
Abstract

Quicksort, invented by Tony Hoare in 1959, is one of the fastest sorting algorithms. However, conventional
implementations have some weak points, including the following: swaps to exchange two elements are redundant,
deep recursive calls may encounter stack overflow, and the case of repeated many elements in input data is a well-
known issue. This paper improves quicksort to make it more secure and faster using new or known ideas in C
language.

1. Introduction

Quicksort[1] is a sorting algorithm that reorders an array in some logical order, such as numerical order or
lexicographical order. Quicksort chooses an array element as a pivot, and then iterates the exchanging of elements
such that greater elements than the pivot are moved to the right of a lesser element if existing, and lesser elements
are moved to the left of a greater element if existing. Conventionally, a lesser element and greater element are
swapped. The pivot is usually swapped with the first or last element before the iteration, and finally swapped again
with an element at the boundary of lesser or equal elements and greater or equal elements (equal elements don’t
move). Then an array is divided into two sub-partitions with the pivot element between them. This partitioning
operation is applied on two sub-partitions recursively until any partitions consist of one or no element. When all of
the recursive partitioning is completed, the array is sorted.

Applying a pivot hole instead of swaps reduces the number of copies by about 1/3, and makes the simplest new
quicksort faster. Conversion of the recursive calls for longer sub-partition to iteration prevents stack overflow. The
issue of repeated elements is resolved by asymmetric loops and the expansion of a pivot element to continuous
equal elements in partitioning. The random choice of pivot avoids other malicious input data, to make quicksort
more secure. The speed of quicksort is further increased by the choice of the median of several elements as the
pivot.

Note in this paper: N refers to the number of elements. The output tabs are converted to spaces to adjust
columns. Bold font is used for emphasis

2. Pivot hole

A swap needs three copies to exchange two elements: t <-- a, a <-- b, b <-- t, where a and b are elements to be
exchanged, and t is a temporary buffer. As this operation could be considered redundant, I suggest using a pivot
hole instead of swaps. When an element moves away, its previous place is regarded as an empty hole like an
electron hole in a current. An element is chosen as a pivot and saved in a temporary buffer; thus, the first hole is
dug at a pivot element. Then, greater or lesser elements than the pivot move to a hole alternately, and the final hole
is filled with the saved pivot.

The simplest pseudocode is presented below.

Asymmetric quicksort

Takeuchi Leorge (竹内良治)
qmisort@gmail.com

https://plus.google.com/111958126099060680494/about
https://en.wikipedia.org/wiki/Lexicographical_order
https://en.wikipedia.org/wiki/Tony_Hoare

Quicksort(a[], lo, hi)
 IF lo < hi
 p = Partition(a, lo, hi)
 Quicksort(a, lo, p – 1) // sort lesser or equal elements
 Quicksort(a, p + 1, hi) // sort greater or equal elements

Partition(a[], lo, hi)
 pivot = a[hi] // dig a hole
 hole = hi
 WHILE lo < hole
 IF a[lo] > pivot
 a[hole] = a[lo] // move a greater element
 hole = lo // move a hole
 WHILE hi > hole
 IF a[hi] < pivot // lesser element
 a[hole] = a[hi]
 hole = hi
 hi
 lo++
 a[hole] = pivot // restore the pivot
 RETURN hole

The following example demonstrates the behavior of this process.

(C, A, D, B) Input array.
(C, A, D, -) B Save the last element B as a pivot. Then, ‘-‘ is a hole.
(-, A, D, C) B Search for a greater element from the first position,

and find C, then move C to the hole.
(A, -, D, C) B Search for a lesser element from the position before C,

and find A, then move A to the hole.
(A, B, D, C) Restore the pivot B to the hole.
(A), B, (D, C) Divide the partition.
A, B, (D, C) (A) contains only one element.
A, B, (D, -) C Save the last element C as a pivot in (D, C).
A, B, (-, D) C Move D to the hole.
A, B, (C, D) Restore the pivot C.
A, B, C, (D) Divide the partition (C, D) to C and (D).
A, B, C, D (D) contains only one element.

The number of calls, comparisons and copies, and the performance of algorithms are evaluated by executable
programs1 written in C language with Eclipse 3.8.1 on ubuntu 14.04 LTS. Eclipse generates two executables to
debug and to release. The numbers are measured in a debug build program.

The following is an example of output from the program.

$ src/random.awk 15 | xargs echo # Sample of random data sequence
07 01 10 14 14 05 12 01 09 00 06 13 11 08 09
$ N=100000; src/random.awk $N | Debug/Sort -N $N -fhV 1
arguments : -N 100000 -fhV 1
qsort(3) usec = 55834 call = 0 compare = 1536216 copy = 0
qsort_first() usec = 58694 call = 64360 compare = 2099403 copy = 1163697
quick_hole() usec = 50152 call = 69505 compare = 2071997 copy = 796515
$ /lib/x86_64-linux-gnu/libc.so.6 | head -1 # version of GNU library
GNU C Library (Ubuntu EGLIBC 2.19-0ubuntu6.7) stable release version 2.19, by Roland
McGrath et al.

The following list explains commands used above.

src/random.awk : Awk script in the src sub-directory to generate a random data sequence in a range [0, N).
awk : An interpreter for the AWK Programming Language.
xargs : Linux command to build and execute command lines from standard input
echo : Linux command to display a line of text
Debug/Sort : A debug build program. Launch with a command option ? to show all command options.
-N xx : Command option to set the number of elements in input array.

