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Abstract 

The inverted quadratic Liénard type equation is very useful in various branches of classical and quantum 

theories, since it admits a position dependent mass dynamics. The objective of the present work is to show that 

some interesting inverted nonlinear oscillator equations like the inverted version of Mathews-Lakshmanan 

oscillator belong to a general class of exactly solvable inverted quadratic Liénard equations. This class of 

equations is generated from a first integral formulated as an integro-differential equation. The obtained results 

may be used for the identification and integrability of a family of dynamical systems equations. 

Keywords: Inverted quadratic Liénard equation, first integral , exact solutions, Mathews-Lakshmanan oscillator. 

1. Introduction 

The best understanding of the dynamics of quadratic Liénard type differential equations has 

become a vital requirement since this type of dissipative nonlinear oscillator equations arises 

often in mathematical modeling of many physical problems involving nonlinear phenomena. 

The quadratically dissipative Liénard type equation involves then an attractive field of both 

mathematical and physical investigations. A famous model of this type of position dependent 

mass equation is the Mathews-Lakshmanan oscillator equation which exhibits periodic 

motion with harmonic form [1] 
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where the dot over a  symbol  denotes the differentiation with respect to time. In the same 

perspective, it has been identified that the equation )1(  belongs to the general class of 

quadratic Liénard type equations of the form [2]  
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where  a  is an arbitrary constant,  )(xf  and  0)( xg , are arbitrary functions of dependent 

variable x , and prime means the differentiation with respect to x . Recently, a number of 

works has been performed about the inverted version of the Mathews-Lakshmanan oscillator, 

due to its important applications in classical and quantum sciences [3-5]. By using a non-

standard complex Lagrangian, El-Nabulsi [5] has shown that an inverted version of the 

Mathews-Lakshmanan oscillator equation )1( may be constructed as 
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In [5] it has been demonstrated that for appropriate values of some model parameters, this 

inverted nonlinear oscillator may also exhibit periodic motion with harmonic form. In this 

regard the question of generating inverted quadratic Liénard type equations from classical 

formal approach becomes an interesting open mathematical problem. It then appears 

reasonable in this situation to theoretically investigating such a relevant problem. In this 

perspective, it should be noted in [6] that the proposed class of quadratic Liénard type 

equations may lead under the over-damped dynamical regime, to a class of inverted quadratic 

Liénard type equations. The problem of constructing general classes of exactly integrable 

second order nonlinear differential equations is not a simple task, since exact analytical 

solutions are always not available. So, several approaches of different complexities have then 

been developed to overcome this mathematical difficulty. Usually, it is desired to transform 

the original second order nonlinear differential equation into a differential equation for which 

analytical properties or solutions are well known. This is often performed by means of 

linearizing or variable transformation. In this way the approach by first integral has also been 

used for reducing the order of the initial differential equation to computing easily solutions of 

first order equation. An inverse problem, however, may consist of finding, given a first 

integral, the related differential equations. An equivalent or alternative way would consist of 

generating nonlinear differential equations from first order differential equations through 

differentiation [7]. Such first order differential equations consist of intermediate integrals that 

also may ensure the exact solvability of generated differential equations in question [8]. In the 

present research contribution, the problem of constructing inverted Mathews-Lakshmanan 

oscillator depicted in [5], from classical formal basis, namely from first integral approach 

consisting of differentiation of a linear integro-differential equation is examined. This 

precisely raises the fundamental question: Is that the inverted Mathews-Lakshmanan 

oscillator )3(  belongs to a general class of exactly solvable inverted quadratic Liénard type 

equations formulated from classical formal basis? The present work assumes the existence of 

such a general class of exactly solvable inverted quadratic Liénard type equations. This 

existence should allow for the identification and integrability of a wide variety of inverted 

quadratic Liénard type differential equations encountered in different branches of physics and 

engineering sciences. In other words, the hard problem of solving inverted quadratic Liénard 

type differential equations is reduced to solving differential equations mapped into 

quadratures. In this context, it is first shown that the inverted Mathews-Lakshmanan oscillator 

)3( carried out in [5] belongs to a general class of exactly solvable inverted quadratic Liénard 

type equations comparable to the general class of nonlinear oscillator equations )2(  by using 

a first integral formulated in terms of integro-differential equation under differentiation 

approach (section 2), and secondly some examples of inverted versions of interesting classical 

quadratic Liénard type equations are given for illustrating the application of the proposed 

theory (section 3). Finally, an analysis of obtained results (section 4) and some conclusions 

(section 5) are presented. 

2. General theory 

The problem in this section is to generate, given an ansatz for the first integral the related 

general second order nonlinear differential equation, from which the desired general class of 

exactly solvable inverted quadratic Liénard type equations should be deduced, and to show 

that the inverted equation (3) belongs to this class of equations. 

