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Abstract

One of the important aspects of a neural network is its generaliza-
tion property, which is measured by its ability to make correct pre-
diction on unseen samples. One option to improve generalization is
to combine results from multiple networks, which is unfortunately a
time-consuming process. In this paper, a new approach is presented to
combine infinity number of neural networks in analytic way to produce
a small, fast and reliable neural network.

keywords— convolution, generalization, ensemble, transfer function

1 Introduction

Although it’s proved that multi-layer feed forward neural network can be a
universal approximator to any given function under mild conditions provided
by [1, 5], the construction of neural network remains difficult to present
day. It’s often noticed that even when a solution with error close to zero
is obtained, the network can still fail to make correct prediction on unseen
samples (i.e. test samples). It does not help much by increasing the size or
number of hidden layers and could even cause overfitting.

According to [13], this phenomenon can be illustrated as follows. The
training samples can be actually represented by multiple functions. One
neural network solution may well estimate one of those functions, but that
function may not necessarily be precise on test set. This explanation im-
plies that even the global minimum of the error function is obtained, the
generalization ability is not guaranteed by the solution.

The term generalization is used to describe the ability of a neural net-
work to make correct prediction on test samples. One common approach
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to improve generalization is referred as neural network ensemble, which is
essentially to combine results from multiple networks that differ from each
other [[4, 8, 9]]. The combining methods include taking average (or weighted
average) for continuous interpolation, or majority voting for classification
problems. Sharkey et al. suggested selecting those networks with great di-
versity to improve generalization, so that the error will hopefully cancel out
with each other. Here diversity means that if the solutions partially fail
on test set, they should fail differently. The networks with great diversity
are thought to be those networks trained on different training samples, with
different architectures, having different number of nodes or starting from
different initial parameters.

Even though neural network ensemble generalizes quite well, both the
construction of the ensemble and its usage requires much computation re-
source and thus limits its application.

It is notable that some researchers tried to replace popular transfer func-
tions like sigmoid or RBF function with other nonlinear functions. [2] pre-
sented a list of those attempts . Some of those efforts are contributed to
improve generalization. However, as mentioned in the paper, it’s hard to
evaluate their advantages and disadvantages. The most popular transfer
functions remain as sigmoid and RBF function.

In the training of neural network, it’s observed that when a solution with
small error is obtained, one can also find multiple solutions with slightly
bigger but still small error around the found solution. Each of those so-
lutions shows different generalization property as diversity requires. This
fact suggests the possibility to combine the results from networks with their
parameters close to the existing solution to improve generalization.

Combining nearby solutions has a unique advantage as it can be done
analytically, namely taking weighted average from nearby solutions can be
done by means of convolutions with Gaussian function in parameter space.
In this paper, this technique is refered as convolutional tunneling, or CT
in short. A new type of transfer function is thus created based on the CT
technique.

The neural network using convolutional tunneling techniqueis referred as
a CT Network, or CTN in short. A classical optimization (e.g. Levenberg-
Marquardt Algorithm by [10, 11]) is then performed to find the best solution
for the network. As output of a CTN is the average (and thus smoothed)
version of the original output, the error function with CTN is also smoothed
and thus finding the minimum is less likely to be trapped by local minima.

The fact that a CTN is one single network (instead of ensemble of multi-
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ple networks) suggests less computation is required to construct and to use
the network.

In this paper, we construct a neural network with one single hidden layer
to demonstrate the concept of CTN and its ability of generalization. The
paper is organized as follows: section 2 introduces the concept of CTN;
section 3 demonstrates its generalization ability; section 4 describes a new
schema of finding global minimum based on the concept of CTN and section
5 then discusses some potential extensions.

2 Convolutional Tunneling Network

As mentioned above, a CTN is a neural network whose output is the weighted
average of outputs from all nearby networks. Mathematically, the weighted
average means taking convolution of the output with Gaussian function over
the entire parameter space.

Let t(x |p) denote the output of a network on input x with parameter p,
then output of the CTN is t(x |p)∗g(p1|0, σ)∗g(p2|0, σ)∗ . . ., where function
g is Gaussian function, σ is the bandwidth of the CTN. It’s easy to see that
the CTN will converge to the original network when the bandwidth is 0.

