Ion Patrascu, Florentin Smarandache

Theorems with Parallels Taken through a Triangle's Vertices and Constructions Performed only with the Ruler

In Ion Patrascu, Florentin Smarandache: "Complements to Classic Topics of Circles Geometry". Brussels (Belgium): Pons Editions, 2016 In this article, we solve problems of geometric constructions only with the ruler, using known theorems.

1st Problem.

Being given a triangle *ABC*, its circumscribed circle (its center known) and a point *M* fixed on the circle, construct, using only the ruler, a transversal line A_1, B_1, C_1 , with $A_1 \in BC, B_1 \in CA, C_1 \in AB$, such that $\ll MA_1C \equiv \ll MB_1C \equiv \ll MC_1A$ (the lines taken though *M* to generate congruent angles with the sides *BC*, *CA* and *AB*, respectively).

2nd Problem.

Being given a triangle *ABC*, its circumscribed circle (its center known) and A_1, B_1, C_1 , such that $A_1 \in$

 $BC, B_1 \in CA, C_1 \in AB$ and A_1, B_1, C_1 collinear, construct, using only the ruler, a point *M* on the circle circumscribing the triangle, such that the lines MA_1, MB_1, MC_1 to generate congruent angles with *BC*, *CA* and *AB*, respectively.

3rd Problem.

Being given a triangle *ABC* inscribed in a circle of given center and *AA*' a given cevian, *A*' a point on the circle, construct, using only the ruler, the isogonal cevian AA_1 to the cevian AA'.

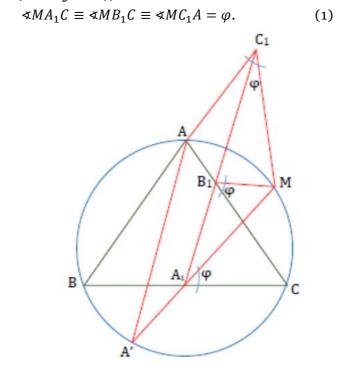
To solve these problems and to prove the theorems for problems solving, we need the following *Lemma*:

1st Lemma.

(Generalized Simpson's Line)

If *M* is a point on the circle circumscribed to the triangle *ABC* and we take the lines MA_1, MB_1, MC_1 which generate congruent angles ($A_1 \in BC, B_1 \in CA, C_1 \in AB$) with *BC*, *CA* and *AB* respectively, then the points A_1, B_1, C_1 are collinear.

Let *M* on the circle circumscribed to the triangle *ABC* (see *Figure 1*), such that:



From the relation (1), we obtain that the quadrilateral MB_1A_1C is inscriptible and, therefore:

 $\measuredangle A_1BC \equiv \measuredangle A_1MC.$ (2). Also from (1), we have that MB_1AC_1 is inscriptible, and so

 $\blacktriangleleft AB_1C_1 \equiv \blacktriangleleft AMC_1. \tag{3}$

The quadrilateral MABC is inscribed, hence: $\ll MAC_1 \equiv \ll BCM$. (4) On the other hand, $\ll A_1MC = 180^0 - (\widehat{BCM} + \varphi)$, $\ll AMC_1 = 180^0 - (\widehat{MAC_1} + \varphi)$. The relation (4) drives us, together with th

The relation (4) drives us, together with the above relations, to:

$$\sphericalangle A_1 M C \equiv \sphericalangle A M C_1. \tag{5}$$

Finally, using the relations (5), (2) and (3), we conclude that: $\blacktriangleleft A_1B_1C \equiv AB_1C_1$, which justifies the collinearity of the points A_1, B_1, C_1 .

Remark.

The Simson's Line is obtained in the case when $\varphi = 90^{\circ}$.

2nd Lemma.

If *M* is a point on the circle circumscribed to the triangle *ABC* and *A*₁, *B*₁, *C*₁ are points on *BC*, *CA* and *AB*, respectively, such that $\ll MA_1C = \ll MB_1C = \ll MC_1A = \varphi$, and *MA*₁ intersects the circle a second time in *A'*, then *AA'* || *A*₁*B*₁.

Proof.

