
Hamiltonian Paths in Graphs

Atul Mehta

India

May 28, 2018

Abstrat

In this paper, we explore the onnetions between graphs and Turing mahines.

A method to onstrut Turing mahines from a general undireted graph is provided.

Determining whether a Hamiltonian yle exists is now shown to be equivalent to

solving the halting problem. We investigate appliations of the halting problem to

problems in number theory. A modi�ed version of the lassial Turing mahine is

now developed to solve ertain lasses of omputational problems.

1 Introdution

Currently there are no known polynomial-time algorithms whih allow us to determine

whether a Hamiltonian yle in a graph exists. Current methods often redue to variants

of brute fore omputation or developing a solution limited to a subset of the general

problem. Both these approahes do not yield desired results in real life situations. In

this paper we stray from representing a graph G as just an objet (V,E). We transform

graphs into Turing mahines and investigate the onsequenes of suh a transformation.

Outline The remainder of this paper is organized as follows. Setion 2 illustrates our

approah of viewing graphs as Turing mahines. Some of the results diretly obtained

from this new viewpoint are listed in Setion 3. A lassial problem in number theory is

takled in Setion 4. We explore ways of onstruting a newer lass of omputing mahines

in Setion 5. In Setion 6 we indiate lines for future researh.

2 Graph Transformation

We need to formalize the proess of onverting a graph G = (V,E) 1

to its equivalent

Turing mahine ounterpart M =< Q,Γ, b,Σ, δ, q0, F >2

. The following is just one of

several ways to do it.

• Q is the �nite, non-empty set of states and is same as set V .

1

For the sake of simpliity we assume that there is at most 1 diret edge onneting a pair of verties.

So if (vi, vj) ∈ E then (vj , vi) /∈ E.

2

We use the Hoproft/Ullmann representation of a Turing mahine here

1

• Γ is a �nite, non-empty set of tape alphabet symbols. Every tuple in E is represented

by a unique (non-zero) symbol.

• b ∈ Γ is the blank symbol. We denote that by 0.

• Σ ⊆ Γ\b is the set of input symbols.

• q0 ∈ Q is the initial state. Without any loss of generality we denote the �rst element

in V , v0 as our initial state.

• F ⊆ Q is the set of �nal or stopping states. This is same as v0
3

.

• δ :: Q× Γ → Q× Γ× {L,R} is our transition funtion

4

. This an be derived easily

from the set E. Without any loss of generality we denote an element in E say (vi, vj)
and the edge in the graph orresponds to the input harater α. This will ontribute

to building our δ with 2 rows: vi × α → vj × α×R and vj × α → vi × α×R.

A sample Turing mahine T is illustrated (Figure 1) alongside its graph ounterpart.

The node in blue represents v0. This denotes the start/stop state by whih we know that

the omputation is over at least one.

Figure 1: A Turing Mahine modelling the bridges of Königsberg

An illustration of some Turing mahines fashioned from arbitrary graphs is given

below(Figure 2). The numbers on the edges represent the input. Every edge in the

graph(s) below is bi-diretional (as per our earlier onstrution). We just show it as a

single line without the diretional arrows solely for simpliity.

The idea behind our onstrution is that every path in a graph an now be linked to the

proessing of some input m by Turing mahine T . There is no Hamiltonian path in the

undireted graph ounterpart of our �rst Turing mahine. So there annot be any input

of size |V | where there are no repeating alphabets for whih the �rst Turing mahine

stops after exatly 6 steps. The remaining two do indeed stop for input 1345 and 237651
respetively. If Tg is the Turing representation of a graph G and we know that G ontains

a hamiltonian path, then it is obvious that it halts on atleast one input of size |V | with no

repeating alphabets.

3

To keep mahines from spinning after the omputation is over, we an assume that they are rigged

to self-destrut if stop is reahed even one.

4

Without any loss of generality, we assume our mahine has read-only input and a separate output

tape

2

Figure 2: Turing mahines onstruted from various graphs

3 Results

There exist an in�nite number of graphs and onsequently an in�nite number of Turing

mahines whih an be onstruted out of them. A solution to the hamiltonian path

problem will qualify as a partial halting solver.

Lemma 3.1 A brute fore approah to solving the Hamiltonian path problem does not

qualify as a partial halting solver.