1 Repository - https://github.com/leorge/qmisort.

http://man7.org/linux/man-pages/man1/echo.1.html
http://man7.org/linux/man-pages/man1/xargs.1.html
https://en.wikipedia.org/wiki/AWK
http://man7.org/linux/man-pages/man1/gawk.1.html
https://github.com/leorge/qmisort/blob/master/random.awk
https://en.wikipedia.org/wiki/Long-term_support
http://www.ubuntu.com/
https://eclipse.org/
https://en.wikipedia.org/wiki/C_(programming_language)
https://github.com/leorge/qmisort

qsort(3) : A function in GNU C library to sort an array. The number of calls and copies are uncountable.
Section number 3 enclosed in parentheses refers to Library calls.

qsort_first() : Conventional quicksort called by the -f option.
quick_hole() : New quicksort called by the -h option.
-V 1 : Tracing level to debug.
head : Linux command to output the first part of files.

qsort_first() is the simplest conventional quicksort that chooses the first element as a pivot and exchanges
elements with swaps. The template of qsort_first() is Quick.java written by Robert Sedgewick and Kevin Wayne.
quick_hole() is the implemented pseudocode above. The number of calls and comparisons are not that different
from qsort_first(), but the number of copies in quick_hole() is about 2/3 that in qsort_first(). The processing time in
microseconds as shown in the fourth field of output is inaccurate. A field is an area within a line separated by blank
spaces that stores a particular type of data.

The following chart shows the accurate relative elapsed time2 of algorithms in various N measured by a release
build program3. The Y axis is the normalized elapsed_time/nlog(n), where the elapsed time of quick_hole() is 1
at N=2^20=1M. The function strcmp(3) is used here to compare two strings. The size of an element is 16 bytes.

Data - https://github.com/leorge/qmisort/wiki/data/hole

quick_hole() is the fastest, and qsort_first() is the slowest.

The series the chart is based on is the average of 10 random sequences to reduce data dependency, and each
datapoint is the mean of 10 elapsed times to reduce measurement error, as below. Thus, the value of a point is the
average of 100 elapsed times.

The following is a sample of output with the Release build program.

$ N=1000; src/random.awk $N | Release/Sort -N $N -f
qsort(3) usec = 461 spread = 119 26 % [1467] (599) 595 593 590 593 476 354 353 353
352 352
qsort(3) usec = 358 spread = 5 1 % [373] 365 364 362 (376) 362 357 354 354 354
353 352
qsort_first() usec = 221 spread = 0 0 % [238] (224) 222 222 221 221 221 222 221 221
221 221

The first field is a function name that represents an algorithm. The fourth field is the mean of 10 of the elapsed
times listed in the last 12 fields. The first value enclosed in the square brackets is omitted from calculation because

2 Elapsed time of gettimeofday(2) contains system processing time; however, it is shorter than the user time in getrusage(2).
3 Release build program runs on a console launched by Ctrl+Alt+F1-F6 after GUI logout to reduce noises of active processes.

Press Ctrl+Alt+F7 to return to the GUI login screen.

Fig. 1: Swap vs. Hole

https://github.com/leorge/qmisort/wiki/data/hole
http://man7.org/linux/man-pages/man3/strcmp.3.html
http://www.cs.princeton.edu/~wayne
https://en.wikipedia.org/wiki/Robert_Sedgewick_(computer_scientist)
http://algs4.cs.princeton.edu/23quicksort/Quick.java.html
http://man7.org/linux/man-pages/man1/head.1.html
https://github.com/leorge/qmisort/blob/master/quick_hole.c
https://github.com/leorge/qmisort/blob/master/qsort_first.c
https://en.wikipedia.org/wiki/GNU_C_Library
http://man7.org/linux/man-pages/man3/qsort.3.html
https://github.com/leorge/qmisort/wiki/data/hole
https://github.com/leorge/qmisort/wiki/data/hole

it is sometimes a bit larger. Since it may take a short time to load a binary program onto a cache memory, the first
value in qsort(3) 1467 is the largest. The value enclosed in the square brackets in the second line is not the largest
because the program-cache is not changed, and the value in the third line is the largest because it may take a very
short time to replace a small part of the program-cache for qsort(3) with qsort_first(). Excluding the first result, the
largest value enclosed in parentheses is also omitted because it may be huge in probability. Thus, the mean is the
average of 10 elapsed times. The seventh field is the estimated standard deviation (Stdev)[2], and the next field is
the percentage of the mean: Stdev / mean * 100.

Each function repeats the test until rounded stdev becomes less than 3% in integer, that is, stdev/mean < 0.025.

The following are the hardware specifications of the personal computer used for evaluation.

CPU : AMD FX(tm)-8300 Eight-Core Processor (64 bits)
L1 cache : 128KiB/core (64KiB for instruction + 64KiB for data)
L2 cache : 1MiB/core
L3 cache : 8MiB shared
Memory : 16GiB

Another personal computer used for evaluation had the following specifications.

CPU : AMD Phenom(tm) II X2 550 Two-Core processor (64 bits)
L1 cache : 128KiB/core (64KiB for instruction + 64KiB for data)
L2 cache : 512KiB/core
L3 cache : 6MiB shared
Memory : 6GiB

The following chart shows the relative performance on the second personal computer with the copied executable

program.

Data - https://github.com/leorge/qmisort/wiki/data/hole2

The qsort_first() and quick_hole() series are not very different from the previous chart. Thus their relative
performance does not depend on the hardware configuration. qsort(3) has a relatively quicker result compared with
Figure 1, indicating that the relative performance of qsort(3) and new quicksort depends on the hardware
configurations. Therefore, the series qsort(3) is a mere reference. All other charts in this paper were measured by
the first computer as it has a larger main memory.

