutual information, Euclidean distance, correlation, and Kullback-Liebler distance.

In addition, we investigated two methods of using these measures. When evaluating the effectiveness

of fusing two sources of data, is it better to compare the two sources with each other or with the stored

training data? To answer this question, we devised several similarity measures to measure the closeness

of two data sources. We calculated these measures between data at all sequential nodes. Then for each

similarity measure, we computed its correlation with correct classification performance at each node. We

call this the performance correlation. The average performance correlation over all nodes for each class

of data using previous node similarity measures is shown in Figure 18.8. Next, we calculated the same

similarity measures between the data at each node and the data stored in the training sets. Again, for

each similarity measure, we computed its correlation with correct classification performance at each node.

The average performance correlation over all nodes for each class of data using training set similarity

measures is shown in Figure 18.9.

Inspection of Figures 18.8 and 18.9 show that the similarity measures Euclidean distance and cor-

relation are more closely aligned with correct classification performance than either mutual information

or Kullback-Liebler distance. In practice, however, we found that the Euclidean distance outperformed

correlation as the determining factor in fusion decisions. Furthermore, comparing Figures 18.8 and 18.9

shows that using the training set for similarity measures is more effective than using the data from the

previous node in the network. We found this to be true in practice as well. Subsequent work with the

seismic data echoed the findings of the acoustic data. Note that even though we use the training data to

make the fusion decision, we perform the actual data fusion with current and previous node data.
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Figure 18.8: Performance correlation of previous node data

Figure 18.9: Performance correlation of training class data
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Rejection of bad data Sometimes one node or one sensor can have bad data, in which case we

prefer to reject this data rather than classify with poor results. The feature discrimination algorithm is

used for this. By rejecting the data, we did not fuse it with any other data, pass it on to any other node,

nor even compute a classification at that source. Our method resulted in the rejection of several sources

of bad data, thus improving the overall classification results as shown in Figures 18.10 and 18.11.

Figure 18.10: Performance of node fusion for the AAV with acoustic sensor data

Figure 18.11: Performance of node fusion for the DW with seismic sensor data
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Node to node fusion The fusion decision can be made with a threshold, i.e. if the distance

between two features sets is below some value, then fuse the two feature sets. The threshold value can

be predetermined off-line or adaptive. We sidestep the threshold issue, however, by basing the fusion

decision on relative distances. To do so, we initially assume the current node belonged to the same class

(aka the target class) as the previous node and employ the following definitions. Let xn be the mean

vector of the current node data. Let xnf be the mean vector of the fused data at the current node.

Let xc1 be the mean vector of the target training class data. Let xc2 , xc3 be the mean vectors of the

remaining training classes. A Euclidean distance ratio is defined as:

rdist = dc1/min(dc2 , dc3) (18.13)

where dci
is the Euclidean distance (18.8) between xn and xci

. We then use the following pseudocode to

make our fusion decisions.

There are two outcomes to the fusion decision. First we decide whether or not to fuse the data at the

current node. If the current node has bad data, fusion can pull up the performance, however, we may not

want to carry the bad data forward to the next node (the second fusion decision outcome). fuse_4class

is a flag indicating whether or not to fuse for the current classification. fuse_4carry is a flag indicating

whether or not to include data from the current node in the fused data that is carried forward. Based on

this decision, the fusion of classification decision is achieved by applying the fusion algorithm described

in section 18.2.5. In Figures 18.10 and 18.11 we show the correct classification improvement gained by

fusing from node to node for the acoustic and seismic sensors, respectively. For the acoustic sensor we

show classification results from the AAV data, while using DW data for the seismic sensor results. In the

case of the acoustic data, the mean correct classification performance across all nodes increases from 70%

for independent operation to 93% with node to node fusion across the network. Similarly, the seismic

correct classification performance increases from 42% to 52%.
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Fusion between sensors After fusion from node to node of the individual sensors, we look at

the benefit of fusing the acoustic and seismic sensor data at the same node. To do so, we employ the

following definitions. Let rdist be defined as in (18.13) but with the new data types (a - acoustic, s -

seismic, and as – a concatenated acoustic/seismic vector). Let xa be the mean vector of the current node

acoustic data after fusion from node to node. Let xs be the mean vector of the current node seismic data

after fusion from node to node. Let xas = xa concatenated with xs (dumb fusion). Let xasf = smart

fusion of xa with xs. Let xin be the data input to the classifier. Now, we employ two steps in the sensor

fusion process as shown in the pseudocode below. In this case also for the fusion of features from two

independent sources such as acoustic and seismic, DSm based technique described in section 18.2.5 is

applied. First we employ a smart sensor fusion routine:

Next, we employ a final fusion routine:

Figure 18.12 shows the results of fusion at each stage in the form of a bar plot. The classification

performance is averaged over all the nodes for each vehicle class. The correct classification performance

improves at each stage of fusion processing as shown in Table 18.1. The results indicate that the fusion

based on value of information helps in improving the decision accuracy at each node significantly.

