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This article explores a case of signal based chaos generation, using the Carotid-Kundalini 

function, shown in literature to possess fractal artifacts. Specifically, we set the input to a two tone 

signal, with the frequency ratio between the sinusoids acting as the control parameter. We explore 

the iterative map using the time derivatives, and upon plotting the bifurcation plot, observe the 

chaotic nature of the generated signal. Phase portraits are plotted for different orders, and 

presence of rich patterns are observed. True to the nonlinear nature, the frequency spectrum shows 

a horde of new frequency components generated at the output. Lyapunov Exponents also 

quantitatively confirm the presence of generated chaos in the Carotid-Kundalini signal. 

As the flagship of nonlinear dynamics, Chaos Theory is characterized by systems exhibiting 

determinism and an extremely sensitive dependence on initial conditions [1]. Research literature exists, 

illustrating various innovative methods of generating chaos, using signal frequency based control 

parameters, that determine the transition of the system from order to chaos, and some of these systems 

involve the use of special mathematical functions such as the Ramanujan Theta function and Bessel 

functions[2-7]. 

This article demonstrates how to generate such frequency dependent chaos using the Carotid-

Kundalini function [8]. Discovered by Pickover and called so because some of the sinusoid based patterns 

in the function resemble the flow of the Kundalini energy in Indian Spirituality, chaotic patterns in these 

functions using the period doubling route have been proposed earlier [8,9]. The function is noteworthy, 

because, when one superposes plots of the Carotid Kundalini function for different orders, one ends up 

with a plot displaying three distinct regions: ‘oscillation land’, ‘Gaussian mountain’, and ‘fractal valley’, 

with the last one seen to possess fractal patterns [10]. 

 

In this article, we demonstrate signal based chaos generation using the Carotid Kundalini function. 

We start with the basic definition of the function, which for an input ‘x’ and order ‘n’ is given by,  

𝐶𝑛 𝑥 =  cos(𝑛𝑥𝑐𝑜𝑠−1(𝑥)) 
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We set the input ‘x’ to a sum of sinusoids, given by 𝑥 = sin 𝑓𝑡 + sin(𝑟𝑓𝑡), and in accordance with 

the function definition, normalize ‘x’ to restrict its range to [-1,1]. The ratio between the frequencies, ‘r’ 

serves as the control parameter in our chaos generator. 

To examine the chaotic nature, we use the bifurcation plots, obtainable through the iterative map. 

First, we start by substituting for ‘x’ and taking the time derivative to yield 𝐶𝑛
′ (𝑡). Next, we replace ‘t’ by 

discrete samples ‘i’, and note that the time derivative is nothing but the difference between successive 

samples, i.e. 𝐶𝑛
′  𝑡 =  𝐶𝑛 𝑖 + 1 − 𝐶𝑛(𝑖). Using this, we write the equation for 𝐶𝑛(𝑖 + 1), which becomes 

our iterative map. 

𝐶𝑛 𝑖 + 1 =  𝐶𝑛(𝑖) −  𝐴 𝑖 𝐵 𝑖 −
𝑛𝐶 𝑖 𝐴(𝑖)

𝐷(𝑖)
 sin(𝐶 𝑖 𝐵(𝑖)) 

 where, 

𝐴 𝑖 =  𝑛(𝑓𝑟𝑐𝑜𝑠 𝑓𝑟𝑖 + 𝑓𝑐𝑜𝑠(𝑓𝑖)) 

𝐵 𝑖 = 𝑐𝑜𝑠−1(sin 𝑓𝑟𝑖 + sin 𝑓𝑖 )  

𝐶 𝑖 =  𝑛(sin 𝑓𝑟𝑖 + sin(𝑓𝑖)) 

𝐷 𝑖 =   1 − sin 𝑓𝑟𝑖 + 𝑠𝑖𝑛2(𝑓𝑖) 

Plotting  𝐶𝑛(𝑖 + 1) as a function of ‘r’ gives the bifurcation plot as follows, for orders n = 1and 2. 