Fig. 2: Swap vs. Hole(2)

https://github.com/leorge/qmisort/wiki/data/hole2
http://www.amd.com/en-us/products/processors/desktop/phenom-ii#4
http://www.amd.com/en-us/products/processors/desktop/fx#4
https://help.libreoffice.org/Calc/Statistical_Functions_Part_Five#STDEV
https://en.wikipedia.org/wiki/Standard_deviation
https://github.com/leorge/qmisort/wiki/data/hole
https://github.com/leorge/qmisort/wiki/data/hole

3. Secure quicksort

This section describes a known idea, but this step is necessary to make quicksort secure.

If N is large, both qsort_first() and quick_hole() encounter stack overflow in the case of the sorted data
presented below.

$ src/sorted.awk 12 | xargs echo # sample of sorted data
00 01 02 03 04 05 06 07 08 09 10 11
$ src/sorted.awk 100000 > data # make a sorted data in a file
$ for N in `seq 40000 10000 90000`; do Debug/Sort -N $N -fhV 1 data; done
arguments : -N 40000 -fhV 1 data
qsort(3) usec = 8776 call = 0 compare = 298432 copy = 0
qsort_first() usec = 13581996 call = 39999 compare = 800059998 copy = 0
quick_hole() usec = 11062354 call = 39999 compare = 799980000 copy = 79998
arguments : -N 50000 -fhV 1 data
qsort(3) usec = 9799 call = 0 compare = 382512 copy = 0
qsort_first() usec = 21149308 call = 49999 compare = 1250074998 copy = 0
Segmentation fault (core dumped)
arguments : -N 60000 -fhV 1 data
qsort(3) usec = 11746 call = 0 compare = 469008 copy = 0
qsort_first() usec = 30380979 call = 59999 compare = 1800089998 copy = 0
Segmentation fault (core dumped)
arguments : -N 70000 -fhV 1 data
qsort(3) usec = 15002 call = 0 compare = 555200 copy = 0
qsort_first() usec = 41633101 call = 69999 compare = 2450104998 copy = 0
Segmentation fault (core dumped)
arguments : -N 80000 -fhV 1 data
qsort(3) usec = 15597 call = 0 compare = 636864 copy = 0
qsort_first() usec = 53678405 call = 79999 compare = 3200119998 copy = 0
Segmentation fault (core dumped)
arguments : -N 90000 -fhV 1 data
qsort(3) usec = 19712 call = 0 compare = 723680 copy = 0
Segmentation fault (core dumped)

sorted.awk : awk script to generate a sequence of numbers.
seq : Linux command to print a sequence of numbers. The parameters are FIRST [INCREMENT] LAST.

qsort_hole() encounters stack overflow when N>=5000, and qsort_first() encounters it when N>=9000.

In this case, a partition is divided into 0 and N-1 elements because the largest/smallest element is chosen as the
pivot. Thus, N in the longer sub-partition decreases by one such as N-1, N-2, N-3, … , 1; therefore, the number of
calls is N-1. To call a function, parameters are passed via the stack area, and local variables in a function are also
located in the stack area. Thus, the amount of working memory required is N-1 times the memory required for one
function call. Therefore, recursive calls that are too deep exceed the limit of stack size and the function encounters
stack overflow.

In the case of a random data sequence with depth of recursive calls d, the number of elements n in a partition is
about N/2d. Thus, the average depth of recursive calls is about log2(N) because n=1=N/2d. Therefore, the depth of
the shallowest recursion is less than log2(N), and so the shorter partition side of recursive calls has negligible
impact; for example, log2(1073731824)=30. In contrast, in the case of the worst data sequence, the depth of the
longer partition side is N-1, and the recursive call may encounter stack overflow. If the recursive call of the longer
partition side is converted to iteration, no more stack area is required, avoiding stack overflow.

To convert recursion to iteration, the pseudocode is partially improved as below.

http://man7.org/linux/man-pages/man1/seq.1.html
https://github.com/leorge/qmisort/blob/master/sorted.awk
https://en.wikipedia.org/wiki/Stack_overflow
https://en.wikipedia.org/wiki/Quicksort#Space_complexity

Quicksort(a[], lo, hi)
 WHILE lo < hi // IF → WHILE: change exit condition from recursive call to iteration
 p = Partition(a, lo, hi)
 IF p – lo < hi – p // left partition is shorter than the right partition
 Quicksort(a, lo, p – 1) // sort left sub-partition recursively
 lo = p + 1 // shrink the input array to the right sub-partition
 ELSE // right partition is not longer than the left partition
 Quicksort(a, p + 1, hi) // sort right sub-partition recursively
 hi = p – 1 // shrink the input array to the left sub-partition

The following shows the effect of the new secured quicksort.

$ N=100000; src/sorted.awk $N | Debug/Sort -N $N -SV 1
arguments : -N 100000 -SV 1
qsort(3) usec = 25520 call = 0 compare = 815024 copy = 0
quick_secure() usec = 68436980 call = 99999 compare = 4999950000 copy = 199998

quick_secure() : Secured quick_hole() called by the -S option, which is the implemented pseudocode above.

quick_secure() completes the sort despite the huge N. The number of calls is modified to be the added number
of iterations and recursive calls.

The following chart shows the difference in relative elapsed time between quick_secure() and quick_hole(). The
Y axis is the normalized elapsed_time/nlog(n), where the value of quick_hole() at N=2^20 is 1.

Data - https://github.com/leorge/qmisort/wiki/data/secure

The performances of quick_hole() and quick_secure() are similar.

quick_secure() avoids stack overflow, but the number of comparisons is still large: N(N-1)/2. This problem is
resolved by the choice of pivot.