Proof Consider the graph G = (V,E) and its equivalent Turing ounterpart Tg. Note

that we annot determine a priori if an arbitrary Turing mahine halts on a partiular

input. This would mean solving the halting problem. So the brute fore approah for

solving the problem is to run (V − 1)! opies 5

of Tg eah with one unique input of size

|V |. We draw our input from a set of all possible paths and hene this set also has a

ardinality of (V − 1)!. If at least one opy of Tg halts in |V | steps, then we've a solution

to the hamiltonian problem for graph G. But this impliitly assumes that a operator

is present and the rate of omputation is known prior to the start of the omputation

proess. If we assume that a mahine an onsume a single alphabet of the input in one

time interval, then the job of the operator is as follows:

1. If even one mahine has ompleted omputation at exatly t = N , then report

suess. Optionally shut down all the mahines.

2. After N time units have elapsed and none of the mahines have ompleted, then

report failure and shut down all the mahines.

The requirement of an operator ensures that this does not qualify as a partial solution

to the halting problem. We an only get rid of the operator and our dependene on

a prede�ned rate of omputation if we renormalize the input provided to the Turing

mahine. This is also a manual proess. Stritly speaking if (vi, vj) /∈ E, then E(vi, vj) =
∞, simply beause it is unde�ned. Suh an input annot be onsumed by a Turing mahine

and we need to manually replae all the in�nities with a onstant c. So for example if

edge (vi, vj) exists, then E(vi, vj) = 1, else E(vi, vj) = 0. With the input restrutured, we

an make a Turing mahine run automatially till we �gure out an answer, either 0 or 1
whether an Hamiltonian path does indeed exist in the graph input. But this tampering of

the input is akin to feeding a program only valid input so that we irumvent the halting

problem. This reliane on manually renormalizing the input rules it out as a proper

partial halting solver.

5

We always assume that the �rst vertex is our v0, hene it is (V − 1)! mahines

3

The general question remains. Is there a omputable funtion to determine if a Hamil-

tonian path is present in graph G.

De�nition If G has a hamiltonian path m then H(V,E) returns 1. For all other ases H
returns 0. We de�ne H as a omputable funtion and assume that the input has not been

renormalized. An undireted graph an either have a Hamiltonian path or none exists.

So we are guaranteed that H will always return a value.

Theorem 3.2 Even with a the funtion H as de�ned above, we annot ompute whether

a given graph has a hamiltonian path or not.

Proof We onstrut a program HAM based on the funtion H. HAM tries to extrat

the undireted graph from a given program p. If it is not able to do that then it returns

0, else it returns the value of H.

The pseudo ode for the same is given in Algorithm 1. We again use the Hoproft/Ullmann

representation to extrat the graph information from p.

Algorithm 1 Total Funtion HAM

1: proedure HAM(p)

2: if |F | 6= 1 and q0 6= F then

3: return 0

4: for all (vi, α) ∈ δ do
5: if vi × α → vj × α×R ∈ δ and vj × α → vi × α×R /∈ δ then
6: return 0

7: return H(Q,distint(vi, vj ∈ δ))

For every input program p, HAM is guaranteed to produe a result. Or in other

words, HAM halts on all inputs. But this is a ontradition. If we've a total funtion

then learly, we've solved the Universal halting problem [1℄. So our assumption of HAM
being omputable is wrong.

4 Appliations to Number Theory

Turing mahines are a fundamental onept in mathematis and onsequenly a redution

to the halting problem an prove helpful in other areas besides theoretial omputer

siene. We explore possible appliations in number theory. More spei�ally we look at

the problem of whether all even numbers greater than 4 an be expressed as the sum of

two odd prime numbers. So for example 12 an be expressed as 5+ 7, 8 an be expressed

as 5 + 3 and so on. It is not known whether all even numbers greater than 4 an be

deomposed as a sum of two primes.

Given any even number, we an reate an equivalent Turing mahine to test out the

Goldbah Conjeture. Figure 3 illustrates our approah. The blue olored node denotes

the start state while the green node represents the �nal stop state. The numbers besides

the edges mark the various inputs.

Before we formalize our Turing mahine, we need to de�ne a few terms. n denotes a

even integer greater than 4. The set I is a �nite set de�ned as: {i/n ∈ I : i� i is prime

4

Figure 3: Turing mahines modeling the Goldbah Conjeture for various even numbers

and 2 < i < n}6. P is a �nite set of nodes representing a olletion of primes suh that

{p ∈ P : i� p is prime and 2 < p < n}. We denote our initial start state by qi and the

�nal state by sf . We will also need a �ller symbol in our input whih we denote by ⊠.

