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Abstract—In this paper we defined general matricesMk(n,m),
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I. I NTRODUCTION

M ANY authors defined generalized Fibonacci numbers by
varying initial conditions and recurrence relation [1-7].

This paper represents an interesting investigation about some
special relations between matrices,k− Fibonacci numbers and
k− Lucas numbers.This investigation is valuable to obtain new
k− Fibonacci ,k− Lucas identities by different methods.This pa-
per contributes tok− Fibonacci,k− Lucas numbers literature,and
encourage many researchers to investigate the properties of such
number numbers.

This paper is organized as follows. Section II contains some
preliminary results. In Section III, the matrixMk(n,m) is defined
and using it some properties ofk− Fibonacci andk− Lucas
numbers are derived. In Section IV, the MatrixTk,n is defined and
using it some properties ofk− Fibonacci andk− Lucas numbers
are derived. In Section V, the MatrixSk(n,m) is defined and
using it some properties ofk− Fibonacci andk− Lucas numbers
are derived.

II. SOME PRELIMINARY RESULTS

In this section, some definitions and preliminary results are
given which will be used in this paper.

Definition 1. The k− Fibonacci number{Fk,n}n∈N is defined as,
Fk,n+1 = kFk,n + Fk,n−1, with Fk,0 = 0, Fk,1 = 1,for n ≥ 1

Definition 2. The k− Lucas number{Lk,n}n∈N is defined as,
Lk,n+1 = kLk,n + Lk,n−1, with Lk,0 = 2, Lk,1 = k,for n ≥ 1

Characteristic equation of the initial recurrence relation is,

r2 − kr − 1 = 0, (1)

and characteristic roots are

r1 =
k +

√
k2 + 4
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and

r2 =
k −

√
k2 + 4

2
,

Characteristic roots verify the properties,

r1 − r2 =
√

k2 + 4 =
√
∆, (2)

r1 + r2 = k, (3)

r1.r2 = −1. (4)

Binet forms forFk,n andLk,n are

Fk,n =
rn1 − rn2
r1 − r2

(5)

and
Lk,n = rn1 + rn2 (6)

From the definition of thek−Fibonacci numbers,one may deduce
the value of any k-Fibonacci number by simple substitution on
the correspondingFk,n. For example,the seventh element of the
4−Fibonacci number,F4,7 is 5473. By doingk = 1; 2; 3; · · · the
respective k-Fibonacci numbers are obtained. Sequence{F1,n} is
the classical Fibonacci number and{F2,n} is the Pell number. It
is worthy to be noted that only the first10 k−Fibonacci numbers
are referenced in The On-Line Encyclopedia of Integer Sequences
[10] with the numbers given in Table1. For k even with12 ≤
k ≥ 62 sequences{Fk,n} are referenced without the first term
Fk,0 = 0 in [10].

The first11k-Fibonacci sequences as numbered in The On-Line
Encyclopedia of Integer Sequences [10]:

F1,n A000045
F2,n A000129
F3,n A006190
F4,n A001076
F5,n A052918
F6,n A005668
F7,n A054413
F8,n A041025
F9,n A099371
F10,n A041041
F11,n A049666

The most commonly used matrix in relation to the recurrence
relation (1) is

M =

[

k 1
1 0

]

(7)

which for k = 1 reduces to the ordinaryQ- matrix studied
in [8, 14]. In this paper, we define more general matrices
Mk(n,m), Tk(n), Sk(n,m)for Q-matrix . We use these matrices
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to develop various summation identities involving terms from the
numbersFk,n andLk,n.

Several identities forFk,n and Lk,n are proved using Binet
forms in [11-14]. Some of these are listed below.

