Ion Patrascu, Florentin Smarandache

# Lucas's Inner Circles

In Ion Patrascu, Florentin Smarandache: "Complements to Classic Topics of Circles Geometry". Brussels (Belgium): Pons Editions, 2016 In this article, we define the Lucas's inner circles and we highlight some of their properties.

### 1. Definition of the Lucas's Inner Circles

Let ABC be a random triangle; we aim to construct the square inscribed in the triangle ABC, having one side on BC.



Figure 1.

In order to do this, we construct a square A'B'C'D'with  $A' \in (AB)$ ,  $B', C' \in (BC)$  (see *Figure 1*).

We trace the line BD' and we note with  $D_a$  its intersection with (AC); through  $D_a$  we trace the

parallel  $D_a A_a$  to *BC* with  $A_a \in (AB)$  and we project onto *BC* the points  $A_a$ ,  $D_a$  in  $B_a$  respectively  $C_a$ .

We affirm that the quadrilateral  $A_a B_a C_a D_a$  is the required square.

Indeed,  $A_a B_a C_a D_a$  is a square, because  $\frac{D_a C_a}{D \cdot C'} = \frac{BD_a}{BD'} = \frac{A_a D_a}{A' D'}$  and, as D'C' = A'D', it follows that  $A_a D_a = D_a C_a$ .

### **Definition.**

It is called A-Lucas's inner circle of the triangle *ABC* the circle circumscribed to the triangle *AAaDa*.

We will note with  $L_a$  the center of the A-Lucas's inner circle and with  $l_a$  its radius.

Analogously, we define the B-Lucas's inner circle and the C-Lucas's inner circle of the triangle *ABC*.

### 2. Calculation of the Radius of

#### the A-Lucas Inner Circle

We note  $A_a D_a = x$ , BC = a; let  $h_a$  be the height from *A* of the triangle *ABC*.

The similarity of the triangles  $AA_aD_a$  and ABC leads to:  $\frac{x}{a} = \frac{h_a^{-x}}{h_a}$ , therefore  $x = \frac{ah_a}{a+h_a}$ .

From 
$$\frac{l_a}{R} = \frac{x}{a}$$
 we obtain  $l_a = \frac{R.h_a}{a+h_a}$ . (1)

Note.

Relation (1) and the analogues have been deduced by Eduard Lucas (1842-1891) in 1879 and they constitute the "birth certificate of the Lucas's circles".

1<sup>st</sup> Remark.

If in (1) we replace  $h_a = \frac{2S}{a}$  and we also keep into consideration the formula abc = 4RS, where *R* is the radius of the circumscribed circle of the triangle *ABC* and *S* represents its area, we obtain:

 $l_a = \frac{R}{1 + \frac{2aR}{bc}}$  [see Ref. 2].

### 3. Properties of the Lucas's Inner Circles

# 1<sup>st</sup> Theorem.

The Lucas's inner circles of a triangle are inner tangents of the circle circumscribed to the triangle and they are exteriorly tangent pairwise.

#### Proof.

The triangles  $AA_aD_a$  and ABC are homothetic through the homothetic center *A* and the rapport:  $\frac{h_a}{a+b_a}$ . Because  $\frac{l_a}{R} = \frac{h_a}{a+h_a}$ , it means that the A-Lucas's inner circle and the circle circumscribed to the triangle *ABC* are inner tangents in *A*.

Analogously, it follows that the B-Lucas's and C-Lucas's inner circles are inner tangents of the circle circumscribed to *ABC*.



Figure 2.

We will prove that the A-Lucas's and C-Lucas's circles are exterior tangents by verifying

$$L_{a}L_{c} = l_{a} + l_{c}.$$
We have:  

$$0L_{a} = R - l_{a};$$

$$0L_{c} = R - l_{c}$$
and  

$$m(\widehat{A0C}) = 2B$$
(if  $m(\widehat{B}) > 90^{\circ}$  then  $m(\widehat{A0C}) = 360^{\circ} - 2B$ ).  
(2)

The theorem of the cosine applied to the triangle  $OL_aL_c$  implies, keeping into consideration (2), that:

$$(R - l_a)^2 + (R - l_a)^2 - 2(R - l_a)(R - l_c)\cos 2B =$$
  
=  $(l_a + l_c)^2$ .

Because  $cos2B = 1 - 2sin^2B$ , it is found that (2) is equivalent to:

$$sin^{2}B = \frac{l_{a}l_{c}}{(R-l_{a})(R-l_{c})}.$$
But we have: 
$$l_{a}l_{c} = \frac{R^{2}ab^{2}c}{(2aR+bc)(2cR+ab)},$$

$$l_{a} + l_{c} = Rb(\frac{c}{2aR+bc} + \frac{a}{2cR+ab}).$$
(3)

By replacing in (3), we find that  $\sin^2 B = \frac{ab^2c}{4acR^2} = \frac{b^2}{4a^2} \iff \sin B = \frac{b}{2R}$  is true according to the sines theorem. So, the exterior tangent of the A-Lucas's and C-Lucas's circles is proven.

Analogously, we prove the other tangents.

# 2<sup>nd</sup> Definition.

It is called an A-Apollonius's circle of the random triangle *ABC* the circle constructed on the segment determined by the feet of the bisectors of angle *A* as diameter.

#### Remark.

Analogously, the B-Apollonius's and C-Apollonius's circles are defined. If ABC is an isosceles triangle with AB = AC then the A-Apollonius's circle

isn't defined for *ABC*, and if *ABC* is an equilateral triangle, its Apollonius's circle isn't defined.