2.1 Convolutional tunneling of SLFN

In theory, a MLP with one single hidden layer is enough to approximate any
continuous nonlinear function. In this section, single hidden layer FFNN
(SLFN) is investigated.

SLFN consists of one input layer, one hidden layer and one output layer.
Without loss of generality, assume the output layer has only one output
node. The network is illustrated as follows:

The transfer function of a node can be viewed as two parts: the activation
function that describes the total input of the node, and the output function
that coverts the input of the node to an output value.

Let

• xk denote the k-th input variable. In case of network with bias, the
last one is fixed as 1;

• νj,k denote the weight from input k to hidden node j;

• zj denote the input of hidden node j
zj =

∑
k νj,kxk;
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Input Layer

Hidden Layer

Output Layer

Figure 1: MLP with single hidden layer

• oj denote the output of hidden node j
oj = Ψ(zj), where Ψ(x) is the transfer function;

• ωj denote the weight from hidden node j to the output node;

• t denote the output of the network
t =

∑
j ωjoj ;

• y denote the observed value of a given training sample;

• e denote the error on the given training sample
e = t− y

Here the activation function of the hidden nodes is an simple weighted
sum, like most MLP does.

In the following discussion, the output of a CTN is presented with con-
volution.

The output function

Let t̄ denote output of the CTN:

t̄ = t ∗ g(ω|0, σ) ∗ g(ν|0, σ)

It’s hard (if not impossible) to obtain the convolution using classical out-
put function like logistic function or Tanh. To make the convolution easier,
the output function is chosen as the CDF of standard normal probability
density function Φ(x) for its nice integral properties.
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Φ(x) =

∫ x

−∞
φ(t)dt

where φ(x) is standard normal probability density function

φ(x) =
1

2π
e−

x2

2

Gaussian function g(x|0, σ) can be also expressed with standard normal
probability density function as:

g(x|0, σ) =
1

σ
φ
(x
σ

)
Output of the CTN

Let ē = t̄− y, we have the error function Ē as:

Ē =
∑
i

ē2i =
∑
i

(t̄i − y)2

According to the definition of Ē, the smoothed error function will con-
verge to the original error function when σ = 0.

As mentioned above, the output of the CTN is the convolution of the
output of the original network and a high dimensional Gaussian function in
parameter space.

As

(a+ bx) ∗ g(x|0, σ) =

∫ ∞
−∞

(a+ b(x− t)) 1

σ
φ

(
t

σ

)
dt

= a+ bx− bσ
∫ ∞
−∞

tφ(t)dt

= a+ bx

Thus

t ∗ g(ω1|0, σ) ∗ g(ω2|0, σ) ∗ . . . =
∑
j

ωjoj ∗ g(ω1|0, σ) ∗ g(ω2|0, σ) ∗ . . .

=
∑
j

ωjoj

= t
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That is, the convolution of the output with ω is still the original output.

As

Φ(a+ bx) ∗ g(x|0, σ) =

∫ ∞
−∞

Φ(a+ bt)
1

σ
φ

(
t− x
σ

)
dt

=

∫ ∞
−∞

Φ(a+ bx+ bσt)φ(t)dt

= Φ

(
a+ bx√
1 + b2σ2

)
Let ōj denote the output of j-th hidden node in the CTN. As oj = Φ(zj),

we have

ōj = oj ∗ g(νj,1|0, σ) ∗ g(νj,2|0, σ) ∗ . . .

= Φ

(∑
k

νj,kxk

)
∗ g(νj,1|0, σ) ∗ g(νj,2|0, σ) ∗ . . .

= Φ

(∑
k νj,kxk
p1(x;σ)

)
= Φ

(
zj
p

)
where p = Πk

√
1 + σ2x2k.

Thus

t̄ =
∑
j

ωj ōj

=
∑
j

ωjΦ

(
zj
p

)

=
∑
j

ωjΦ

 ∑
k νj,kxk

Πk

√
1 + σ2x2k


As shown above, the output of the CTN is similar to the original net-

work. The difference is that the additive activation function is replaced by
a nonlinear function.