4. Asymmetric quicksort

The issue of many repeated elements in input data for quicksort is well known. Repeated equal elements is a
type of this problem. As is well known, three-way partitioning resolves this issue by dividing a partition into lesser,
equal and greater elements.

Fig. 3: Secured quicksort

https://en.wikipedia.org/wiki/Dutch_national_flag_problem
https://en.wikipedia.org/wiki/Quicksort#Repeated_elements
https://github.com/leorge/qmisort/wiki/data/secure
https://github.com/leorge/qmisort/blob/master/qsort_secure.c

$ src/nnnn.awk 9 | xargs echo
9 9 9 9 9 9 9 9 9
$ N=100000; src/nnnn.awk $N | Debug/Sort -N $N -wSV 1
arguments : -N 100000 -wSV 1
qsort(3) usec = 16622 call = 0 compare = 815024 copy = 0
qsort_3way() usec = 1999 call = 1 compare = 99999 copy = 1
quick_secure() usec = 90008348 call = 99999 compare = 4999950000 copy = 199998

nnnn.awk : awk script to generate repeated equal data.
qsort_3way() : Three-way Partitioning Quicksort called by the -w option.

The numbers of comparisons, calls and copies in quick_secure() are equal to the case of sorted data above.
qsort_3way() reduces these numbers; however, three-way partitioning is expensive in the case of random data
sequence.

The following chart shows the relative elapsed time. The Y axis is the normalized elapsed_time/nlog(n),
where the value of quick_hole() at N=2^20 is 1.

Data - https://github.com/leorge/qmisort/wiki/data/3way

qsort_3way() is the slowest because the number of copies in qsort_3way() is the largest, as shown below.

$ N=100000; src/random.awk $N | Debug/Sort -N $N -hwV 1
arguments : -N 100000 -hwV 1
qsort(3) usec = 65391 call = 0 compare = 1536226 copy = 0
qsort_3way() usec = 97441 call = 47820 compare = 1881709 copy = 5526483
quick_hole() usec = 59894 call = 69459 compare = 2027643 copy = 805984

Therefore, the object of three-way partitioning should be limited to the simple numeric array because copying an
element by index, a[i] = a[j], is much faster than by memcpy(3).

I suggest another way to resolve this issue as follows. In partitioning, move the equal elements in the left
partition to right, mark the start position at an equal element in the right partition, and clear the start position at a
greater element. When the partitioning is complete, if the start position is marked, continuous equal elements can
be omitted from the right sub-partition. A partition is divided into 3 sub-partitions; lesser, equal, and greater or
equal elements.

The following shows the improved pseudocode.

Fig. 4: 3-way partitioning

http://man7.org/linux/man-pages/man3/memcpy.3.html
https://github.com/leorge/qmisort/wiki/data/3way
http://algs4.cs.princeton.edu/23quicksort/Quick3way.java.html
https://github.com/leorge/qmisort/blob/master/qsort_3way.c
https://github.com/leorge/qmisort/blob/master/nnnn.awk

Quicksort(a[], lo, hi)
 WHILE lo < hi
 p, q = Partition(a, lo, hi) // multiple return
 IF p – lo < hi – q
 Quicksort(a, lo, p – 1)
 lo = q + 1
 ELSE
 Quicksort(a, q + 1, hi)
 hi = p – 1

Partition(a[], lo, hi)
 hole = lo + (hi – lo) / 2 // choose the middle element as a pivot
 pivot = a[hole]
 a[hole] = a[hi]
 hole = hi--
 eq = -1 // initialize a variable to mark the start position
 WHILE lo < hole
 IF a[lo] >= pivot // “>” is changed to “>=”
 IF a[lo] > pivot // a greater element
 eq = -1 // clear the start position
 ELSE IF eq < 0 // first equal element
 eq = hole // mark the start position
 a[hole] = a[lo]
 hole = lo
 WHILE hi > hole
 IF a[hi] < pivot // a lesser element
 a[hole] = a[hi]
 hole = hi
 ELSE IF a[hi] > pivot // a greater element
 eq = -1 // clear the start position
 ELSE IF eq < 0 // equal element again
 eq = hi // mark the start position
 hi--
 lo++
 a[hole] = pivot
 RETURN hole, eq < 0 ? hole : eq

The outer loop and inner loop are asymmetric, and two sub-sub-partitions are sorted asymmetrically by iteration
and recursion. For this reason, I have named this algorithm Asymmetric Quicksort.

In the case of repeated equal elements, the outer loop stops at the first element, and in the inner loop, eq stays at
the initial hi, and hi reaches lo. Thus, Partition() returns lo and initial hi. Then, the N in the sub-partitions are
zero.

The following list shows the effect.

$ N=100000; src/nnnn.awk $N | Debug/Sort -N $N - wSaV 1
arguments : -N 100000 -wSaV 1
qsort(3) usec = 18385 call = 0 compare = 815024 copy = 0
qsort_3way() usec = 1890 call = 1 compare = 99999 copy = 1
quick_secure() usec = 88903076 call = 99999 compare = 4999950000 copy = 199998
quick_asymm() usec = 1776 call = 1 compare = 99999 copy = 4

quick_asymm() : Imprelented pseudocode above called by the -a option.

In quick_asymm(), the number of comparisons is N-1; thus, this case is resolved. Other many repeated elements
situations are also resolved, as shown below.

