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Abstract

We engage in an approach towards integration theory divorced from
measure theory concentrating on the differentiable functions instead of the
measurable ones. In a sense, we do for “measure theory” what differential
geometry does for topology; the final goal of this paper being the rigorous
definition of a generalization of the Feynman path integral. The approach
taken is an axiomatic one in which it is more important to understand
relationships between certain quantities rather than to calculate them
exactly. In a sense, this is how the field of algebraic geometry is developed
in opposition to the study of partial differential equations where in the
latter case, the stress is unfortunately still too much on the construction
of explicit solutions rather than on structural properties of and between
solutions.

1 Introduction to the idea.

Upon reflection, the construction of an integral is a rather elaborate task: first,
one has to define the sigma algebra according to which measurable functions can
be derived. Next, one constructs the Lebesgue integral for positive functions
and hence for general real functions and ultimately for complex valued functions.
So, at first, one would suspect differentiable functions having not much to do
with integration theory just like one would perhaps be inclined to think that
differential geometry would not have much to say about topology. The latter is
well known to be false and John Milnor has written the most lovely book about
topology from the differentiable viewpoint. Likewise will we treat integrals
here from the differentiable viewpoint, or at least something proportional to an
integral. The ultimate motivation for this paper comes from the Feynman path
integral, where one has to calculate the normalized partition function

Z [J ] =

∫
eiJ(φ)dµ(φ)∫
dµ(φ)

where neither the nominator, nor the denominator are well defined but expres-
sions which blow up towards infinity. The question is whether one can endow
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Z [J ] directly with meaning; for a one dimensional integral this boils down to

F (f(t)dt) =

∫ b
a
f(t)G(t)dt∫ b
a
G(t)dt

a functional on the one forms. One notices that for one forms of the kind
(dg)G−1 with g(a) = g(b) that

F (dg G−1) = 0.

Together with the linearity of F and the normalization F (dx) = 1 does this
determine F completely. Indeed, any continuous function f , assuming that G
is continuous too, may be written as

f(x)G(x) = (∂g)(x) +
1

b− a

∫ b

a

f(t)G(t)dt

where g(a) = g(b) = 0 leading to

F (f(x)dx) =
F (G−1(x)dx)

b− a

∫ b

a

f(t)G(t)dt

by linearity and the cohomology condition. Normalization then implies that

F (G−1(x)dx) =
b− a∫ b
a
G(t)dt

leading to the original definition. We now generalize this idea to higher dimen-
sions.

2 Higher dimensional integrals.

Consider again the functional

F (µ, f) =

∫
M
fµ∫

M
µ

where M is an n-dimensional compact1, oriented manifold, possibly with bound-
ary, µ a measure on M and f a function (which one might choose to vanish on
∂M). Then, one obtains that F is constant on the cohomology class of fµ
meaning if fµ = gν + dλ and µ, ν determine the same volume, where λ is an
n− 1 form which vanishes on the boundary, then

F (µ, f) = F (ν, g).

F satisfies the following properties: (a) F (µ, f+g) = F (µ, f)+F (µ, g) (linearity
in f) (b) F (µ, 1) = 1 (normalization) (c) F (µ, f) = F (ν, g) in case fµ = gν+dκ
(cohomology condition) where κ is an n−1 form vanishing on the boundary and
F (µ,G) = 1 where ν = Gµ (such a positive function G can always be found)

1A topological space is compact if and only if every covering by means of open sets has a
finite subcovering.
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(d) F (Gν, f) = F (ν,Gf)
F (ν,G) (quotient rule) and F (µ̃, χi) is given for some reference

µ̃ and characteristic function χi on a component Mi of M. Axiom (d) is
mandatory in case the manifold consists out of different connected components.
We now prove that those four conditions and the determination of F on the
n’th cohomology module2 determine F completely. Let me give a reason why
this should work; in our first example, the cohomology of the interval implies
that fµ = dg + c dx for any f and any measure µ where c is a fully specified
constant and the function g vanishes on the boundary, which is a disconnected
space with two components. Note that an equation of the type fµ = dg+ cµ is
possible but with a different c of course. Therefore, in the second case, F is fully
determined by c by means of the normalization condition in spite of the two
disconnected components of the boundary. This suggests that it suffices indeed
to restrict to n − 1 forms λ which vanish on the boundary. The reader should
notice that c depends upon the interval which implies that for multiple disjoint
intervals the volume ratios of the separate components with regard to the total
space are needed (cfr.(d)). To be precise, the type of cohomology equivalence
considered here is defined by means of the space Zn of n-forms and the space Vn
of exterior derivatives of the n− 1 forms λ satisfying λ = 0 at ∂M . We do not
simply take the quotient since one needs the supplementary condition on the
relative volumes between two measures. The proof of our assertion now reduces
to showing that for any component Mi of M and any pair (µ, f) one has that