Now we an de�ne our Turing mahine Tn =< Q,Γ, b,Σ, δ, qi, F > as follows.

• Q is the �nite, non-empty set of states and is the set P ∪ {qi, sf}.

• Γ is a �nite, non-empty set of tape alphabet symbols. It is de�ned as I∪{n/n, 0,⊠}

• b ∈ Γ is the blank symbol. We denote that by 0.

• Σ ⊆ Γ\b is the set of input symbols.

• qi ∈ Q is the initial state.

• F ⊆ Q is the set of �nal or stopping states. This is just the set {sf}

• δ :: Q× Γ → Q× Γ× {L,R} is our transition funtion

7

. This an be derived from

the sets P and I. Sine the ardinality is the same for both the sets a one to one

math between the two an be established. Eah tuple (p, i) where p ∈ P and i ∈ I
will ontribute to our δ with 2 rows: qi × i → p× i×R and p×⊠ → qi × i×R.

Finally the row qi × n/n → sf × n/n×R is also inluded in δ.

There are an in�nite number of even numbers and onsquently we an build an in�nite

number of our ustom Turing mahines.

Lemma 4.1 If the Goldbah onjeture is true, then our ustom Turing mahine is guar-

anteed to halt for at least one input

Proof This is easy to see. If α and β are in I, then our mahine should stop for the

input α ⊠ β ⊠ (α + β). Beause there will be one pair of primes whih add up to n, so
onsquently there should be one input suh that (α + β) = 1

6

We dont ompute the frations, but leave it in the form i/p itself.

7

Without any loss of generality we assume our mahine has read-only input and a separate output

tape

5

But this will ontradit the halting problem sine we annot determine apriori if an

arbitrary Turing mahine halts on a partiular input. A negative proof to the e�et

that the onjeture holds true only for ertain values or fails for all n above a ertain

value, will also similarly ontradit the halting problem. We are fored to onlude that

algorithmially the Goldbah onjeture is undeidable. Or in other words, if in the

future the onjeture is settled axiomatially, we still annot �nd an algorithm to split an

arbitrary even number into two primes.

5 Hyper Turing Mahines

We present an improvement over urrent brute fore approahes to solving problems

like Hamiltonian path problem. Consider a general graph G = (V,E). Our task is to

determine if a Hamiltonian path exists in linear time. The total number of verties in the

graph is denoted by N .

Assumptions We assume that the proessing starts at node v0. Eah node in the graph

knows the nodes diretly onneted to it and an pass messages to its neighbours. Nodes

an delete messages, opy messages and update messages. All nodes also share a ommon

lok. A message in our system is just a listing of the verties in the graph along with a

binary �ag attahed to eah vertex. The �ag an be updated only one for eah vertex.

In one time interval, nodes ollet messages, proess messages and send out updates to

its neighbors.

When a node v reeives a message in our sheme, the ations performed are the

following:

• If the �ag(v) in the message is already set to 1, then disard the message.

• if the �ag(v) in the message is set to 0, then set it to 1. Copy and send out the

updated message to all its neighbors.

We start our proessing at node v0 at time t = 0. It sends a message to its neighbors

with �ag(v0) set to 1 and all other entries set to 0. At time t = N if a node reeives a

message, then we know that a Hamiltonian path exists.

While our sheme works in linear time, it is ine�ient in terms of spae onsumption.

The number of messages an be polynomial but will still be less than N ! in most ases

sine we only investigate atual paths. This is still an improvement over urrent brute

fore approahes and also presents a di�erent approah in parallel omputation.

6 Conlusions

We proved that a general algorithm to solve problems like Hamiltonian path problem

do not exist. Lines of future researh involve investigating non-Turing models (as in

Setion 5). Possibly more open questions in other areas of mathematis an bene�t from

a redution to the halting problem. It is an open question as to whether non-Turing

omputation models an solve problems like the Hamiltonian path e�iently for graphs

with low sparsity. Also if we limit proessing on some nodes piked arbitrarily, then are

we still guaranteed an answer? If so what is the spae and time omplexity involved.

6

Referenes

[1℄ A. M. Turing. On omputable numbers, with an appliation to the entsheidungsprob-

lem. Proeedings of the London mathematial soiety, 2(1):230�265, 1937.

7

	Introduction
	Graph Transformation
	Results
	Applications to Number Theory
	Hyper Turing Machines
	Conclusions