# 2<sup>nd</sup> Theorem.

The A-Apollonius's circle of the random triangle is the geometrical point of the points *M* from the plane of the triangle with the property:  $\frac{MB}{MC} = \frac{c}{b}$ .

# 3<sup>rd</sup> Definition.

We call a fascicle of circles the bunch of circles that do not have the same radical axis.

- a. If the radical axis of the circles' fascicle is exterior to them, we say that the fascicle is of the first type.
- b. If the radical axis of the circles' fascicle is secant to the circles, we say that the fascicle is of the second type.
- c. If the radical axis of the circles' fascicle is tangent to the circles, we say that the fascicle is of the third type.

### 3<sup>rd</sup> Theorem.

The A-Apollonius's circle and the B-Lucas's and C-Lucas's inner circles of the random triangle *ABC* form a fascicle of the third type.

#### Proof.

Let  $\{O_A\} = L_b L_c \cap BC$  (see *Figure* 3).

Menelaus's theorem applied to the triangle *OBC* implies that:

 $\frac{O_AB}{O_AC} \cdot \frac{L_bB}{L_bO} \cdot \frac{L_cO}{L_cC} = 1,$ 

so:

 $\frac{O_AB}{O_AC} \cdot \frac{l_b}{R - l_b} \cdot \frac{R - l_c}{l_c} = 1$ 

and by replacing  $l_b$  and  $l_c$ , we find that:

 $\frac{O_A B}{O_A C} = \frac{b^2}{c^2}.$ 

This relation shows that the point  $O_A$  is the foot of the exterior symmedian from A of the triangle *ABC* (so the tangent in A to the circumscribed circle), namely the center of the A-Apollonius's circle.

Let  $N_1$  be the contact point of the B-Lucas's and C-Lucas's circles. The radical center of the B-Lucas's, C-Lucas's circles and the circle circumscribed to the triangle *ABC* is the intersection  $T_A$  of the tangents traced in *B* and in *C* to the circle circumscribed to the triangle *ABC*.

It follows that  $BT_A = CT_A = N_1T_A$ , so  $N_1$  belongs to the circle  $C_A$  that has the center in  $T_A$  and orthogonally cuts the circle circumscribed in *B* and *C*. The radical axis of the B-Lucas's and C-Lucas's circles is  $T_AN_1$ , and  $O_AN_1$  is tangent in  $N_1$  to the circle  $C_A$ . Considering the power of the point  $O_A$  in relation to  $C_A$ , we have:

 $O_A N_1^2 = O_A B. O_A C.$ 

Ion Patrascu, Florentin Smarandache



Figure 3.

Also,  $O_A O^2 = O_A B \cdot O_A C$ ; it thus follows that  $O_A A = O_A N_1$ , which proves that  $N_1$  belongs to the A-Apollonius's circle and is the radical center of the A-Apollonius's, B-Lucas's and C-Lucas's circles.

Remarks.

1. If the triangle *ABC* is right in *A* then  $L_bL_c||BC$ , the radius of the A-Apollonius's circle is equal to:  $\frac{abc}{|b^2-c^2|}$ . The point  $N_1$  is the foot of the bisector from *A*. We find that  $O_AN_1 = \frac{abc}{|b^2-c^2|}$ , so the theorem stands true.

2. The A-Apollonius's and A-Lucas's circles are orthogonal. Indeed, the radius of the A-Apollonius's circle is perpendicular to the radius of the circumscribed circle, *OA*, so, to the radius of the A-Lucas's circle also.

# 4<sup>th</sup> Definition.

The triangle  $T_A T_B T_C$  determined by the tangents traced in A, B, C to the circle circumscribed to the triangle *ABC* is called the tangential triangle of the triangle *ABC*.

# 1<sup>st</sup> Property.

The triangle *ABC* and the Lucas's triangle  $L_a L_b L_c$  are homological.

#### Proof.

Obviously,  $AL_a$ ,  $BL_b$ ,  $CL_c$  are concurrent in O, therefore O, the center of the circle circumscribed to the triangle ABC, is the homology center.

We have seen that  $\{O_A\} = L_b L_c \cap BC$  and  $O_A$  is the center of the A-Apollonius's circle, therefore the homology axis is the Apollonius's line  $O_A O_B O_C$  (the line determined by the centers of the Apollonius's circle).

# 2<sup>nd</sup> Property.

The tangential triangle and the Lucas's triangle of the triangle *ABC* are orthogonal triangles.

#### Proof.

The line  $T_A N_1$  is the radical axis of the B-Lucas's inner circle and the C-Lucas's inner circle, therefore it is perpendicular on the line of the centers  $L_b L_c$ . Analogously,  $T_B N_2$  is perpendicular on  $L_c L_a$ , because the radical axes of the Lucas's circles are concurrent in L, which is the radical center of the Lucas's circles; it follows that  $T_A T_B T_c$  and  $L_a L_b L_c$  are orthological and L is the center of orthology. The other center of orthology is O the center of the circle circumscribed to *ABC*.

### **References.**

- [1] D. Brânzei, M. Miculița. Lucas circles and spheres. In "The Didactics of Mathematics", volume 9/1994, Cluj-Napoca (Romania), p. 73-80.
- [2] P. Yiu, A. P. Hatzipolakis. The Lucas Circles of a Triangle. In "Amer. Math. Monthly", no. 108/2001, pp. 444-446. http://www.math.fau. edu/yiu/monthly437-448.pdf.
- [3] F. Smarandache, I. Patrascu. The Geometry of Homological Triangles. Educational Publisher, Columbus, Ohio, U.S.A., 2013.