The quadrilateral MB_1A_1C is inscriptible (see *Figure 1*); it follows that:

 $\sphericalangle CMA' \equiv \sphericalangle A_1 B_1 C. \tag{6}$

On the other hand, the quadrilateral MAA'C is also inscriptible, hence:

 $\sphericalangle CMA' \equiv \measuredangle A'AC. \tag{7}$

The relations (6) and (7) imply: $\measuredangle A'MC \equiv \measuredangle A'AC$, which gives $AA' \parallel A_1B_1$.

3rd Lemma.

(The construction of a parallel with a given diameter using a ruler)

In a circle of given center, construct, using only the ruler, a parallel taken through a point of the circle at a given diameter.

Solution.

In the given circle C(O, R), let be a diameter (AB)] and let $M \in C(O, R)$. We construct the line *BM* (see *Figure 2*). We consider on this line the point *D* (*M* between *D* and *B*). We join *D* with *O*, *A* with *M* and denote $DO \cap AM = \{P\}$.

We take *BP* and let $\{N\} = DA \cap BP$. The line *MN* is parallel to *AB*.

Construction's Proof.

In the triangle *DAB*, the cevians *DO*, *AM* and *BN* are concurrent.

Ceva's Theorem provides:

 $\frac{OA}{OB} \cdot \frac{MB}{MD} \cdot \frac{ND}{NA} = 1.$ (8) But *DO* is a median, *DO* = *BO* = *R*. From (8), we get $\frac{MB}{MD} = \frac{NA}{ND}$, which, by Thales reciprocal, gives *MN* || *AB*.

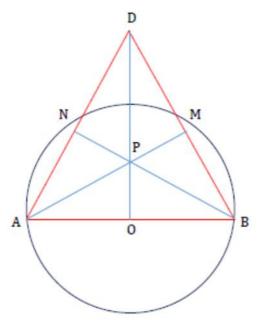


Figure 2.

Remark.

If we have a circle with given center and a certain line d, we can construct though a given point M a parallel to that line in such way: we take two diameters [*RS*] and [*UV*] through the center of the given circle (see *Figure 3*).

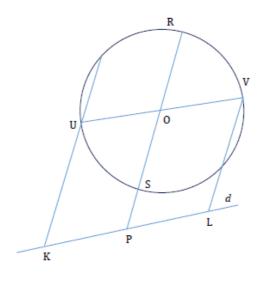


Figure 3.

We denote $RS \cap d = \{P\}$; because $[RO] \equiv [SO]$, we can construct, applying the 3^{rd} Lemma, the parallels through U and V to RS which intersect d in K and L, respectively. Since we have on the line d the points K, P, L, such that $[KP] \equiv [PL]$, we can construct the parallel through M to d based on the construction from 3^{rd} Lemma.

1st Theorem.

(P. Aubert - 1899)

If, through the vertices of the triangle ABC, we take three lines parallel to each other, which intersect the circumscribed circle in A', B' and C', and M is a

point on the circumscribed circle, as well $MA' \cap BC = \{A_1\}, MB' \cap CA = \{B_1\}, MC' \cap AB = \{C_1\}, \text{ then } A_1, B_1, C_1$ are collinear and their line is parallel to AA'.

Proof.

The point of the proof is to show that MA_1 , MB_1 , MC_1 generate congruent angles with BC, CA and AB, respectively.

$$m(\widehat{MA_1C}) = \frac{1}{2} \left[m(\widetilde{MC}) + m(\widetilde{BA'}) \right]$$
(9)

$$m(\widehat{MB_1C}) = \frac{1}{2} [m(\widetilde{MC}) + m(\widetilde{AB'})]$$
(10)

But $AA' \parallel BB'$ implies m(BA') = m(AB'), hence, from (9) and (10), it follows that:

$$\blacktriangleleft MA_1 C \equiv \blacktriangleleft MB_1 C, \tag{11}$$

$$m(\widetilde{MC_1A}) = \frac{1}{2} [m(\widetilde{BM}) - m(\widetilde{AC'})].$$
(12)

But $AA' \parallel CC'$ implies that m(AC') = m(A'C); by returning to (12), we have that:

$$m(\widetilde{MC_{1}A}) = \frac{1}{2} [m(\widetilde{BM}) - m(\widetilde{AC'})] =$$
$$= \frac{1}{2} [m(\widetilde{BA'}) + m(\widetilde{MC})].$$
(13)

The relations (9) and (13) show that:

$$\blacktriangleleft MA_1C \equiv \blacktriangleleft MC_1A. \tag{14}$$

From (11) and (14), we obtain: $\blacktriangleleft MA_1C \equiv \measuredangle MB_1C \equiv \measuredangle MC_1A$, which, by 1^{st} *Lemma*, verifies the collinearity of points A_1, B_1, C_1 . Now, applying the 2^{nd} *Lemma*, we obtain the parallelism of lines AA' and A_1B_1 .