Various patterns of two data:

$ N=10000; for a in n111 n11n n1n1 n1nn nn11 nn1n nnn1; do
> echo ""; echo "$a.awk : `src/$a.awk 12`" | xargs echo
> src/$a.awk $N | Debug/Sort -N $N -haV 1; done

https://github.com/leorge/qmisort/blob/master/quick_asymm.c

n111.awk : 12 01 01 01 01 01 01 01 01 01 01 01
arguments : N 10000 haV 1
qsort(3) usec = 2888 call = 0 compare = 74594 copy = 0
quick_hole() usec = 732612 call = 9999 compare = 49995000 copy = 19999
quick_asymm() usec = 199 call = 1 compare = 9999 copy = 4

n11n.awk : 12 01 01 01 01 01 01 01 01 01 01 12
arguments : -N 10000 -haV 1
qsort(3) usec = 2041 call = 0 compare = 74594 copy = 0
quick_hole() usec = 725638 call = 9999 compare = 49995000 copy = 19999
quick_asymm() usec = 427 call = 14 compare = 19990 copy = 56

n1n1.awk : 12 01 12 01 12 01 12 01 12 01 12 01
arguments : -N 10000 -haV 1
qsort(3) usec = 4564 call = 0 compare = 96164 copy = 0
quick_hole() usec = 717952 call = 7500 compare = 37502499 copy = 17500
quick_asymm() usec = 373 call = 2 compare = 14998 copy = 5007

n1nn.awk : 12 01 12 12 12 12 12 12 12 12 12 12
arguments : -N 10000 -haV 1
qsort(3) usec = 2679 call = 0 compare = 64608 copy = 0
quick_hole() usec = 750931 call = 9999 compare = 49995000 copy = 19999
quick_asymm() usec = 163 call = 1 compare = 9999 copy = 5

nn11.awk : 12 12 12 12 12 12 01 01 01 01 01 01
arguments : -N 10000 -haV 1
qsort(3) usec = 5400 call = 0 compare = 64608 copy = 0
quick_hole() usec = 713505 call = 9999 compare = 49995000 copy = 24998
quick_asymm() usec = 934 call = 5 compare = 49983 copy = 10014

nn1n.awk : 12 12 12 12 12 12 12 12 12 12 01 12
arguments : -N 10000 -haV 1
qsort(3) usec = 2002 call = 0 compare = 64621 copy = 0
quick_hole() usec = 709358 call = 9999 compare = 49995000 copy = 19999
quick_asymm() usec = 185 call = 1 compare = 9999 copy = 6

nnn1.awk : 12 12 12 12 12 12 12 12 12 12 12 01
arguments : -N 10000 -haV 1
qsort(3) usec = 2177 call = 0 compare = 64621 copy = 0
quick_hole() usec = 756220 call = 9999 compare = 49995000 copy = 19999
quick_asymm() usec = 191 call = 1 compare = 9999 copy = 6

Shuffled two data :

$ N=10000; src/nn11.awk $N | shuf | Debug/Sort -N $N -haV 1
arguments : -N 10000 -haV 1
qsort(3) usec = 2970 call = 0 compare = 94677 copy = 0
quick_hole() usec = 549488 call = 8761 compare = 37552309 copy = 20014
quick_asymm() usec = 400 call = 2 compare = 14998 copy = 5033

shuf : Linux command to generate random permutations.

Shuffled three data :

$ N=10000; for i in `seq 1 $N`; do echo 11111; echo 55555; echo 99999
> done | shuf | Debug/Sort -N $N -haV 1
arguments : -N 10000 -haV 1
qsort(3) usec = 2911 call = 0 compare = 103721 copy = 0
quick_hole() usec = 276857 call = 8900 compare = 18265579 copy = 23416
quick_asymm() usec = 632 call = 5 compare = 33005 copy = 33005

Shuffled 100 data 100 times :

http://man7.org/linux/man-pages/man1/shuf.1.html
https://github.com/leorge/qmisort/blob/master/nnn1.awk
https://github.com/leorge/qmisort/blob/master/nn1n.awk
https://github.com/leorge/qmisort/blob/master/nn11.awk
https://github.com/leorge/qmisort/blob/master/n1nn.awk
https://github.com/leorge/qmisort/blob/master/n1n1.awk
https://github.com/leorge/qmisort/blob/master/n11n.awk
https://github.com/leorge/qmisort/blob/master/n111.awk

$ N=10000; for i in `seq 0 99`; do for j in `seq -w 0 99`; do echo $j; done
> done | shuf | tee data | Debug/Sort -N $N -whaV 1
arguments : -N 10000 -whaV 1
qsort(3) usec = 3960 call = 0 compare = 120217 copy = 0
qsort_3way() usec = 2846 call = 100 compare = 70300 copy = 181228
quick_hole() usec = 8384 call = 8799 compare = 493738 copy = 46887
quick_asymm() usec = 2393 call = 194 compare = 100086 copy = 31642
$ for i in `seq 1 15`; do shuf data | Debug/Sort -N $N -aV 1
> done | awk '/asymm/{print $7}' | xargs echo
206 190 192 182 198 207 197 183 186 195 192 192 201 193 196
$ for i in `seq 1 15`; do shuf data | Debug/Sort -N $N -hV 1
> done | awk '/hole/{print $7}' | xargs echo
8750 8782 8761 8835 8783 8846 8794 8821 8804 8793 8809 8790 8751 8793 8813

tee : Linux command to read from standard input and write to standard output and files.

The number of calls in qsort_3way() equals the kind of data value. Thus, 3-way partitioning is most efficient.
The second and third commands output the number of calls in quick_hole() and quick_asymm(). The former has
almost 8800 calls, which is much greater than for qsort_3way(). In contrast, quick_asymm() has about 200 calls,
but this double the number for qsort_3way(), and efficient enough for this case.

