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Abstract

This paper explores finding existence of undirected hamiltonian paths
in a graph using lumped/ideal circuits, specifically low-pass filters. While
other alternatives are possible, a first-order RC low-pass filter is chosen
to describe the process. The paper proposes a way of obtaining time
complexity for counting the number of hamiltonian paths in a graph, and
then shows that the time complexity of the circuits is around O(n logn)
where n is the number of vertices in a graph. Because analog computation
is often undesirable due to several aspects, a possible digitization scheme
is proposed in this paper.

1 Introduction: Undirected Hamiltonian Path
Existence Problem

Graph G = (V,E) is defined with a set V of vertices along with a set E of
undirected edges connecting vertices. We will denote a walk by the following
formalism: a− b− c where a, b, c are vertices and − represents edges. Generally,
a, b, c will be represented with positive integers.
n = nv is the cardinality of V , ne is the cardinality of E. A n-walk is defined to
be a walk with n vertices. This is the only class of walks we will have interests
in this paper.
We will re-interpret Hamiltonian path existence problem using a n×n grid and
others.

Definition 1.1. The grid contains n vertical columns. Each column contains
n vertices, and the vertices in the same column are not connected by wires.

Definition 1.2. All vertices are numbered with positive integers greater than
1.

Definition 1.3. Each wire transmits a voltage signal f(t). For our consid-
eration, location does not matter, so all of our signals are solely function of
time. These signals can be transformed into the Fourier transform frequency
representation.
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Definition 1.4. As part of lumped circuit assumption, we will assume that
wires have no time delay. (ideal wire)

Definition 1.5. For each vertex x at column a > 1, if vertex y satisfies (x, y) ∈
E or (y, x) ∈ E, vertex y frequency multiplier (or oscillator, in case of a−1 = 1)
at column a− 1 is connected by a wire to the sum operator at vertex x/column
a.

Definition 1.6. As we allow self-loops, while (x, x) 6∈ E, vertex x at column
a− 1 is connected by a wire to the sum operator at vertex x/column a.

Definition 1.7. Each vertex x at column 1, the first column, only has an ideal
oscillator, transmitting eixt to wires connected to the second column.

Definition 1.8. A sum operator just sums up the signals transmitted by wires.

Definition 1.9. Each sum operator at vertex x/column a is connected to a
frequency multiplier at the same vertex/column, with frequency multiplication
factor of x. Frequency multiplier transforms eiw1t + eiw2t + ... into eixw1t +
eixw2t + ....

Definition 1.10. At column n, after signals pass through frequency multipliers
connected to sum operators, any wire incident from column n is connected to a
final sum operator, which produces the final signal y(t).

Thus it is clear that we need n(n− 1) + 1 sum operators (or adders, equiv-
alently) and n(n − 1) frequency multipliers for the grid above. The number
of wires are dependent on E, but the maximum number of wires required is
n2(n− 1) +n(n− 1) +n, where the last n comes the wires that connect column
n to the last sum operator, and n(n − 1) comes from the wires that connect a
single sum operator to a single frequency multipliers.
The output of the circuit grid defined above is y(t), as mentioned above. Let
V = {v1, v2, .., vn}.
Definition 1.11. The final sum operator, which produces the signal y(t) is
connected to the ideal mixer M , which outputs the product of y(t) with e−iut

where u = v1v2v3..vn. In Fourier transform, this is equivalent to converting
Y (ω) with Y (ω + u), where Y (ω) is Fourier transform of y(t). Let the output
of M be k(t).

From the above, it is clear that Ceiut inside y(t) represents hamiltonian
paths, with C representing the number of hamiltonian paths. In k(t), frequency
0 represents hamiltonian paths, as all frequencies are shifted left by u.
Because our chosen low-pass filter will be first-order, we will also pass k(t) to a
frequency multiplier that multiplies frequencies by vn

4n where vn is the greatest-
numbered vertex, to ensure that the frequencies other than zero frequency parts
of k(t) will be sufficiently high frequencies. (Multiplying zero by vn

4n is zero) For
higher-order filters, like third-order filter, this additional frequency-multiplying
process will not be needed. We will call the resulting signal j(t).
As a side note, instead of having input tape in Turing machine, we have to
re-wire n×n grid every time graph input changes. This n×n grid serves as an
input to the system involving a low-pass filter.
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1.1 Restriction on vertex indices

However, a close look will reveal that it is required for us to restrict on vertex
indices. Hamiltonian u may be decomposed into a product of n numbers that are
in V , and yet all these numbers may not be distinct, required for u to represent
hamiltonian paths. One simple way to address this problem is by required all
vertex indices to be prime numbers. For simplification, assume that v1 = 2 and
vn = pn where pk represents kth prime number with p1 = 2. It is known that
pn < n(lnn + ln lnn), shown in Rosser (1941). Thus we only need to check
non-exponential number of natural numbers to obtain n prime numbers to be
used as indices for vertices.