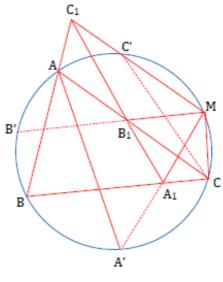


Figure 4.

2nd Theorem.

(M'Kensie - 1887)

If $A_1B_1C_1$ is a transversal line in the triangle *ABC* $(A_1 \in BC, B_1 \in CA, C_1 \in AB)$, and through the triangle's vertices we take the chords *AA'*, *BB'*, *CC'* of a circle circumscribed to the triangle, parallels with the transversal line, then the lines *AA'*, *BB'*, *CC'* are concurrent on the circumscribed circle.

We denote by *M* the intersection of the line A_1A' with the circumscribed circle (see *Figure 5*) and with B'_1 , respectively C'_1 the intersection of the line *MB'* with *AC* and of the line *MC'* with *AB*.

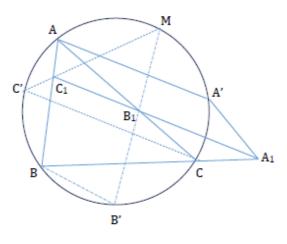


Figure 5.

According to the P. Aubert's theorem, we have that the points A_1 , B'_1 , C'_1 are collinear and that the line $A_1B'_1$ is parallel to AA'.

From hypothesis, we have that $A_1B_1 \parallel AA'$; from the uniqueness of the parallel taken through A_1 to AA', it follows that $A_1B_1 \equiv A_1B'_1$, therefore $B'_1 = B_1$, and analogously $C'_1 = C_1$.

Remark.

We have that: MA_1, MB_1, MC_1 generate congruent angles with *BC*, *CA* and *AB*, respectively.

3rd Theorem.

(Beltrami - 1862)

If three parallels are taken through the three vertices of a given triangle, then their isogonals intersect each other on the circle circumscribed to the triangle, and vice versa.

Proof.

Let *AA*', *BB*', *CC*' the three parallel lines with a certain direction (see *Figure 6*).

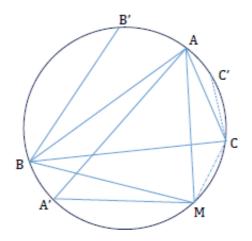


Figure 6.

To construct the isogonal of the cevian AA', we take $A'M \parallel BC$, M belonging to the circle circumscribed to the triangle, having $\widecheck{BA'} \equiv \widecheck{CM}$, it follows that AM will be the isogonal of the cevian AA'. (Indeed, from $\widecheck{BA'} \equiv \widecheck{CM}$ it follows that $\triangleleft BAA' \equiv \triangleleft CAM$.)

On the other hand, $BB' \parallel AA'$ implies $BA' \equiv AB'$, and since $BA' \equiv CM$ we have that $AB' \equiv CM$, which shows that the isogonal of the parallel BB' is BM. From $CC' \parallel AA'$, it follows that $A'C \equiv AC'$, having $\ll B'CM \equiv \ll ACC'$, therefore the isogonal of the parallel CC' is CM'.

Reciprocally.

If AM, BM, CM are concurrent cevians in M, the point on the circle circumscribed to the triangle ABC, let us prove that their isogonals are parallel lines. To construct an isogonal of AM, we take $MA' \parallel BC$, A' belonging to the circumscribed circle. We have $MC \equiv BA'$. Constructing the isogonal BB' of BM, with B' on the circumscribed circle, we will have $CM \equiv AB'$, it follows that $BA' \equiv AB'$ and, consequently, $\ll ABB' \equiv \ll BAA'$, which shows that $AA' \parallel BB'$. Analogously, we show that $CC' \parallel AA'$.