5. Random choice

If a pivot is chosen from several fixed positions, it is possible to generate malicious data sequence, which makes
the time complexity quadratic. As is well known, a random choice of pivot avoids this possibility.

The following list demonstrates the case4 of median-of-five.

$ N=20000; KillDualPivot.pl $N | Debug/Sort -N $N -jrV 1
arguments : -N 20000 -jrV 1
qsort(3) usec = 6204 call = 0 compare = 227530 copy = 0
dual_pivot() usec = 1686071 call = 14867 compare = 49377878 copy = 73974305
quick_random() usec = 10802 call = 13251 compare = 332083 copy = 153363

KillDualPivot.pl5 : A perl script to generate a worst data sequence for Dual-Pivot Quicksort in Java 7.
Perl : The Perl 5 language interpreter.
dual_pivot() : Dual-Pivot Quicksort called by the -j option.
quick_random() : Asymmetric Quicksort called by the -r option. The pivot is a random element entirely.

Dual-Pivot Quicksort[3], invented by Vladimir Yaroslavskiy, chooses 2 pivots from 5 elements at nearly 3N/14,
5N/14, 7N/14, 9N/14, 11N/14 in a partition. The template of dual_pivot() is DualPivotQuicksorot.java in the
library of Java 7, which is a hybrid sorting of Dual-Pivot Quicksort, Three-way Partitioning Quicksort, Pair
Insertion Sort and Linear Insertion Sort. KillDualPivot.pl generates a worst data sequence for dual_pivot(), and the
number of comparisons is about (N^2)/8. If N is large, dual_pivot() encounters stack overflow, as shown below.

$ N=50000; KillDualPivot.pl $N | tee data | Debug/Sort -N $N -jV 1
arguments : -N 50000 -jV 1
qsort(3) usec = 26761 call = 0 compare = 622340 copy = 0
Segmentation fault (core dumped)
$ Debug/Sort -N $N -rV 1 data
arguments : -N 50000 -rV 1 data
qsort(3) usec = 19443 call = 0 compare = 622340 copy = 0
quick_random() usec = 28669 call = 33247 compare = 970199 copy = 416577

quick_random() avoids malicious data sequence as above. However, randomization is considered expensive.

The following chart shows the overhead of rand(3), which is a function to generate a pseudorandom number.
quick_random() chooses a random element, and quick_asymm() chooses the middle element. The Y axis is the
normalized elapsed_time/nlog(n), where the value of quick_hole() at N=2^20 is 1.

4 Other examples - https://github.com/leorge/qmisort/wiki/Malicious-data.
5 Source code is secret until the problem is resolved in Java.

https://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjzv46m4f_MAhXng6YKHZJdCYMQFggcMAA&url=http://man7.org/linux/man-pages/man3/rand.3.html&usg=AFQjCNGn3SNSnBx9eaQCzq0pyM6Z56Pe_Q
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/DualPivotQuicksort.java
https://github.com/leorge/qmisort/blob/master/quick_random.c
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/DualPivotQuicksort.java
https://github.com/leorge/qmisort/blob/master/dual_pivot.c
https://en.wikipedia.org/wiki/Perl
http://man7.org/linux/man-pages/man1/perf-script-perl.1.html
https://github.com/leorge/qmisort/wiki/Malicious-data
http://man7.org/linux/man-pages/man1/tee.1.html

data - https://github.com/leorge/qmisort/wiki/data/random

 quick_random() converges in quick_asymm() because the cost of rand(3) decreases the portion when N is large
as described below.

The following list shows the number of calls for various N.

$ for N in 1000 100000 10000000; do src/random.awk $N | Debug/Sort -N $N -rV 1; done
arguments : -N 1000 -rV 1
qsort(3) usec = 368 call = 0 compare = 8724 copy = 0
quick_random() usec = 382 call = 590 compare = 9866 copy = 5583
arguments : -N 100000 -rV 1
qsort(3) usec = 61131 call = 0 compare = 1536466 copy = 0
quick_random() usec = 62476 call = 58977 compare = 1991773 copy = 859972
arguments : -N 10000000 -rV 1
qsort(3) usec = 7210777 call = 0 compare = 220103713 copy = 0
quick_random() usec = 8022736 call = 5891814 compare = 290133531 copy = 116758378

The number of calls is about 0.6N, and rand(3) is called once in each call; thus, the time complexity of
randomization is O(n) in big O notation. O(n) is smaller than the time complexity of the sorting algorithm O(n
log(n)). Therefore, the randomization is comparatively inexpensive when N is large.

The following list shows the distribution of N in sub-partitions. The index is log2(N), and the value is the
number of calls.

$ for N in 1000 10000 100000; do src/random.awk $N |
> Debug/Sort -N $N -rV 2 | src/nmemb.awk; done
log2(1000)=9 1 2 3 4 5 6 7 8 9 sum
quick_random() 215 162 104 56 29 14 9 6 2 597
log2(10000)=13 1 2 3 4 5 6 7 8 9 10 11 12 13 sum
quick_random() 1997 1655 1011 565 286 150 73 52 21 10 3 2 2 5827
log2(100000)=16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 sum
quick_random() 20717 16348 10264 5577 3087 1495 790 401 199 94 51 26 11 5 2 4 59071

nmemb.awk : awk script to show the distribution of N

The sum of first 3 values, N<16, is about 80% of calls.

(215+162+104)/597=0.81 (1997+1655+1011)/5827=0.80 (20717+16348+10264)/59071=0.80

Therefore, if the random choice is discontinued when N decreases, the number of calls of rand(3), decreases to
20%, making the cost negligible.