2 Introduction: Alternative Circuit Formation

The method using the alternative circuit/grid method can be divided into two
parts: the first part is about converting an undirected graph into a Fourier
series f(t) : R → C. The second part is providing effective low-pass filtering
without sacrificing control of transient response in case of a digitization method
and simple low-pass filtering in case of an ideal analog case.
The purpose of the the grid part is to set the amplitudeA0 in f(t) =

∑
u∈U Aue

iut,
which is amplitude at frequency 0 to be the number of hamiltonian paths given
as nh, where U is the set of angular frequencies that have non-zero amplitude
in Fourier series form.
A vertex-number is assigned to each vertex (if not mentioned explicitly, vertex
refers to a vertex-number it is assigned), and in a particular implementation
of the method used in this paper, each vertex is v = ni with i ∈ Z+. Each
walk with |V | = n vertices, now called n-walks, is given a frequency, which is
implemented to be the sum of vertex-numbers of vertices the walk contains. If
n-walks share the same set of vertex-numbers, but only the visit order is differ-
ent (permutation), then they have the same angular frequency.
Let x(t) be the sum of all n-walks w, where each walk is given by eiwt as in the
above.
Notice from the above that the angular frequency of each walk is simply the
sum of vertex-numbers. And note:

(eiv1,1t + eiv1,2t)eiv2,3t = ei(v1,1+v2,3)t + ei(v1,2+v2,3)t

v1,1 and v1,2 can be thought of the first vertex visited for each corresponding
n-walk. Both walks share the same second vertex visited, which is v2,3. Notice
that the first index (1 in v1,2, for example) presents the visit order of a walk,
while the second index distinguishes actual vertex. Thus, v1,3 and v3,3 represent
the same vertex, but with a different visit order.
The full details will be given in one of the next sections, but for now let us
illustrate the principles using the example in Figure 2 and 2:

In Figure 2, because the original graph in 2 is a 4-vertex graph, there are
four layers or four depths, labelled with L1,L2,L3,L4. Each layer i contains all
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Figure 1: A 4-vertex graph
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vertices in a graph. A vertex v in layer i is connected to a vertex w in layer i+1
whenever (v, w) ∈ E. This grid procedure effectively simulates an actual walk.
At Layer 1 (L1), each vertex v transmits eivt to the edges, or wires, it is con-
nected with. These edges connect to the vertices at the next layer L2. For other
layers, each vertex v sums up all the function it received from the wires starting
from the previous layer and multiplies the sum by eivt, and then transmits the
product to the wires that connect v with the vertices of the next layer. The
final layer L4 has an additional step, since there are no wires that connect to
the next layer in Figure 2. Instead, all results obtained at each vertex at L4 is
summed up, which results in x(t).
To summarize, the vertices in L1 always act as oscillators, every edge that con-
nects one layer to the next layer acts as a right-directional wire without any
transmission delay and the vertices in each layer except L1 work first as a sum-
mer and then a multiplier coupled with an oscillator. After the final layer, a
summer adds up all results in the vertices in the final layer.
The constructed x(t) does not have zero frequency as a hamiltonian path fre-
quency and thus multiplication by e−iht, where h is the hamiltonian path an-
gular frequency of x(t) is needed to produce y(t). Then for convenience angular
frequencies may be scaled by multiplicative factor (just by changing time scale)
to produce f(t).
The purpose of the second part is to obtain nh by effective low-pass filtering.
When low-pass filtering is done naively by lowering cut-off frequency of the filter,
this produces a long sequence of transient responses that cloud over steady-state
response. In an ideal analog computation case, this transient response can sim-
ply be controlled by boosting to higher angular frequency. In many cases this is
either not possible or undesirable, even though it is the main method presented
in this paper. Thus a different mechanism is also proposed.
The idea is this: one can first filter for 1/2 of upper angular frequencies of f(t),
double angular frequency then and then filter again. Repeat this procedure n2

times, and one obtains the desired nh. The main question then is how one dou-
bles angular frequency. This is done by polynomial interpolation of each filter
output, instead of relying on f(t)’s samples for every repeat of this procedure.
Relying on filter output coming directly from f(t) would require exponentially
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Figure 2: The expanded walk representation of the graph in Figure 2.
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many samples of f(t) relative to |V | = n.