We are now able to solve the proposed problems.

Solution to the 1st problem.

Using the 3^{rd} Lemma, we construct the parallels AA', BB', CC' with a certain directions of a diameter of the circle circumscribed to the given triangle.

We join *M* with A', B', C' and denote the intersection between MA' and BC, A_1 ; $MB' \cap CA = \{B_1\}$ and $MA' \cap AV = \{C_1\}$.

According to the Aubert's Theorem, the points A_1, B_1, C_1 will be collinear, and MA', MB', MC' generate congruent angles with *BC*, *CA* and *AB*, respectively.

Solution to the 2nd problem.

Using the 3^{rd} Lemma and the remark that follows it, we construct through A, B, C the parallels to A_1B_1 ; we denote by A', B', C' their intersections with the circle circumscribed to the triangle *ABC*. (It is enough to build a single parallel to the transversal line $A_1B_1C_1$, for example AA').

We join A' with A_1 and denote by M the intersection with the circle. The point M will be the point we searched for. The construction's proof follows from the M'Kensie Theorem.

Solution to the 3rd problem.

We suppose that A' belongs to the little arc determined by the chord \overrightarrow{BC} in the circle circumscribed to the triangle *ABC*.

In this case, in order to find the isogonal AA_1 , we construct (by help of the 3^{rd} *Lemma* and of the remark that follows it) the parallel $A'A_1$ to BC, A_1 being on the circumscribed circle, it is obvious that AA' and AA_1 will be isogonal cevians.

We suppose that A' belongs to the high arc determined by the chord BC; we consider $A' \in AB$ (the arc AB does not contain the point C). In this situation, we firstly construct the parallel BP to AA', P belongs to the circumscribed circle, and then through P we construct the parallel PA_1 to AC, A_1 belongs to the circumscribed circle. The isogonal of the line AA' will be AA_1 . The construction's proof follows from 3^{rd} *Lemma* and from the proof of Beltrami's Theorem.

References.

- [1] F. G. M.: *Exercices de Géometrie*. VIII-e ed., Paris, VI-e Librairie Vuibert, Rue de Vaugirard,77.
- [2] T. Lalesco: La Géométrie du Triangle. 13-e ed., Bucarest, 1937; Paris, Librairie Vuibert, Bd. Saint Germain, 63.
- [3] C. Mihalescu: Geometria elementelor remarcabile [The Geometry of remarkable elements]. Bucharest: Editura Tehnică, 1957.

Apollonius's Circles of k^{th} Rank

The purpose of this article is to introduce the notion of **Apollonius's circle of** k^{th} rank.

1st Definition.

It is called an internal cevian of k^{th} rank the line AA_k where $A_k \in (BC)$, such that $\frac{BA}{A_kC} = \left(\frac{AB}{AC}\right)^k \ (k \in \mathbb{R})$.

If A'_k is the harmonic conjugate of the point A_k in relation to *B* and *C*, we call the line AA'_k an external cevian of k^{th} rank.

2nd Definition.

We call Apollonius's circle of k^{th} rank with respect to the side *BC* of *ABC* triangle the circle which has as diameter the segment line $A_k A'_k$.

1st Theorem.

Apollonius's circle of k^{th} rank is the locus of points *M* from *ABC* triangle's plan, satisfying the relation: $\frac{MB}{MC} = \left(\frac{AB}{AC}\right)^k$.

Let O_{A_k} the center of the Apollonius's circle of k^{th} rank relative to the side *BC* of *ABC* triangle (see *Figure 1*) and *U*, *V* the points of intersection of this circle with the circle circumscribed to the triangle *ABC*. We denote by *D* the middle of arc *BC*, and we extend DA_k to intersect the circle circumscribed in *U*'.

In *BU'C* triangle, *U'D* is bisector; it follows that $\frac{BA_k}{A_kC} = \frac{U'B}{U'C} = \left(\frac{AB}{AC}\right)^k$, so *U'* belongs to the locus.

The perpendicular in U' on $U'A_k$ intersects BC on A''_k , which is the foot of the *BUC* triangle's outer bisector, so the harmonic conjugate of A_k in relation to *B* and *C*, thus $A''_k = A'_k$.