The activation function of the CTN is denoted by

AS1(x; ν, σ) =

∑
k νkxk

Πk

√
1 + σ2x2k
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AS1 is referred as superpose activation function 1 . Thus the CTN can
be also defined as a neural network that takes superpose activation function
as its activation function and CDF function Φ(x) as its output function 2.
Accordingly, the function Φ(AS1(x; ν, σ)) is referred as superpose transfer
function.

In order to utilize classical approach such as LMA for optimization, the
Jacobi matrix is deduced as follows:

The Jacobi matrix

As mentioned above, ē denotes the error on one of the samples. ē =∑
j ωj ōj , thus it is straightforward that

∂ē

∂ωj
= ōj

∂ē

∂νj,k
= ωj

∂ōj
∂νj,k

= ωj
∂ōj
∂z̄j

∂z̄j
∂νj,k

= ωj
1

p
φ

(
zj
p

)
xk

3 Generalization property

As mentioned above, the output of CTN is expected to be more generalized
as it combines the nearby solutions. In this section, an experiment is carried
out on solving the two-spiral problem with CTN.

There are a few reasons to choose two-spiral problem for the demonstra-
tion. First, the two-spiral problem is a well known benchmark; second, the
problem was considered to be difficult [[3]], so that it’s a suitable candidate
to demonstrate the performance of a neural network; and last, as the input
of the problem is in 2D plane, it is easy to be visualized for demonstration
purpose.

Visual comparison

1Here the subscript 1 indicates the activation function is to be used with a sigmoid
function range from 0 to 1.

2notice that the transfer function can be generalized to other sigmoid functions in
section 5
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Figure 2: Classic result vs CTN

Figure 2 is the visualization of two solutions to the two-spiral problem.
Both are produced by a MLP with single hidden layer with 30 hidden nodes.
The transfer function used at left side is CDF function Φ. While the transfer
function used at right side is superpose transfer function with bandwidth set
as 2.0. Positive samples in the figure are red and the negative samples are
green. Training samples are marked with “+” and test samples are marked
with “x”.

The image produced by the CTN solution shows little sign of irregular-
ity. It looks more smooth and perfectly follows the spiral curvature. The
generalization ability can be easily seen from the visual result. In fact this
CTN solution gives correct classification on all samples from test set.

Comparison of generalization

For classification problems, the performance of a neural network is mea-
sured by success rate, which is the number of correct prediction divided by
total number of test samples. We call a solution as a perfect solution when
it has a 100% success rate. It’s a common practice to choose the best so-
lution from a couple of trials, thus it’s important for an approach to have
higher chance to produce acceptable solutions. This ability is measured by
acceptance rate, which is the number of solutions with success rate greater
than a threshold divided by total number of trials.

In this experiment, we set the network size (number of hidden nodes)
as 20, 30, 50 and 80, and produced 100 solutions for each case. And plot
the acceptance rate as a function of number of nodes when sr(success rate)
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> 0.9, sr > 0.95 and sr = 1.
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Figure 3: Acceptance rate Comparison

As we can see from the plot, CTN reaches notably higher acceptance rate
when there are over 30 hidden nodes for all success rate thresholds, while
the classic approach requires more hidden nodes to reach the same level.

It’s noticeable that classic approach can hardly produce a perfect solution
- there is only one observation of perfect solution out of 100 trials when there
are 80 hidden nodes, while the CTN produce perfect solutions constantly
(with more than 90% chance when there are over 30 hidden nodes). And
there are even 5 observations of perfect solutions with only 20 hidden nodes.

Comparison of training time

The average training time is plotted as a function of the number of the
hidden nodes.
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Figure 4: Time Comparison

As classic and CTN share the same network architecture and optimiza-
tion method, they take similar training time when the network size is also
the same. As the training time heavily depend on the size of the network,
it’s not surprising that it’s much faster to get a better solution with CTN
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as it requires much smaller network to do the job.

Summary In this section, it’s demonstrated that CTN is not only fast
but also reliable.

First, comparing to its classic counterpart, a small number of nodes is
enough to make a performing CTN, while a small network means less effort
to train the network and also less effort to make prediction with the network.
Second, comparing to neural network ensembles, there is no need to train
multiple neural networks nor combine multiple results from those networks.

