Ion Patrascu, Florentin Smarandache

Lemoine's Circles

In Ion Patrascu, Florentin Smarandache: "Complements to Classic Topics of Circles Geometry". Brussels (Belgium): Pons Editions, 2016 In this article, we get to Lemoine's circles

in a different manner than the known one.

1st Theorem.

Let *ABC* a triangle and *K* its simedian center. We take through K the parallel A_1A_2 to *BC*, $A_1 \in (AB)$, $A_2 \in (AC)$; through A_2 we take the antiparallels A_2B_1 to *AB* in relation to *CA* and *CB*, $B_1 \in (BC)$; through B_1 we take the parallel B_1B_2 to *AC*, $B_2 \in AB$; through B_2 we take the antiparallels B_1C_1 to *BC*, $C_1 \in (AC)$, and through C_1 we take the parallel C_1C_2 to *AB*, $C_1 \in (BC)$. Then:

i. C_2A_1 is an antiparallel of *AC*;

ii.
$$B_1B_2 \cap C_1C_2 = \{K\};$$

iii. The points A_1, A_2 , B_1 , B_2, C_1, C_2 are concyclical (the first Lemoine's circle).

Proof.

i. The quadrilateral BC_2KA is a parallelogram, and its center, i.e. the middle of the segment (C_2A_1) , belongs to the simedian BK; it follows that C_2A_2 is an antiparallel to AC (see *Figure 1*).

- ii. Let $\{K'\} = A_1A_2 \cap B_1B_2$, because the quadrilateral $K'B_1CA_2$ is a parallelogram; it follows that CK' is a simedian; also, CK is a simedian, and since $K, K' \in A_1A_2$, it follows that we have K' = K.
- iii. B_2C_1 being an antiparallel to BC and $A_1A_2 \parallel BC$, it means that B_2C_1 is an antiparallel to A_1A_2 , so the points B_2, C_1, A_2, A_1 are concyclical. From $B_1B_2 \parallel AC$, $\sphericalangle B_2C_1A \equiv \measuredangle ABC$, $\measuredangle B_1A_2C \equiv \measuredangle ABC$ we get that the quadrilateral $B_2C_1A_2B_1$ is an isosceles trapezoid, so the points B_2, C_1, A_2, B_1 are concyclical. Analogously, it can be shown that the quadrilateral $C_2B_1A_2A_1$ is an isosceles trapezoid, therefore the points C_2, B_1, A_2, A_1 are concyclical.

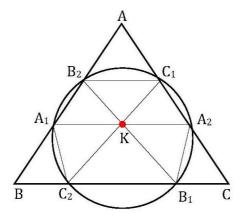


Figure 1

From the previous three quartets of concyclical points, it results the concyclicity of the points belonging to the first Lemoine's circle.

2nd Theorem.

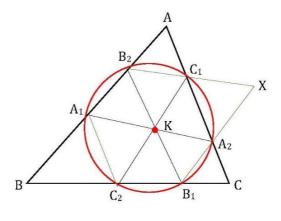
In the scalene triangle *ABC*, let K be the simedian center. We take from K the antiparallel A_1A_2 to *BC*; $A_1 \in AB, A_2 \in AC$; through A_2 we build $A_2B_1 \parallel AB$; $B_1 \in (BC)$, then through B_1 we build B_1B_2 the antiparallel to *AC*, $B_2 \in (AB)$, and through B_2 we build $B_2C_1 \parallel BC$, $C_1 \in AC$, and, finally, through C_1 we take the antiparallel C_1C_2 to $AB, C_2 \in (BC)$.

Then:

- i. $C_2A_1 \parallel AC;$
- ii. $B_1B_2 \cap C_1C_2 = \{K\};$
- iii. The points $A_1, A_2, B_1, B_2, C_1, C_2$ are concyclical (the second Lemoine's circle).