Therefore, U' is on the Apollonius's circle of rank k relative to the side *BC*, hence U' = U.

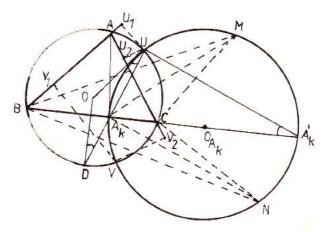


Figure 3

Let *M* a point that satisfies the relation from the statement; thus $\frac{MB}{MC} = \frac{BA_k}{A_kC}$; it follows – by using the reciprocal of bisector's theorem – that MA_k is the internal bisector of angle *BMC*. Now let us proceed as before, taking the external bisector; it follows that *M* belongs to the Apollonius's circle of center O_{A_k} . We consider now a point *M* on this circle, and we construct *C'* such that $\ll BNA_k \equiv \ll A_kNC'$ (thus (*NA_k* is the internal bisector of the angle $\widehat{BNC'}$). Because $A'_kN \perp NA_k$, it follows that A_k and A'_k are harmonically conjugated with respect to *B* and *C'*. On the other hand, the same points are harmonically conjugated with respect to *B* and *C*; from here, it follows that C' = C, and we have $\frac{NB}{NC} = \frac{BA_k}{A_kC} = \left(\frac{AB}{A_C}\right)^k$.

3rd Definition.

It is called a complete quadrilateral the geometric figure obtained from a convex quadrilateral by extending the opposite sides until they intersect. A complete quadrilateral has 6 vertices, 4 sides and 3 diagonals.

2nd Theorem.

In a complete quadrilateral, the three diagonals' middles are collinear (Gauss - 1810).

Let *ABCDEF* a given complete quadrilateral (see *Figure 2*). We denote by H_1, H_2, H_3, H_4 respectively the orthocenters of *ABF*, *ADE*, *CBE*, *CDF* triangles, and let A_1, B_1, F_1 the feet of the heights of *ABF* triangle.

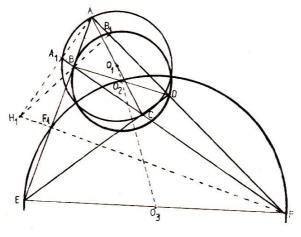


Figure 4

As previously shown, the following relations occur: H_1A . $H_1A_1 - H_1B$. $H_1B_1 = H_1F$. H_1F_1 ; they express that the point H_1 has equal powers to the circles of diameters AC, BD, EF, because those circles contain respectively the points A_1 , B_1 , F_1 , and H_1 is an internal point.

It is shown analogously that the points H_2 , H_3 , H_4 have equal powers to the same circles, so those points are situated on the radical axis (common to the circles), therefore the circles are part of a fascicle, as

such their centers – which are the middles of the complete quadrilateral's diagonals – are collinear.

The line formed by the middles of a complete quadrilateral's diagonals is called Gauss's line or Gauss-Newton's line.

3rd Theorem.

The Apollonius's circle of k^{th} rank of a triangle are part of a fascicle.

Proof.

Let AA_k , BB_k , CC_k be concurrent cevians of k^{th} rank and AA'_k , BB'_k , CC'_k be the external cevians of k^{th} rank (see *Figure 3*). The figure $B'_kC_kB_kC'_kA_kA'_k$ is a complete quadrilateral and 2^{nd} theorem is applied.

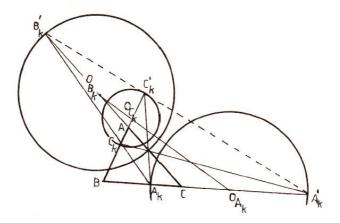


Figure 5

4th Theorem.

The Apollonius's circle of k^{th} rank of a triangle are the orthogonals of the circle circumscribed to the triangle.

Proof.

We unite O to D and U (see Figure 1), $OD \perp BC$ and $m(\widehat{A_k U A'_k}) = 90^\circ$, it follows that $U\widehat{A'_k A_k} = OD\widehat{A_k} = OU\widehat{A_k}$.

The congruence $U\widehat{A'_kA_k} \equiv \widehat{OUA_k}$ shows that OU is tangent to the Apollonius's circle of center O_{A_k} .