Fig. 5: Random choice

https://github.com/leorge/qmisort/blob/master/nmemb.awk
https://en.wikipedia.org/wiki/Big_O_notation
https://github.com/leorge/qmisort/wiki/data/random

6. Median

The choice of the median of several elements as a pivot is more efficient than the choice of a single element. In
the case of median-of-three elements, I suggest choosing the first element at random in the range [0, N/2), with the
distance between the other elements equal to N/4. Thus, the second element is in the range [N/4, 3N/4), and the
last element is in [N/2, N). In the case of median-of-five elements, I suggest choosing the first element at random
in [0, N/4), with the distance between other elements equal to 3N/16. As such, the ranges of the other elements are
[3N/16, 7N/16), [6N/16, 10N/6), [9N/16, 13N/16), [12N/16, 16N/16).

I also suggest a median-of-logarithmic, where the logarithmic number L is defined as (int(log2(N))/2)|1. The
first element is in the range [0, N/L), and the distance between the other elements is N/L. To get the median, make
an array of pointers to the elements, sort it partially including the middle of array, and choose the middle pointer.

The following pseudocode demonstrates how to choose the middle pointer in the median-of-logarithmic.

Median_of_Logarithmic(idx[])
 lo = 0
 hi = idx.length - 1
 middle = hi / 2 // or idx.length/2
 WHILE lo < hi
 p, q = Partition(idx, lo, hi) // pivot is the middle element
 IF p > middle // the middle pointer is in the left partition
 hi = p - 1
 ELSE IF q < middle // in the right partition

 lo = q + 1
 ELSE // the middle pointer is in the continuous equal elements
 BREAK
 RETURN p

When N is decreased, a pivot element should be chosen at the middle of a partition against sorted data. Further,
the threshold of N to change from median-of several elements to the middle should be determined by experiment.

The following chart shows the elapsed time under various thresholds. The Y axis is the normalized
elapsed_time/nlog(n), where the average of quick_hole() is 1. The series in the chart are averages of 20 random
sequences. N=2^24.

Data for Fig.6 and Fig.7 - https://github.com/leorge/qmisort/wiki/data/threshold

At the leftmost of the series are the choices of the median-of several elements entirely, which shows their
relative computational complexity. The minimum of the series are the best thresholds, but they are difficult to find
precisely.

Fig. 6: Threshold (N=2^24)

https://github.com/leorge/qmisort/wiki/data/threshold

The following chart shows the case of N=2^20. To smooth the results, the series in the chart are averages of 80
random sequences.

Data for Fig.6 and Fig.7 - https://github.com/leorge/qmisort/wiki/data/threshold

I determined the threshold as shown below.

type threshold
----------- ------------
median-of-3 2^5
median-of-5 2^6
median-of-L 2^7

The following chart shows the elapsed time of several median-of in various N. The Y axis is the normalized
elapsed_time/nlog(n), where the value of quick_hole() at N=2^20 is 1. The series in the chart are averages of 20
random sequences.

middle : Pivot is the middle element.

Fig. 8: Median-of several elements

Fig. 7: Threshold (N=2^20)

https://github.com/leorge/qmisort/wiki/data/threshold

median35L : Pivot is the middle element when N<=31, the median-of three when N<=127, the median-of five when
N<=4095 else the median-of-logarithmic because (int(log2(4095))/2|1=5 and (int(log2(4096))/2|1=7.

Data - https://github.com/leorge/qmisort/wiki/data/medians

Median-of-3 is slow whereas median-of-5, median-of-log and median35L are similar when N>2^20. In
particular, median35L(),which is a multiple median-of, is the fastest by a small margin.

7. Conclusion

Asymmetric Quicksort prevents stack overflow, resolves the issue of repeated many elements, and avoids any
other malicious data sequences. Therefore, Asymmetric Quicksort is secure.

Asymmetric Quicksort becomes faster through the use of multiple median-of. The following chart shows the
elapsed time of the final Asymmetric Quicksort for various N. The Y axis is the normalized
elapsed_time/nlog(n), where the value of quick_hole() at N=2^20 is 1. The series in the chart are averages of 10
random sequences.

qsort_med3() : Conventional quicksort called by the -3 option.
asymm_qsort() : Final asymmetric quicksort, called by the -q option, is like median35L() above.

However, this uses the conventional median-of-three to reduce the use of rand(3).

Data - https://github.com/leorge/qmisort/wiki/data/asymmetric

Asymmetric Quicksort is about 10% faster than the conventional quicksort with the median-of-3 and swaps.

This paper described entire quicksort, and the next theme for investigation is a hybrid sorting algorithm to
make quicksort much faster.

8. Experimental results

Data and charts : https://github.com/leorge/qmisort/wiki/data/AsymmetricQuicksort.ods

9. References

1. Quicksort: https://en.wikipedia.org/wiki/Quicksort, http://algs4.cs.princeton.edu/23quicksort
2. Measurement: https://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/UK_NPL/mgpg11.pdf
3. Dual-Pivot Quicksort: http://codeblab.com/wp-content/uploads/2009/09/DualPivotQuicksort.pdf

Fig. 9: Final Asymmetric Quicksort

http://codeblab.com/wp-content/uploads/2009/09/DualPivotQuicksort.pdf
https://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/UK_NPL/mgpg11.pdf
http://algs4.cs.princeton.edu/23quicksort
https://en.wikipedia.org/wiki/Quicksort
https://github.com/leorge/qmisort/wiki/data/AsymmetricQuicksort.ods
https://github.com/leorge/qmisort/wiki/data/asymmetric
https://github.com/leorge/qmisort/blob/master/quick_sort.c
https://github.com/leorge/qmisort/blob/master/qsort_med3.c
https://github.com/leorge/qmisort/wiki/data/medians

Appendix A. Source code

The following list shows the implementation of Asymmetric Quicksort.