 



2.1 General class of forced quadratic Liénard type equations 

Consider, to generate the solvable general class of quadratic Liénard type equations, that the 

first integral of interest is of the general form  

 dxxfaxxgxxa )()(),(1
            (4) 
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Thus, the following theorem may be formulated. 

Theorem 2.1 

Let us consider the equation )5( . If the function ),(1 xxa 
 satisfies )5( , then x satisfies the 

equation 
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Proof 

Substitution of the function )4(  into the equation )5( , gives after a few mathematical 

manipulation, the equation )6( . So, the theorem is proved.  

The equation (6) designates the generalized forced quadratic Liénard type oscillator equation 

with the forcing function  
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One may deduce, now, the desired general class of inverted quadratic Liénard type equations.  

2.2 General class of inverted quadratic Liénard type equations 

Since the equation (6) represents a generalized forced oscillator equation, the unforced 

version must then exist, that is to say the function (7) may be set equal zero. Thus, the 

following corollary, which may be immediately, deduced from the theorem 2.1, gives the 

desired general class of exactly solvable inverted quadratic Liénard type differential 

equations. 

Corollary 2.1 

Let 01 a .Then the equation )6(  is reduced to the equation 
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Proof 

A restriction on a is needed to prove the corollary, that is 0a . On the other hand, it is 

possible to assign specific values to 1a  by defining appropriate initial conditions, since the 

integral in )4(  is an indefinite integral.   Let us now consider 01 a . Thus, substituting 01 a , 

into  the equation )6( , yields immediately the equation )8( . This proves the corollary. 

That being so, the equation )8(  may formally, be regarded as the inverted version of the 

general class of quadratic Liénard type equations )2(  recorded in [2]. It is, now, possible to 

demonstrate that the inverted Mathews-Lakshmanan equation )3(  belongs to the general class 

of inverted quadratic Liénard type equations defined by )8( . In this perspective the functions 

)(xf  and )(xg  must be appropriately chosen knowing that 01 a . Therefore, the following 

theorem may be stated. 

Theorem 2.2 

Let us consider the equation )8( . If 
22
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x
xf , and 21)( xxg  , where   is an 

arbitrary constant, then  the equation )8(  is mapped into the inverted Mathews-Lakshmanan 

oscillator equation )3(  
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Proof 

Substitution of 
22

)(



x

x
xf , and 21)( xxg  , into the equation )8( , leads 

immediately to the equation )9( . Thus, the theorem is demonstrated. The following corollary 

allows for the reduction of )9(  to quadratures.  

Corollary 2.2 

Let us consider the equation )4( . If
22
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xf , and 21)( xxg  , then the equation 

)9(  is mapped into  
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where 0t  means a constant of integration.  

 

 

 



Proof 

Substitution of 
22

)(



x

x
xf , and 21)( xxg  , into the equation )4( , gives 

immediately after integrating the obtained result,  the equation )10( . So, the corollary is 

proved. In this perspective the equation )9(  admits the first integral 22aI  , so that  

2222)1( xaxxI             (11) 

It is worth noting that the value of   may be known from initial conditions by using equation

)11(  once specific values are assigned to the parameters a  and  . Also, the equation (10) or 

(11) shows that for a same value of x , that is for a same point there may exit two values for 

the velocity x . A physical interpretation of this fact may be found in [9]. The above shows 

that the inverted Mathews-Lakshmanan oscillator equation )3(  investigated in [5] from a 

complex Lagrangian approach may be generated using classical formal basis consisting of 

first integral expressed as an integro-differential equation under differentiation. In doing so, 

the problem is reduced to solving a differential equation mapped into the form of a 

quadrature. Let us consider, at present, two additional examples of quadratic Liénard type 

equations in the following to illustrate the proposed theory (section 3). 

3. Examples 

Example 1.  
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The corresponding inverted quadratic Liénard type equation may be written as 
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which admits the first integral I given by the following equation 

2222)1( xaxxI                    (13)                                                                                                

Example 2. 
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The corresponding quadratic Liénard type equation according to equation )8(  may be obtained 

in the form 
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with the first integral I given by 

2222)1( xaxxI                   (15)                                                                                                   



which corresponds to the first integral derived in [10], since the equation )14(  represents a 

particle constrained to move on a rotating parabola. The equation )14(  is also examined in [5] 

as an alternative to the Mathews-Lakshmanan oscillator equation. These illustrative examples 

enable then to discuss the obtained results (section 4). 