AAV DW HMMV

Acoustic independent 70% 58% 46%

Seismic independent 72% 42% 24%

Acoustic fusion 93% 80% 69%

Seismic fusion 93% 52% 31%

Acoustic & seismic, independent 76% 55% 58%

Acoustic & seismic with fusion 95% 90% 77%

Table 18.1: Summary of classification performance
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Figure 18.12: Average correct classification performance at each step in the fusion process

18.3.2.2.2 Detection experiments For the detection experiments also both acoustic and seismic

data were considered. First, only acoustic data from individual nodes were used. A threshold value was

initially set which was varied adaptively based on the background energy. The power spectral density

of acoustic data was computed using 1024 point FFT and it was downsampled by 8. The energy of the

downsampled version of the power spectral density was computed. This energy was compared with the

threshold value. If the energy was above the threshold value, it was decided that the target was detected.

The time of detection and the confidence on detection were also calculated. The detection and time of

detection were compared with the ground truth. If the target was detected when it is supposed to be

and if the time of detection is within the region of interest then it was counted towards calculating the

probability of detection. If the detection time is outside the region of interest (missed detection) and if

a target was detected when it should not have been (false alarm) it was counted towards computing the

probability of false alarm. The probability of detection and false alarm using only acoustic data from

individual nodes without any fusion for AAV, DW and HMMWV are: 0.8824, 0.8677, 0.8382 and 0.1176,

0.1323, 0.1618, respectively. Similarly, the probability of detection and false alarm using only seismic

data from individual nodes without any fusion for AAV, DW and HMMWV are: 0.8030, 0.7910, 0.5735

and 0.1970, 0.2090, 0.4265, respectively.
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Next, the mutual information based value of information measure was used on the energy of power

spectral density to make a decision of fusing data between sensors - acoustic and seismic on each individ-

ual node. The detector was tested using the fused data on each node. The probability of detection and

false alarm were computed as described above. The probability of detection of this intelligently fused

data for AAV, DW and HMMWV is: 0.9394, 0.9105 and 0.8529, respectively. The probability of false

alarm is not provided here because it is equal to 1 – probability of detection since both false alarm and

missed detections are combined together. These results are summarized in Figure 18.13 in the form of a

bar graph. From this, it can be seen that the intelligent sensor data fusion based on value of information

and DSmT significantly improves the detection accuracy. This type of fusion especially helps in difficult

data as in the case of HMMWV.

Figure 18.13: Performance of a detector



408 REFERENCES

18.4 Conclusions

In this chapter, we have described how minmax entropy principle can be used in feature (missing infor-

mation) discovery and the type of sensor (information type) from which this missing information can

be obtained. Further, a consistency measure is defined and it has been shown that this measure can

be used in discriminating or assessing the quality of sensors. Next, conditional entropy and mutual in-

formation measures are defined and it has been shown that these two measures can be used in making

sure that the estimated missing information or new feature set indeed help in gaining information and

aid in decision process. Further more, we have introduced several measures for value of information. We

have used these measures in deciding when to fuse information. For the fusion we have developed an

algorithm using DSmT. We have proven the concept of all the measures and fusion by first considering a

simulated network of radar sensors and then by considering a real network of spatially distributed sensor

nodes which have multiple sensors on each sensor node. The experimental results indicate that (a) the

minmax entropy principle can be used in estimating the missing information and information type and

it can be used in the cluster formation; (b) the constancy measure based on within class entropy can be

used in sensor discrimination; (c) the mutual information can be used in feature quality assessment and

in evaluating the value of information; (d) the measures of value of information helps in smart fusion;

(e) the distributed smart fusion significantly improves the decision accuracy. All these measures help

in probing (awakening) the required sensor for the required missing information, only transmitting the

valuable information when and where it is needed and fusing only valuable information. Thus, power

and, computing and communication resources can be efficiently utilized.
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