3 Low-pass Filter

Now that we defined the final output k(t), the question is how we process k(t)
to give us some information about the number of hamiltonian paths, or C.
To do this, we pass it to a low-pass filter. But we cannot simply assume an
ideal low-pass filter, represented by H(ω) = rect(ω), where rect(ω) = 1 for
−0.5 < ω < 0.5 and rect(ω) = 0 otherwise, because there is no such an ideal
filter even to the approximate level.
Thus we will choose a simple physical first-order RC low-pass filter, described
in figure 3.
By Kirchhoff’s Voltage Law, the low-pass filter in figure 1 has the ODE of:

dVout
dt

+
Vout
τ

=
Vin
τ

where τ = RC. As this ODE is linear, to figure out the behavior of this low-pass
filter, we first consider Vin = Deiωt, where ω is some arbitrary frequency.
Using initial capacitor voltage condition at the starting time t = 0 as Vout:t=0 =
0,

Vout =
D

1 + iωτ

[
eiωt − e−t/τ

]
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Figure 3: A first-order RC low-pass filter

Assume that vn > n + 1. Also for calculation convenience, assume that τ =
RC = 1. In steady state t = ∞, because every ω of j(t) except zero is greater
than/equal to vn

4n, and the total number of walks in G with n total vertices
can only have maximum of nn n-walks, j(∞)’s value mostly comes from the
hamiltonian/zero-frequency part. Other frequency parts only contribute less
than 1/n3n in magnitude. Thus at time ∞, the number of hamiltonian paths is
discovered from the magnitude of j(∞), |j(∞)|. However, calculations must be
done on finite time, so the steady-state case only forms a background for our
discussions, not the main part.
Note that in ordinary signal processing, keeping phase errors small is very im-
portant, but for the use of signal processing tools to analyze hamiltonian paths,
phase errors are not of any concern.

3.1 Time Complexity of the Circuit

But moving to the finite time is simple: figure out the time when e−t/τ decays
to 1/n4n. Then high frequency parts only contribute a negligible value to j(t).
Now since τ = 1 assumption is made, set equality e−tc = 1/n4n. Taking the
natural log to each side, tc = 4n lnn < 4n2. Thus, the critical time, which is
when the exponential decaying factor decays to 1/n4n, increases approximately
linearly as the size of input n increases.
After this critical value, the value of |j(t)| can simply be sampled by a digital
computer to get the number of hamiltonian paths. Note that theoretically
only one sample is required to measure the number of hamiltonian paths. This
is because frequency 0 does not have any oscillating part, and thus will have
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constant offset relative to 0.
Thus time complexity of the circuit to solve the number of hamiltonian paths
is O(n log n), which is smaller than O(n2).

3.2 Size and Time Complexity

The above demonstrates that the number of needed components and needed
time does not grow exponentially as the input graph size increase. All the values
used in the circuit does not require exponentially-growing number of digits in a
digital computer, as the graph size increases.

4 The Alternative Circuit Formation

In this section, I will describe another way of building a circuit that represents
a graph. This method eliminates the use of frequency multipliers, and replaces
them with ordinary multipliers.
Start with the original idea that each vertex x at column 1 transmits eixt to the
wires x at column 1 are connected to. All wires going to vertex y at column i > 1
are first met with a sum operator, but now followed by an ordinary multiplier
of sum× eiyt. The method will be explained in detail below.
Definition 1.1, 1.2, 1.3, 1.4 will be used as before. Section 1.1 changes to the
following:

Definition 4.1 (The set V of vertex numbers). The set V is defined as V =
{n, n2, ..., nn}, which represents the set of vertex numbers (or equivalently vertex
indices), with |V | = n, the number of vertices.