CTN is reliable as it is actually a combination of all nearby networks,
thus it can be viewed as an ultimate neural network ensemble of infinity
number of neural networks.

4 Finding global minimum with convolutional tun-
neling

In the above sections, we demonstrated how to construct a CTN with gen-
eralization as main concern. In this section, we will show how it could be
used in searching global minimum.

Finding global minimum is referred as global optimization, which differs
from local searching by its objective as to find minimum (or maximum) over
all inputs. The most popular strategies to solve the problem can be catego-
rized into deterministic methods [6], stochastic methods [7] and heuristics
[12].

As maximization of a function can be viewed as minimization on the
additive inverse of the function, we hereby refer optimization as minimiza-
tion to save a few words. By definition, the target of global optimization
is to find the smallest minimum out of all minima. In practice, this target
is usually converted to searching the best possible solution. Thus the per-
formance of a searching method can be measured by its efficiency to get a
better solution.

4.1 The searching schema

Ideally, if function F (x) has finite number of local minima, one can try local
search from various starting points to find all of them and take the solution
with the smallest value. However, this is not practical as the number of
minima is usually incredibly huge in many real-life applications.
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As we noticed above, in case the analytic expression of convolution of
F(x) and Gaussian function can be obtained, the convolution of F (x) will
smooth out small ridges and valleys used to be in the objective function
landscape. The smoothness increases along with the value of σ. One could
expect that the number of local minima is also reduced during the process.
According to the discussion above, when σ is big enough, it will be easy to
find the global minimum of the smoothed version of objective function.

On the other hand, it is well known that the quality of the result from
a local search heavily depends on the starting point. If the global minimum
of F̄ (x;σ) is obtained, and the smooth factor σ is small enough, then the
solution can be used as the starting point to search the global minimum of
F (x). Furthermore, if global minimum of F̄ (x;σ1) is obtained, the solution
can be used as the starting point to search the global minimum of F̄ (x;σ2)
if σ1 > σ2 and σ1 − σ2 is small enough.

As the value of σ decreases, the smoothed version of target function F (x)
will eventually degenerate to the objective function F (x) itself.

A two-phase searching schema can be constructed as follows:

• Phase I: search for multiple local minima for a CTN with a large σ
and choose the solution with the smallest function value.

• Phase II: repeatedly reduce σ value and perform local search starting
from previous solution until σ is small enough, then set σ as 0 to
perform final search.

4.2 Experiment result

The optimization method is demonstrated with MLP with single hidden
layer. Instead of using convolution of the error function, we use the con-
volution on the output of the network as described in section 2. As the
convolution is to smooth out the objective function, the same reasoning
mentioned above still holds true.

The configuration of the network is:

• number of nodes: 30;

• activation function:
∑

k νj,kxk

• output function: CDF function Φ(x)

Following the searching schema described above, first find 5 different
solutions of a CTN with σ = 2.0 and pick up the solution with the smallest
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Figure 5: Output of global searching with CTN

error; then continuously replace σ by 0.7σ after each local search until σ <
0.1, then set σ = 0 and make the final search.

Figure 5 shows the result. Although the result is not as good as we can
get from CTN, it is clearly better than those trained by classic approach with
distinct spiral shape. The squared training error of this solution is 0.00980
and success rate is 99.5%. By comparison, as observed in the experiment
described in section 3 the smallest training error of classic approach is
0.05297, and there is only 1 case out of 100 trials reaches similar success
rate.

4.3 Variation and limitation

One limitation of this searching schema is that it requires analytic expression
of the convolution. In some cases, this requirement is hard to be fulfilled if
not impossible.

In the above example, the objective function (i.e. error function of the
neural network) follows the form of

∑
f2(x) and we take convolution on

f(x) instead of directly on F (x) as mentioned in section 4.1. This ap-
proach suggests that F (x) =

∑
f2(x) case may be generalized to the form

of F (x) = f(g(x)). In this case, replace g(x) with its convolution might
also smooth out the objective function and therefore the searching schema
can be applied. This will simplify the required convolution in case the di-
rect convolution is hard to be obtained. However, This hypothesis requires
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further investigation.

It is also worth to mention that the searching schema mentioned above
might fail if the global minimum is hidden in a deep but narrow valley. In
this case though, it’s also hard for all existing searching algorithms to find
it.