Proof.

i. Let $\{K'\} = A_1A_2 \cap B_1B_2$, having $\measuredangle AA_1A_2 = \$ $\measuredangle ACB$ and $\measuredangle BB_1B_2 \equiv \measuredangle BAC$ because A_1A_2 si B_1B_2 are antiparallels to BC, AC, respectively, it follows that $\measuredangle K'A_1B_2 \equiv \$ $\measuredangle K'B_2A_1$, so $K'A_1 = K'B_2$; having $A_1B_2 \parallel B_1A_2$ as well, it follows that also $K'A_2 = K'B_1$, so $A_1A_2 = B_1B_2$. Because C_1C_2 and B_1B_2 are antiparallels to AB and AC, we have $K''C_2 = K''B_1$; we noted $\{K''\} = B_1B_2 \cap C_1C_2$; since $C_1B_2 \parallel B_1C_2$, we have that the triangle $K''C_1B_2$ is also isosceles, therefore $K''C_1 = C_1B_2$, and we get that $B_1B_2 = C_1C_2$. Let $\{K'''\} = A_1A_2 \cap C_1C_2$; since A_1A_2 and C_1C_2 are antiparallels to BC and AB, we get that the triangle $K'''A_2C_1$ is isosceles, so $K'''A_2 = K'''C_1$, but $A_1A_2 = C_1C_2$ implies that $K'''C_2 = K'''A_1$, then $\ll K'''A_1C_2 \equiv \ll K'''A_2C_1$ and, accordingly, $C_2A_1 \parallel AC$.



ii. We noted $\{K'\} = A_1A_2 \cap B_1B_2$; let $\{X\} = B_2C_1 \cap B_1A_2$; obviously, BB_1XB_2 is a parallelogram; if K_0 is the middle of (B_1B_2) , then BK_0 is a simedian, since B_1B_2 is an antiparallel to AC, and the middle of the antiparallels of AC are situated on the

simedian *BK*. If $K_0 \neq K$, then $K_0K \parallel A_1B_2$ (because $A_1A_2 = B_1B_2$ and $B_1A_2 \parallel A_1B_2$), on the other hand, B, K_0, K are collinear (they belong to the simedian *BK*), therefore K_0K intersects *AB* in *B*, which is absurd, so $K_0 = K$, and, accordingly, $B_1B_2 \cap$ $A_1A_2 = \{K\}$. Analogously, we prove that $C_1C_2 \cap A_1A_2 = \{K\}$, so $B_1B_2 \cap C_1C_2 = \{K\}$.

iii. K is the middle of the congruent antiparalells A_1A_2 , B_1B_2 , C_1C_2 , so $KA_1 = KA_2 = KB_1 = KB_2 = KC_1 = KC_2$. The simedian center K is the center of the second Lemoine's circle.

Remark.

The center of the first Lemoine's circle is the middle of the segment [OK], where O is the center of the circle circumscribed to the triangle ABC. Indeed, the perpendiculars taken from A, B, C on the antiparallels B_2C_1 , A_1C_2 , B_1A_2 respectively pass through O, the center of the circumscribed circle (the antiparallels have the directions of the tangents taken to the circumscribed circle in A, B, C). The mediatrix of the segment B_2C_1 pass though the middle of B_2C_1 , which coincides with the middle of AK, so is the middle line in the triangle AKO passing through the middle of (OK). Analogously, it follows that the mediatrix of A_1C_2 pass through the middle L_1 of [OK].

References.

- [1] D. Efremov: Noua geometrie a triunghiului [The New Geometry of the Triangle], translation from Russian into Romanian by Mihai Miculița, Cril Publishing House, Zalau, 2010.
- [2] Gh. Mihalescu: *Geometria elementelor remarcabile* [The Geometry of the Outstanding Elements], Tehnica Publishing House, Bucharest, 1957.
- [3] Ion Patrascu, Gh. Margineanu: *Cercul lui Tucker* [Tucker's Circle], in *Alpha* journal, year XV, no. 2/2009.