Definition 4.2 (n-walk). A n-walk ξ = (ξ1, ξ2, .., ξn) with ξi ∈ V and (ξi, ξi+1) ∈
E or ξi = ξi+1, a list, is a walk that has n vertices. A n-walk may contain self-
loops or loops. One may consider a n-walk as a list of n vertex numbers that
may contain one vertex number more than once.

Definition 4.3 (Permutation of a list). A permutation of a list is a re-ordering
of list elements of ξ.

Definition 4.4 (Uniqueness of n-walk frequency). Let a n-walk ξ be ξ =
(ξ1, ξ2, .., ξn), which is a list. Let ω =

∑n
i=1 ξi. ω is a unique n-walk frequency

of G if it can only be the sum of some permutations of one list.

Lemma 4.1. For V = {n, n2, ..., nn}, there cannot exist a n-walk frequency
such that it is not unique.

Proof. The proof is simply the basis representation theorem, except that the
case where n vertex numbers that are same are in the list. In such a case,
ω = n · ni. But then ω = ni+1 = 1 · ni+1, and ξ = (ni+1) is the only possible
alternative representation of ω. But the alternative list only has one vertex.
Thus, there cannot exist a n-walk frequency that is not unique.
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Definition 1.5 needs to change as follows:

Definition 4.5. For each vertex x at column a > 2, if vertex y satisfies (x, y) ∈
E or (y, x) ∈ E, vertex y mixer at column a−1, which multiplies eiyt to a signal
it receives, is connected by a wire to the sum operator at vertex x/column a.
In case of each vertex x at column a = 2, if vertex y satisfies (x, y) ∈ E or
(y, x) ∈ E, vertex y oscillator (output of eiyt) at column 1 is connected by a
wire to the sum operator at vertex x/column 2.

Definition 1.6, 1.7 and 1.8 are kept. Definition 1.9 and 1.10 change to the
following:

Definition 4.1. Each sum operator at vertex x/column a ≥ 2 is connected to
a mixer at the same column and the same vertex, which shifts frequency by x.
A mixer, with shift factor of x, transforms eiw1t + eiw2t + ... into ei(w1+x)t +
ei(w2+x)t + ..., because it multiplies eixt to the signal it receives.

Definition 4.2. At column n, after signals pass through mixers connected to
sum operators, any wire incident from column n is connected to a final sum
operator instead, which produces the final signal y(t).

Complexity remains the same: one needs n(n − 1) + 1 sum operators and
n(n−1) mixers/multipliers. (multipliers here are not frequency multipliers, but
ordinary signal multipliers) The number of wires required remains the same.
Definition 1.11 changes to the following:

Definition 4.3. The final sum operator, which produces the signal y(t) is con-
nected to the ideal mixer M , which outputs the product of y(t) with e−iut where
u = v1 + v2 + v3 + ..+ vn, with vi ∈ V . In Fourier transform, this is equivalent
to converting Y (ω) with Y (ω+u), where Y (ω) is Fourier transform of y(t). Let
the output of M be k(t).

Now k(t) has zero frequency as its hamiltonian path frequency, as in the
original formulation.
One may choose to add frequency multiplier after the final mixer M so that
a simple first-order low-pass filter can be used. However, one may instead
choose to increase the difference between each vertex number, such as V =
{n, nn, n2n, ..., nn2}. This way, one does not have to add an extra frequency
multiplier, which is likely to diverge from its ideal behavior, as I will discuss.

5 Real Deviations: Consideration of High Fre-
quency and Frequency Multipliers

While the system described above is a physical system, not just a logical system,
it is nevertheless still an ideal system. Oscillators are not perfect oscillators,
resistors and capacitors are not ideal ones, wires have impedance. Thermal
effects may change system properties.
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But the most fundamental problem is the fact that the systems above are based
on lumped-circuit analysis. Lumped circuit analysis works for low frequencies,
because the length of wires can be made short enough to satisfy lumped-circuit
assumptions. But one cannot shorten wires forever, and this makes lumped-
circuit analysis to break for high frequencies. No longer discussion of lumped
capacitors, resistors and inductors becomes a simple one.
At first, this seems to necessitate the need to discuss distributed circuits and
transmission lines analysis. However, there is a recent technology that may
allow us to think in terms of lumped circuit analysis.
The core idea behind the below method is time-stretching.