Fk,n+1 + Fk,n−1 = Lk,n (8)

Fk,n+1 + Lk,n−1 = ∆Fk,n (9)

Fk,2n − 2(−1)n = ∆F 2
k,n (10)

Fk,m+n − (−1)mLk,n−m = Fk,mLk,n (11)

Lk,m+n − (−1)mLk,n−m = ∆Fk,mFk,n (12)

Fk,m+nFk,n−m − F 2
k,n = (−1)n−m+1F 2

k,m (13)

Lk,m+nLk,n−m − L2
k,n = (−1)n−mF 2

k,m (14)

Fk,m+nFk,r+m − (−1)mFk,nFk,r = Fk,mFk,n+r+m

Lk,mnLk,n +∆Fk,mnFk,n = 2Lk,(m+1)n (15)

Fk,mnLk,n + Lk,mnFk,n = 2Fk,(m+1)n (16)

L2
k,m+n + (−1)m−1L2

k,n = ∆Fk,2n+mFk,m (17)

Lk,m+nLk,n + (−1)m+1Lk,n−mLk,n = ∆Fk,2nFk,m

Fk,m+2rnFk,2n+m + (−1)m+1Fk,2rnFk,2n = Fk,2(r+1)n+mFk,m

In [14], matrix M is generalized using PMI

Mn =





Fk,n+1 Fk,n

Fk,n Fk,n−1





wheren is an integer.

III. T HE MATRIX Mk(n,m)

We now give a generalization of the matrixM and use it to
produce summation identities involving terms from the sequences
Fk,n andLk,n.

Definition 3.

Mk(n,m) =





Fk,n+m (−1)m+1Fk,n

Fk,n (−1)m+1Fk,n−m



 (18)

wherem andn are integers.

Theorem 4. Let Mk(n,m) be a matrix as in (18). Then

Mk(n,m)r = F r
k,m





Fk,rn+m (−1)m+1Fk,rn

Fk,rn (−1)m+1Fk,rn−m





Proof: This result can be easily established using the Prin-
ciple of Mathematical Induction.

We find that characteristic equation ofMk(n,m) is

λ2 − Fk,mFk,nλ+ (−1)nF 2
k,m = 0 (19)

and by Cauchy-Hamilton theorem

Mk(n,m)2 − Fk,mFk,nMk(n,m) + (−1)nF 2
k,mI = 0

Multiplying both sides of equation (25) byMk(n,m)t gives

(Fk,mFk,nMk(n,m)− (−1)nF 2
k,mI)rMk(n,m)t

= Mk(n,m)2r+t

and expanding gives

i=r
∑

i=0

(ri ) (−1)(r−1)(n+1)F 2r−1
k,m F i

k,nMk(n,m)i+t

= Mk(n,m)2r+t

Using (18) to equate upper left entries gives

i=r
∑

i=0

(ri ) (−1)(r−1)(n+1)Li
k,nFk,(i+t)n+m

= Fk,(2r+t)n+m

In similar way we can obtain

i=r
∑

i=0

(ri ) (−1)n(r−i)Fk,2in+m

= Lr
k,nFk,rn+m

i=2r
∑

i=0

(

2r
i

)

(−1)2nr−i(n−1)Fk,2in+m

= ∆rF 2r
k,nFk,2rn+m

i=2r+1
∑

i=0

(

2r+1
i

)

(−1)n(2r−i+1)+i+1Fk,2in+m

= ∆rF 2r+1
k,n Lk,(2r+1)n+m

i=2r
∑

i=0

(

2r
i

)

(−1)i2iL2r−i
k,n Fk,in+m

= ∆rF 2r
k,nFk,m

IV. T HE MATRIX Tk,n

We now give another generalization of the matrixM and
use it to produce summation identities involving terms from the
sequencesFk,n andLk,n.

Definition 5.

Tk,n =





Lk,n Fk,n

∆Fk,n Lk,n



 (20)

wheren is an integer.

Theorem 6. Let Tk,n be a matrix as in (20) then

Tm
k,n = 2m−1





Lk,nm Fk,nm

∆Fk,nm Lk,nm



 (21)

Proof: : Using Principle of Mathematical induction
(PMI),from (20) it is clear that the result is true form = 1.
Assume that the result is true form (IH)

Tm
k,n = 2m−1





Lk,nm Fk,nm

∆Fk,nm Lk,nm
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Now consider
Tm+1
k,n = Tm

k,nTk,n

= 2m−1





Lk,nm Fk,nm

∆Fk,nm Lk,nm



 ·





Lk,n Fk,n

∆Fk,n Lk,n





= 2m−1













Lk,mnLk,n+
∆Fk,nmFk,n Lk,mnFk,n + Fk,mnLk,n

∆(Lk,mnFk,n+
Fk,mnLk,n) Lk,mnLk,n +∆Fk,nmFk,n













Using (14) and (15) gives

= 2m





Lk,n(m+1) Fk,n(m+1)