 

 

Interesting texture formations are seen in the bifurcation plots, with varying sparse and dense regions. 
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We select an irrational number, pi, as our value of ‘r’, since this value yields one of the denser regions for 

both orders. For this value of r, and for the first three orders, n=1,2,3, we plot the time derivative 𝐶𝑛
′ (𝑡) as 

a function of 𝐶𝑛(𝑡). This gives us the phase portraits as follows: 

 

One can see that for the same values of ‘r’ and ‘f’, the phase portraits show increasing degrees of 

intricate richness, as the order ‘n’ increases. One can also see a particular region of high density in the far 

right portion of each phase portrait, which on expansion reveals fractal patterns, in accordance with the 

original discoveries of the Carotid-Kundalini ‘fractal valley’ [8]. 

It is also seen that for integer values, such as r=3, or rational values, such as r=1.6, the phase portraits, 

shown below, exhibit considerable lack of richness, and hence are not as chaotic as r=pi. 

 

We now plot the time series and spectrum of the chaotic signal for n=2 and for r=pi. 
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We note that the waveform shows a considerable lack of periodicity, one of the necessary properties 

of chaos. Though our starting input was a two-tone signal, with frequencies ‘f’ and ‘rf’, we note from the 

frequency spectrum that 𝐶𝑛(𝑡) consists of a number of frequency components, harmonics, sidebands and 

sub-harmonics. This shows that our system for chaos generation is highly nonlinear, introducing several 

new frequency components into the output.  

Quantitatively, we also note that the signal 𝐶𝑛(𝑡) is shown to exhibit a largest Lyapunov Exponent 

value of 9.37, the positive value of the measure asserting the presence of chaos [11]. 

Thus, in summary, the article explores a case of signal based chaos generation, using the Carotid-

Kundalini function, shown in literature to possess fractal artifacts. Specifically, we set the input to a two 

tone signal, with the frequency ratio between the sinusoids acting as the control parameter. We explore 

the iterative map using the time derivatives, and upon plotting the bifurcation plot, observe the chaotic 

nature of the generated signal. Phase portraits are plotted for different orders, and presence of rich 

patterns are observed. True to the nonlinear nature, the frequency spectrum shows a horde of new 

frequency components generated at the output. Lyapunov Exponents also quantitatively confirm the 

presence of generated chaos in the Carotid-Kundalini signal. 

References 
[1] Strogatz, Steven H. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. 

Westview press, 2014. 

[2] Frequency Dependent Chaos in a Single CMOS Inverter: Two Related Perspectives, http://vixra.org/abs/1510.0482 

[3] Ramanujan Theta Functions: The Route to Chaos, http://vixra.org/abs/1603.0413 

[4] Nonlinear Dynamics and Chaos in Third Order Mock Theta Functions, http://vixra.org/abs/1510.0494 

[5] Nonlinear Dynamics in Signals Derived from Bessel Functions, http://vixra.org/abs/1510.0361 

[6] Investigation of Nonlinear Dynamics and Chaos in Driven Systems Derived from Einstein Functions, 

http://vixra.org/abs/1510.0492 

[7] Generating Chaos from Love - Mathematically, http://vixra.org/abs/1510.0398 

[8] Pickover, Clifford A. Keys to infinity. Wiley, 1995. 

[9] Cooper, Gordon RJ. "Chaotic behaviour in the Carotid–Kundalini map function." Computers & Graphics 24, no. 3 (2000): 465-

470. 

[10] Rani, Mamta, and Ashish Negi. "New Julia sets for complex Carotid–Kundalini function." Chaos, Solitons & Fractals 36, no. 

2 (2008): 226-236. 

[11] Bollt, Erik M. "Model selection, confidence and scaling in predicting chaotic time-series." International Journal of Bifurcation 

and Chaos 10, no. 06 (2000): 1407-1422.  