Step 1 Assume V = {n, n2, .., nn}, and the resulting k(t). At Step 1, one first
start with a low-pass filter of transfer function of H(s) = 1/(s + 1/2).
H(s) has a cut-off frequency of 1/2. And then one applies filter n2 times,
with a new filter operation starting after the previous filter operated for
n2 seconds. This results in time complexity of O(n4) seconds. Let the
output be k1(t).

Note 1-2 Now assume hypothetically that the operating range of H(s) is from
0 to |ω| = 2, and for the frequencies inside the range, low-pass filtering
works properly, but for other frequencies, it may be possible that some
signals are not filtered. But these signals are not amplified.

Step 2 After Step 1, time-stretch the output k1(t) by factor of 2. That is the
new time t′ satisfies t′ = t/2 for original t. Thus, angular frequency of
4 now becomes 2, and angular frequency of 2 now becomes 1. Angular
frequency of 0 remains to be 0. The output is k′1(t). Repeat Step 1, but
instead with input of k′1(t). The output is k2(t). Repeat the same process,
which is time-stretching ki(t) by factor of 2, and low-pass filtering of k′i(t)
and getting the output ki+1(t).

One continues the process until reaching i = log2 n + 1: by then, all angular
frequencies are dealt with low-pass filtering. This allows the length of wires to
be invariant even as n increases, and allows us to continue using lumped-circuit
analysis. The above circuit process takes O(n5) seconds.
The question then now shifts to how time-stretching is done. One of the recent
technology developed is photonic time-stretching, which is used for time-stretch
analog-to-digital converters. The details of photonic time-stretching are wide-
ranging, and thus I will not discuss these details. However, the only three
requirements for practical time-stretching imposed by the paper’s method are:
1. DC signal inside k(t) is kept as close as possible, 2. frequencies close to the
range from ω = −1 to ω = 1 are kept mostly zero when V = {n, n2, .., nn}, 3.
some deviations from ideal filtering behavior for |ω| > 1 are fine only if they
do not significantly change amplitude behaviors. [Bhushan 1998], as one of first
examples of applying photonic time-stretching, can be referenced for more in-
formation.
The above implicity assumed optical-electrical signal converter and vice versa,
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which may be ideal or non-ideal. This part would not be discussed.
Now into less serious problems. If errors introduced by real deviations affect
the zero-frequency part below a certain threshold, they may safely be ignored.
For example, multiplying by e−iut may not shift frequency u to 0 in real-time
systems. Usually, however, frequencies do spread out, and often 0 frequency
part is not emptied.
While there are many non-ideal issues that affect oscillators (and possibly for
mixers and frequency multipliers too), if we assume time-decaying realistic os-
cillators, Q-factor may be used to gauge this performance part. Assume that
this decaying time is associated with our measurement time also - which means
that measurement time is just enough to allow us computation before signals
almost disappear completely. More theoretically, Gabor limit is there:

σtσf ≥
1

4π

While the above formula only gives the bound, assume that every system has
equal σtσf . If our measurement time increases, so must decaying times. Rep-
resenting this as increase in σt, σf will decrease. In case of an oscillator, this
is equal to becoming close to an ideal oscillator. Thus increasing necessary de-
caying time will help the performance of oscillators. As thus, the size of input
is not an extra constraint for Q factor problems of real-time systems.
Many problems, whether small or not, require more details are left out here.
Future papers will address these issues.

6 Digitization

Here, I will follow the alternative circuit formation. I will re-formulate the circuit
formulation as the grid formulation as follows. Thus, for digitization, while the
above sections serve as inspirations and direct connections can be found, this
section itself does not directly reference other sections. All notations in this
section are separate from other sections.

Definition 6.1 (Z+, Z+, Z−, Z−). Z+ or Z+ refers to the set of positive
integers. Similarly, Z− refers to the set of negative integers.

Definition 6.2 (“less than”, “more than”, “greater than”, “smaller than”).
Unless otherwise noted, these are all comparisons in magnitude/size/absolute
value.

Definition 6.3 (Base-n expansion). Base-n expansion of some number k is
basically expressing k in base-n: k = ±

∑∞
p=−∞ apn

p with 0 ≤ ap < n.