∆Fk,n(m+1) Lk,n(m+1)





Hence proof.
The characteristic equation ofTk,n is

λ2 − 2Lk,nλ+ 4(−1)n = 0 (22)

and by Cauchy-Hamilton theorem

T 2
k,n − 2Lk,nTk,n + 4(−1)nI = 0 (23)

Using (16) and (17) gives,we see that

Tm
k,nTk,t = 2m





Lk,nm+t Fk,nm+t

∆Fk,nm+t Lk,nm+t



 (24)

Consider the casen = 1,we can show by PMI

Tm
k,1 = 2m−1(Fk,mTk,1 + 2Fk,m−1I (25)

wherem ≥ 2
Equation (25) produces

i=r
∑

i=0

(ri )F
r−i
k,n−1F

i
k,nFk,i+s+t = Fk,nr+s+t (26)

The methods applied toMk(n,m) in previous section when
applied toTk,n produce most of the summation identities that
we have obtained so far.

V. THE MATRIX Sk(n,m)

We now give one more generalization of the matrixM and
use it to produce summation identities involving terms from the
sequencesFk,n andLk,n.

Definition 7.

Sk(n,m) =





Lk,n+m (−1)m+1Lk,n

Lk,n (−1)m+1Lk,n−m



 (27)

wheren,m are integers.

Theorem 8. Let Sk(n,m) be a matrix as in (27) then for all
integerr

Sk(n,m)2r

= F 2r−1
k,m ∆r





Fk,2rn+m (−1)m+1Fk,2rn

Fk,2rn (−1)m+1Fk,2rn−m





Sk(n,m)2r−1

= F 2r−2
k,m ∆r−1

[

L
k,2(r−1)n+m

(−1)m+1
L
k,2(r−1)n

L
k,2(r−1)n (−1)m+1

L
k,2(r−1)n−m

]

Proof: This theorem can be established using the Principle
of Mathematical Induction.

The characteristic equation ofSk(n,m) is

λ2 −∆Fk,nFk,mλ−∆(−1)nF 2
k,n = 0

and by Cauchy-Hamilton theorem

Sk(n,m)2 −∆Fk,nFk,mSk(n,m)−∆(−1)nF 2
k,nI = 0

Manipulating above equation gives

∆Fk,m(Fk,nSk(n,m) + (−1)nFk,mI) = Sk(n,m)2

and
(2Sk(n,m)−∆Fk,nFk,mI) = ∆F 2

k,mL2
k,n

Hence

∆rF r
k,m(Fk,nSk(n,m) + (−1)nFk,mI)r = Sk(n,m)2r

(2Sk(n,m)−∆Fk,nFk,mI)2r = ∆rF 2r
k,mL2r

k,nI

(2Sk(n,m)−∆Fk,nFk,mI)2r+1

= ∆rF 2r
k,mL2r

k,n(2Sk(n,m)−∆Fk,nFk,mI)

Now expanding previous four equations and equating upper left
entries of the relevant matrices gives respectively to

i=r
∑

i=0,i−even

(ri ) (−1)n(r−i)+1∆
i−1

2 F i
k,nLk,in+m

+

i=r
∑

i=0,i−odd

(ri ) (−1)n(r−i)∆
i

2F i
k,nFk,in+m

= Fk,2nr+m

i=2r
∑

i=0,i−even

(

2r
i

)

2i∆
2r−i

2 F 2r−i
k,n Fk,in+m

−

i=2r−1
∑

i=0,i−odd

(

2r
i

)

2i∆
2r−1−i

2 F 2r−i
k,n Lk,in+m

= L2r
k,nFk,m

i=2r+1
∑

i=0,i−odd

(

2r+1
i

)

2i∆
2r+3−i

2 F 2r+1−i
k,n Fk,in+m

−
i=2r−1
∑

i=0,i−even

(

2r+1
i

)

2i∆
2r+2−i

2 F 2r+1−i
k,n Lk,in+m

= ∆L2r+1
k,n Fk,m
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VI. CONCLUSION

The matrices Mk(n,m),Tk,n and Sk(n,m) are defined for
k Fibonacci andk Lucas numbers and some new summation
properties are established. Same approach can be applied for
generalized Fibonacci numbers.
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