#include <math.h>
#include <stdlib.h>
#include <string.h>

#define copy(a, b) memcpy((a), (b), length)
#define MIDDLE 63 // Choose the middle element as a pivot when N <= MIDDLE
#define MEDIAN3 127 // Median-of-3
#define MEDIAN5 4095 // Median-of-5

static int (*comp)(const void *, const void *);
static size_t length;

static void sort(void *base, size_t nmemb) {
 while (nmemb > 1) {
 char *hole, *first = (char *)base, *last = first + (nmemb - 1) * length;
 // choose a pivot element
 if (nmemb <= MIDDLE) { // middle element
 hole = first + (nmemb >> 1) * length;
 } else if (nmemb <= MEDIAN3) { // conventional median-of-3
 char *middle = first + (nmemb >> 1) * length;
 hole = (comp(first, last) < 0 ?
 (comp(middle, first) < 0 ? first: (comp(middle, last) < 0 ? middle: last)) :
 (comp(middle, last) < 0 ? last: (comp(middle, first) < 0 ? middle: first)));
 } else if (nmemb <= MEDIAN5) { // median-of-5
 char *p1, *p2, *p3, *p4, *p5, *tmp;
 p1 = (char *)base + (((nmemb >> 2) * rand()) / ((size_t)RAND_MAX + 1)) * length;
 size_t distance = ((nmemb >> 3) + (nmemb >> 4)) * length; // 3N/16
 p5 = (p4 = (p3 = (p2 = p1 + distance) + distance) + distance) + distance;
 // You can rewrite below with a plenty of ternary operators ?:.
 if (comp(p2, p4) > 0) {tmp = p2; p2 = p4; p4 = tmp;}
 if (comp(p3, p2) < 0) {tmp = p2; p2 = p3; p3 = tmp;}
 else if (comp(p4, p3) < 0) {tmp = p4; p4 = p3; p3 = tmp;}
 if (comp(p1, p5) > 0) {tmp = p1; p1 = p5; p5 = tmp;}
 hole = comp(p3, p1) < 0 ? (comp(p1, p4) < 0 ? p1 : p4)
 : (comp(p5, p3) < 0 ? (comp(p5, p2) < 0 ? p2 : p5) : p3);
 } else { // median-of log2(sqrt(N))|1 random elements
 size_t pickup = ((size_t)log2(nmemb) >> 1) | 1; // number of elements
 void *index[pickup];
 char *p = first + (nmemb * rand() / ((size_t)RAND_MAX + 1) / pickup) * length;
 size_t distance = (size_t)(nmemb / pickup) * length; // distance of elements
 for (size_t idx = 0; idx < pickup; p += distance) index[idx++] = p;
 void **left = index, **right = &index[pickup -1], **middle = &index[pickup >> 1];
 while (left < right) { // search a pointer to the middle element
 void **phole = &left[(right - left) >> 1]; // hole in the index
 char *pivot = *phole; // save the middle pointer
 *phole = *right; // move the last pointer to the middle of index
 phole = right; // dig a hole at the last of index
 void **plo = left, **phi = right - 1, **peq = NULL;
 for (int chk; plo < phole; plo++) {
 if ((chk = comp(*plo, pivot)) >= 0) {
 if (chk > 0) peq = NULL; // discontinued
 else if (peq == NULL) peq = phole;
 *phole = *plo; phole = plo;
 for (; phi > phole; phi--) {
 if ((chk = comp(*phi, pivot)) < 0) {
 *phole = *phi; phole = phi;
 }
 else if (chk > 0) peq = NULL;
 else if (peq == NULL) peq = phi;
 }
 }
 }
 *phole = pivot; //restore
 if (peq == NULL) peq = phole; // phole <= peq

 if (middle < phole) right = phole - 1;
 else if (peq < middle) left = peq + 1;
 else break; // phole <= middle <= peq
 }
 hole = *middle; // hole is in the middle of index[]
 }

 // partition
 char save[length]; copy(save, hole); copy(hole, last); // save <-- hole <-- last
 char *lo = first, *hi = (hole = last) - length, *eq = NULL;
 for (int chk; lo < hole; lo += length) {
 if ((chk = comp(lo, save)) >= 0) {
 if (chk > 0) eq = NULL; // discontinued
 else if (eq == NULL) eq = hole;
 copy(hole, lo); hole = lo;
 for (; hi > hole; hi -= length) {
 int chk;
 if ((chk = comp(hi, save)) < 0) {
 copy(hole, hi); hole = hi;
 }
 else if (chk > 0) eq = NULL;
 else if (eq == NULL) eq = hi; // first equal element
 }
 }
 }
 if (eq == NULL) eq = hole;
 copy(hole, save); // restore

 // sort sub-partitions recursively and iteratively.
 size_t n_lo = (hole - first) / length; // number of element in lower partition
 size_t n_hi = (last - eq) / length;
 if (n_lo < n_hi) {
 sort(base, n_lo); // sort shorter sub-partition
 nmemb = n_hi; base = eq + length;
 } else {
 sort(eq + length, n_hi);
 nmemb = n_lo;
 }
 }
}

void
asymm_qsort(void *base, size_t nmemb, size_t size, int (*compare)(const void *, const void *))
{
 length = size; comp = compare;
 sort(base, nmemb);
}

	1. Introduction
	2. Pivot hole
	3. Secure quicksort
	4. Asymmetric quicksort
	5. Random choice
	6. Median
	7. Conclusion
	8. Experimental results
	9. References
	Appendix A. Source code