The power of base-n is that if important parameters are the finite sums
(that is, k = ±

∑bh
p=bl

apn
p, with bl and bh finite), instead of infinite sums, then

analysis becomes much easier. For studying numerical approximation of k (if
exact value cannot be known), one can just focus on finite number of numerical
digits.
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Definition 6.4 (graph, n). A graph G is denoted with G = (V,E) as done in
the standard literature. n = |V | is assumed whenever n appears.

Definition 6.5 (walk, n-walk, hamiltonian path). A walk is defined as in the
standard graph theory vocabulary. A walk that has n vertices is called n-walk.
Let us represent a walk with a list (tuple) of vertices in a traversing order from
the start vertex to the end vertex. By the definition of a walk, one vertex can
appear more than once in a list. A hamiltonian path, as defined in the standard
graph theory vocabulary, is a walk with n distinct vertices, where |V | = n.

Definition 6.6 (vertex). A vertex is assigned a number. Each distinct vertex
has a distinct number. Let V = {n, n2, n3, ..., nn}. From now on, one can
assume a vertex as a number whenever appropriate.

Definition 6.7 (nh, np). nh is the number of hamiltonian paths of G. np is
the total number of n-walks of G.

Definition 6.8 (Vertex-number). The vertex-number of a walk is defined as
the sum of all elements (vertices) in the list of a walk.

Note that the vertex-number of a walk represents the angular frequency of a
walk in x(t), as will be seen. It is certainly possible that two walks may occupy
the same frequency. If there are k walks that occupy the same frequency ωa,
then the amplitude at the frequency would be k in Fourier series language, or
kδ(ω − ωa) in Fourier transform language where δ(ω) is a dirac delta function.
The maximum number of vertices inside a walk is restricted to n, for
sake of convenience.

Definition 6.9 (Permutation of a list). A permutation of a list is a re-ordering
of list elements in ξ. For example, for ξ = (ξ1, ξ2, .., ξn), ξα = (ξn, ξn−3, ξn−4, ..., ξ1)
is a permutation of ξ.

Lemma 6.1. Given V as defined above, a vertex-number can only be formed
out of a permutation of a single vertex-number list.

Proof. The proof is simply the basis representation theorem, where basis are
elements in V . One exception to this proof, though, arises when a list ξ repre-
senting a walk may be of (k, k, ...k) with |ξ| = n and k = ni, or in words, there
are n k’s in ξ. In this case, nk = ni+1, meaning the vertex-number ξ equals
one of vertices in V . But this should not matter whenever walks one deals with
have same number of vertices.

Following from above:

Definition 6.10 (Contribution of each n-walk to x(t)). From above, each walk
has a vertex number k. Each n-walk is said to contribute eikt to x(t).

Definition 6.11 (Amplitude). For any arbitrary function α(t) expressible as
α(t) =

∑∞
ω=−∞Aωe

iωt/d where d is constant and does not vary with ω, Aω is
said to be amplitude of α(t) at angular frequency ω.
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6.1 Grid: x(t)

Definition 6.12 (Grid, wires). A grid consists of n depths, with each depth
being equivalent to a column. Each depth contains n vertices as in V . Each
wire connects a vertex vα from ith depth to a vertex point of vβ in i+1th depth.
A wire is connected between vα to vβ if and only if (vα, vβ) ∈ E.

Definition 6.13 (Function transmission: first depth case). In the first depth
(first column), each vertex vα transmits eivαt.

Definition 6.14 (Function transmission except for first and nth depth). Defin-
ing for each vα in arbitrary ith depth. All incoming wire transmissions wζ(t)
from each wire ζ from i− 1th depth to vα in ith depth are summed, or equiva-
lently wλ =

∑
ζ wζ . And then multiply by eivαt and transmit uvα = eivαtwλ to

each wire starting from vα.

Definition 6.15 (Vertex point function transmission: nth depth case). All
incoming wire transmissions wζ(t) from each wire ζ from n − 1th depth to vα
in nth depth are summed, or equivalently wλ =

∑
ζ wζ . And then multiply by

eivαt, resulting in svα = eivαtwλ. xideal(t) =
∑
v∈V sv is the output of the grid,

not considering quantization errors involved.

For each depth i,
∑
v∈V uv shows the sum of all vertex-numbers representing

i-walk.

6.2 Post-grid: y(t)

Simply, this post-grid procedure is all about calculating y(t) = x(t)e−iht where
h =

∑n
i=1 n

i, the hamiltonian frequency of x(t). Thus, y(t) has 0 has hamilto-
nian frequency.