4. Discussion 

The problem of investigating both classical and quantum aspects of the inverted version of the 

famous Mathews-Lakshmanan oscillator has recently become an active research field of 

mathematical physics. In [5] the classical aspect of the Mathews-Lakshmanan oscillator is 

explored in its inverted version from complex Lagrangian approach. However, this problem 

may also be handled from other simple but relevant mathematical methods. In this work, a 

classical approach consisting of generating quadratic Liénard type differential equations from 

first integral is developed. Precisely, it is shown here that quadratic Liénard type differential 

equations may be constructed from differentiation of a first integral formulated as a linear 

integro-differential equation. As a result, a general class of exactly solvable inverted quadratic 

Liénard type equations has been carried out. In doing so, it has been shown that the inverted 

Mathews-Lakshmanan oscillator under question belongs to the developed general class of 

inverted quadratic Liénard type equations. Other inverted and classical standard oscillator 

equations are also investigated. An advantage of the proposed theory results from the fact that 

the inverted Liénard type differential equations under question may be mapped into 

quadratures. In this perspective first integrals are obtainable, so that not only the solvability of 

equations is ensured, but Lagrangian and Hamiltonian descriptions may also be performed. 

Besides, these inverted nonlinear oscillator equations belong to the general class of inverted 

quadratic Liénard type equations found to be comparable to a general class of nonlinear 

oscillator equations represented by the relationship )2(  for which a wide and rich variety of 

Lagrangian and Hamiltonian analysis is devoted. It is worth mentioning that the present study 

suggests a generalization of the non-standard Lagrangian given in [5] in the form  

 dxxvxcvxuxbxxtL )()()(),,(           (16) 

where )(xu  and )(xv  are arbitrary functions of x , and b  and c  are arbitrary constants. 

So, considering the above, the following conclusions may be given (section 5). 

5. Conclusions 

In this contribution the problem of generating inverted quadratic Liénard type oscillator 

equations is classically investigated instead of using a non-standard Lagrangian formulation. 

A mathematical theory consisting of generating nonlinear differential equations from classical 

formal bases has been performed. To be more precise, it is shown that the inverted Mathews-

Lakshmanan oscillator equation belongs to a general class of exactly solvable inverted 

quadratic Liénard type differential equations designed from a first integral represented as a 

linear integro-differential equation by means of differentiation. As a result, the inverted 

quadratic Liénard type equations are mapped into quadratures, so that first integrals are 

obtainable. In this regard a subsequent Lagrangian and Hamiltonian description can be 

performed for classical and quantum applications.  

 



References 

[1]  P.M. Mathews and M. Lakshmanan, On a unique nonlinear oscillator, Quartely of Applied Mathematics, 32 

(2) (1974) 215-218. 

[2]  R. Gladwin Pradeep, V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, Nonstandard conserved 

Hamiltonian structures in dissipative/ damped harmonic oscillator, Journal of Mathematical Physics 50 (2009) 

052901-1-052901-15. 

[3] Axel Schuze-Halberg, Closed-form solutions and supersymmetric partners of the inverted Mathews-

Lakshmanan oscillator, Eur. Phys. J. Plus 130 (134) (2015) 15134-1-15134-10. 

[4] Axel Schuze-Halberg and Jie Wang, Two-parameter double-oscillator model of  Mathews-Lakshmanan type: 

Series solutions and supersymmetric partners, Journal of  Mathematical Physics 56 (7) (2015) 072106-1-072106-

12. 

[5] Rami Ahmad El-Nabulsi, A generalized nonlinear oscillator from non-standard degenerate Lagrangian and 

its consequent Hamiltonian formalism, Proc. Natl. Acad. Sci., Sect A Phys. Sci. 84 (4) (2014) 563-569. 

[6] M.D. Monsia, J. Akande, K.K. Adjaï, L.H. Koudahoun, Y.J.F. Kpomahou, A theory of exactly integrable 

quadratic Liénard type equations, viXra:1607.0199.(2016) 

[7] W. F. Ames, Nonlinear partial differential equations in engineering, Academic Press, New York, (1965). 

[8] W. F. Ames, Integrated Lagrange expansions for a Monge-Ampere equation, Journal of Mathematical 

Analysis an Applications, 21(1968) 479-484 

[9] J. F. Carinena, M. F. Ranada, M. Santander, Lagrangian formalism for nonlinear second-order Riccati 

systems: one –dimensional integrability and two-dimensional superintegrability, arXiv:math-

ph/0505024v1.(2005)  

[10] Ajey K. Tiwari, S. N. Pandey, M. Senthilvelan, and M. Lakshmanan, Classification of Lie point symmetries 

for quadratic Liénard type equation 0)()( 2  xgxxfx  , Journal of Mathematical Physics 54 (5) (2013) 

053506-1-053506-25. 