Analogously, it can be demonstrated for the other Apollonius's Circle.

1st Remark.

The previous theorem indicates that the radical axis of Apollonius's circle of k^{th} rank is the perpendicular taken from O to the line $O_{A_k}O_{B_k}$.

5th Theorem.

The centers of Apollonius's Circle of k^{th} rank of a triangle are situated on the trilinear polar associated to the intersection point of the cevians of $2k^{th}$ rank.

From the previous theorem, it results that $OU \perp UO_{A_k}$, so UO_{A_k} is an external cevian of rank 2 for BCU triangle, thus an external symmedian. Henceforth, $\frac{O_{A_k}B}{O_{A_k}C} = \left(\frac{BU}{CU}\right)^2 = \left(\frac{AB}{AC}\right)^{2k}$ (the last equality occurs because U belong to the Apollonius's circle of rank k associated to the vertex A).

6th Theorem.

The Apollonius's circle of k^{th} rank of a triangle intersects the circle circumscribed to the triangle in two points that belong to the internal and external cevians of $k+1^{th}$ rank.

Proof.

Let *U* and *V* points of intersection of the Apollonius's circle of center O_{A_k} with the circle circumscribed to the *ABC* (see *Figure 1*). We take from *U* and *V* the perpendiculars UU_1 , UU_2 and VV_1 , VV_2 on *AB* and *AC* respectively. The quadrilaterals *ABVC*, *ABCU* are inscribed, it follows the similarity of triangles BVV_1 , CVV_2 and BUU_1 , CUU_2 , from where we get the relations:

 $\frac{BV}{CV} = \frac{VV_1}{VV_2}, \qquad \frac{UB}{UC} = \frac{UU_1}{UU_2}.$

But
$$\frac{BV}{CV} = \left(\frac{AB}{AC}\right)^k$$
, $\frac{UB}{UC} = \left(\frac{AB}{AC}\right)^k$, $\frac{VV_1}{VV_2} = \left(\frac{AB}{AC}\right)^k$ and $\frac{UU_1}{UU_2} = \frac{VU_2}{VU_2}$

 $\left(\frac{AB}{AC}\right)^k$, relations that show that *V* and *U* belong respectively to the internal cevian and the external cevian of rank k + 1.

4th Definition.

If the Apollonius's circle of k^{th} rank associated with a triangle has two common points, then we call these points isodynamic points of k^{th} rank (and we denote them W_k, W'_k).

1st Property.

If W_k, W'_k are isodynamic centers of k^{th} rank, then:

 $W_k A. BC^k = W_k B. AC^k = W_k C. AB^k;$ $W'_{\nu} A. BC^k = W'_{\nu} B. AC^k = W'_{\nu} C. AB^k.$

The proof of this property follows immediately from 1^{st} *Theorem*.

2nd Remark.

The Apollonius's circle of 1^{st} rank is the investigated Apollonius's circle (the bisectors are cevians of 1^{st} rank). If k = 2, the internal cevians of 2^{nd} rank are the symmedians, and the external cevians of 2^{nd} rank are the external symmedians, i.e. the tangents

in triangle's vertices to the circumscribed circle. In this case, for the Apollonius's circle of 2nd rank, the *3rd Theorem* becomes:

7th Theorem.

The Apollonius's circle of 2nd rank intersects the circumscribed circle to the triangle in two points belonging respectively to the antibisector's isogonal and to the cevian outside of it.

Proof.

It follows from the proof of the 6^{th} theorem. We mention that the antibisector is isotomic to the bisector, and a cevian of 3^{rd} rank is isogonic to the antibisector.

References.

- N. N. Mihăileanu: Lecții complementare de geometrie [Complementary Lessons of Geometry], Editura Didactică și Pedagogică, București, 1976.
- [2] C. Mihalescu: Geometria elementelor remarcabile
 [The Geometry of Outstanding Elements], Editura Tehnică, București, 1957.
- [3] V. Gh. Vodă: *Triunghiul ringul cu trei colțuri* [The Triangle-The Ring with Three Corners], Editura Albatros, București, 1979.
- [4] F. Smarandache, I. Pătrașcu: *Geometry of Homological Triangle*, The Education Publisher Inc., Columbus, Ohio, SUA, 2012.