5 Work with different sigmoids

Based on the knowledge discussed above, the CT approach can be extended
to other sigmoid functions as well.

5.1 Gaussian error function (erf)

Gaussian error function (erf(x) = 2√
π

∫ x
0 e
−t2dt) can be expressed by CDF

function Φ(x) as erf(x) = 2Φ
(√

2x
)
− 1, thus it share the same integral

property of Φ(x).

When use erf(x) as the output function, the output of a MLP with
single hidden layer is:

t =
∑
j

ωjerf

(∑
k

νj,kxk

)

Follwing similar deducing in section 2, the output of the CTN is then

t̄ =
∑
j

ωjerf

 ∑
k νj,kxk

Πk

√
1
2 + σ2x2k


Comparing t̄ with t, the difference is the activation function. Define

AS2(x; ν, σ) =

∑
k νkxk

Πk

√
1
2 + σ2x2k

then the output of node j can be expressed as

ōj = erf(AS2(x; νj , σ))

The error of the CTN on a sample is ē = t̄− y. Its derivative is:
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∂ē

∂ωj
= ōj

∂ē

∂νj,k
= ωj

∂ōj
∂νj,k

= ωj
∂ōj
∂z̄j

∂z̄j
∂νj,k

= ωj
1

p
e−(zj/p)

2

xk

where p = Πk

√
1
2 + σ2x2k.

5.2 Using tanh

Although the superpose transfer function is deduced from convolution of
function Φ and Gaussian function, the form of the function is simply changed
by its activation function. As function tanh looks very much like erf , one
could expect that they behave similarly.

Following the reasoning above, the output of j-th node ōj is directly set
as

ōj = tanh(AS2(x; νj , σ))

The total output is still t̄ =
∑

j ωj ōj .

As tanh′(x) = 1− tanh2(x), we have the derivative of the error as:

∂ē

∂ωj
= ōj

∂ē

∂νj,k
= ωj

1

p

(
1− ō2j

)
xk

where p = Πk

√
1
2 + σ2x2k.

A test with two-spiral problem is carried out to check the theory. The
test result is not included in the paper as it looks identical to the CTN result
shown in right side of figure 2.
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5.3 Using logistic function

Use similar approach above, as logistic function is similar with CDF function
Φ, the output of j-th node is directly set as

ōj = S(AS1(x; νj , σ))

The total output is still t̄ =
∑

j ωj ōj .

As S′(x) = S(x)(1− S(x)), we have the derivative of the error as:

∂ē

∂ωj
= ōj

∂ē

∂νj,k
= ωj

1

p
ōj(1− ōj)xk

where p = Πk

√
1 + σ2x2k.

The test result is also the same as the CTN result shown in right side of
figure 2.

6 Discussion

In this paper, the concept of CTN is presented. Such a concept opens a
new door towards better neural network design and introduces a new way
to solve global optimization.

And it’s worth to mention that the CTN is easy to be implemented based
on existing implementations as CTN differs from classical network only with
the activation function.

As far as noticed, there are following issues need to be investigated.

Bandwidth of CTN

In the demonstrations mentioned above, the bandwidth of CTN σ is set
as 2. The result is not sensitive to the value of σ. However, if the value
is too small, for example σ = 0.5, the result become less generalized. The
output image looks similar to figure 5. While if the bandwidth is too big,
say 5.0, the visual result becomes blurry and it starts to lose the ability to
make prediction.

Currently the value is chosen with trial on error basis. However, it’s
desirable to have a method to choose the value of the bandwidth.
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Proof of universal approximator

In section 2, the superpose activation function is deduced from the con-
volution when the output function is chosen as CDF function φ(x). But
the test results suggest the generalization ability actually come from the
superpose activation function AS1(x; νj , σ) and AS2(x; νj , σ).

This fact suggests that any transfer function with CTN activation func-
tion and sigmoid output function could be a universal approximator.

The mathematical proof is still missing yet.

Proof of global searching method

In section 4, a new global search schema is provided. And it’s also
demonstrated it gives better solution. But how far can we go from there? Is
it possible to find the true global minimum under some conditions with this
approach? Some mathematical analysis is required to reveal its potential
and limitations.
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