fµ = αi + dλi

onMi where αi ∈ Zn

Vn
is of the form ciµ̃ almost everywhere with ci some constant

which follows from Betti duality (which implies that the dimension of the zero’th
cohomology class over the complex numbers equals the dimension of the n’th
cohomology class), λi ∈ Vn and µ̃ some fixed reference volume (which may be
chosen to have the same volume than or to be equal to µ). This can be shown to
be true by reconstructing every manifold by means of surgery theory applied to
n-dimensional cubes with boundary conditions imposed on two chosen opposite
n−1 dimensional faces and gluing conditions imposed on the remaining 2(n−1)
faces3. The reader may then easily show by means of Fourier analysis that one
has n − 1 local degrees of freedom supplemented with the boundary condition
and one global constraint per mode which enforces the condition

ci =

∫
Mi

fµ∫
Mi

µ̃
.

Hence, if M were to consist out of one component: linearity (a), normalization
(b) and the cohomology condition (c) with ν = µ would fix F ; multiple com-
ponents are taken care of due to (d). Indeed, fµ is equivalent to (

∑
i ciχi)(cµ̃)

by the cohomology condition assuming that F (µ,G) = c−1 where µ̃ = Gµ and
therefore, by (a) and (c) F (µ, f) =

∑
i ciF (cµ̃, χi) which is fixed given F (µ̃, χi)

and

F (µ = Hµ̃, χi) =
F (µ̃,Hχi)

F (µ̃,H(
∑
j χj))

=
diF (µ̃, χi)∑
j djF (µ̃, χj)

2Each cohomology class has a representative of the type fµ.
3A one dimensional cube has two faces (points), a square has four lines, a cube has six

faces . . ..
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where we have used formula (d) and the cohomology condition on each separate
component. Mind, that the F (µ̃, χi) have to be “well chosen” in order for F to
be the quotient of two well defined integrals over M; one cannot do any better
than this however.

3 Generalization towards infinite dimensions.

As mentioned in the introduction, neither
∫
dµ(φ) nor

∫
eiJφdµ(φ) are well

defined in quantum field theory but their quotients are given some regularization
scheme. Also, the measures here are complex which forces us to impose that∫
µ 6= 0 in order for our scheme to be consistent. By a measure µ, we mean an

object which locally corresponds to an expression of the type

µ = α(xj)dx1 ∧ dx2 ∧ . . .

where the xj form an oriented complete coordinate system of the infinite dimen-
sional manifold M and α can be any complex valued function one likes such
as

α(xj) = eiS(xj)

where S is some classical real valued action. Hence, we arrive at an expression
of the type

F (µ(φ), eiJ(φ))

satisfying our previous four axioms. In general, the manifoldM has an infinite
number of components in case the first homotopy group of configuration space
has an infinite number of elements. In that case, the definition of the relative
volume of one component comes into danger supposing that one would have a
“translation symmetry” which ought to be measure preserving up to a constant
unitary number. Here, only complex measures can survive given that one would
be in a situation of the type

1 + z + z2 + . . . =
1

1− z

with |z| = 1− ε as opposed to

1 + 1 + 1 . . . =∞

in the case of positive measures. It might be that this problem can indeed be
resolved in this way but it does not need to. I conjecture, moreover, that given
suitable convergence criteria, our proof that F is fully determined from those
four axioms still goes trough. Effectively, the great virtue of our reasoning was
that we reduced the quotient ∫

Mi
fµ∫
Mi

to a quotient of two one dimensional integrals of the Fourier modes of zero
momentum which depend on one (transversal to the boundary) coordinate only.
It remains to be seen how well this scheme works in practise, but there is at
least some hope that we have concentrated on the relevant finite numbers and
neglected infinite multiplication factors.
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4 Conclusions.

The idea in this paper has been clearly introduced and Fourier analysis played
a rather crucial role in the construction; much remains to be examined before
any conclusive results can be given, but at least our definition has a non-trivial
chance to survive given that the situation effectively reduces to a one dimen-
sional one4.

4Of course, the determination of the zero’th Fourier mode is a global problem and requires
an infinite number of integrations.

5