6.3 Post-grid: f(t)

f(t) is defined as f(t) = y(ct). c will be defined later as c = 1/nn+1, but the
choice of c is irrelevant except matter of convenience.
Let the angular frequencies of f(t) be labelled with u. u = 0 refers to hamilto-
nian frequency.
From now on, when it is said “every u,” this refers to every u with non-zero
amplitude in f(t).

6.4 Sinusoidal quantization errors

For every vertex v of each depth of the grid, the numbers from maximum of n
vertices are added and then multiplied by eivt, for each t.
For each vertex v of each depth, the error occurred would be of the following
form:
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• (Sum of errors from previous depths) × (eivt + calculation error for eivt)
+ (The correct sum of previous depths) × (calculation error for eivt).

• The item sign may be misunderstood as a negative sign, but the first bar
in the first item refers to an item sign.

Here the purpose of error analysis is not to find out exact error but to derive the
formula for the magnitude that is equal or bigger than actual possible maximum
error.
Assume that the correct value of the previous depth is always 2nn > |nn+nni|,
and the correct value of eivt is 2 > |1 + 1i|. This is bigger than it actually is,
thus Equation 1 is an overestimate of the sum of errors.

Definition 6.16 (ev, ei). ei representing total maximum sinusoidal quantiza-
tion error in magnitude occurring from depth 1 to depth i of all vertices, and ev
represents the maximum error in magnitude that occurs from calculating eivt.

Note that ev and ei represents entirely different things, and v inside ev is
not an index, unlike i, which is an index, in ei.
Thus, this will yield the following recurrence equation:

ei+1 = n2 [(2 + ev)ei + 2nnev] (1)

Now let us simplify Equation 1 by the following substitutions:

Λ = 2n2 + n2ev, Υ = 2nnev (2)

ei+1 = Λei + Υ (3)

Assuming that we start from e0 = 0 (for sure, depth 0 does not exist, but this
can safely be used), by geometric series formula,

ei = Υ
Λi − 1

Λ− 1
(4)

ei=n ≡ en = Υ
Λn − 1

Λ− 1
< ΥΛn (5)

Assuming that ev < 1/n2, we can assume that Λ < 3n2.
To incorporate the errors occurring from further calculating y(t),

ei=n+1 ≡ en+1 = Υ
Λn+1 − 1

Λ− 1
< ΥΛn+1 (6)

with Λn+1 ≈ 3n+1n2n+2 ≈ n3n+3 ≈ n4n, assuming ev < 1/n2.

6.5 nh extraction: interpolation-filtering cycle

nh extraction is simply digitization of low-pass filtering. However, naive digiti-
zation faces the following problem:
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• The cut-off frequency is 1/nn+1 of maximum frequency of f(t). Naive
digitization results in transient response noise clouding over steady-state
response for exponential amount of time, thus rendering the procedure
meaningless.

• In general, trade-off exists between better low-pass filtering (by reducing
cut-off frequency) and transient response (by increasing cut-off frequency,
which moves s-pole in Laplace transform terms to the left), and optimal
ground often does not exist.

To avoid this problem, interpolation-filtering cycling mechanism is proposed in
this subsection.
Let i(t) be “generic” input to the filter, with maximum frequency with non-zero
amplitude at ω = 1. In this mechanism, a Butterworth filter:

H(s) =
0.5

s+ 0.5
(7)

will be used several times, with ia(t), input to the ath use of the filter, being
either interpolation result of ka−1(t) with frequency doubled and phase changed
or simply filter output ka−1(t) corresponding to input ia−1(t), depending on a.
This butterworth filter can be converted to digital domain by bilinear transform
with sampling interval T . T will mainly be adjusted to get desired precision
level for interpolation. I will set T = 1/n16.
While interpolation problem will be discussed in details, I will first present what
interpolation has to be done.

• The given filter output has maximum angular frequency with non-zero
amplitude at ω = 1/2. (Or one can treat as if this is the case, for after
ω = 1/2, amplitude is so small as to be ignore-able as part of quantization
errors.)

• One has to interpolate n20 samples of the given filter output function (that
one only has samples) with equal spacing 2T , or ∆t = 2n4 = 2n20T in
time interval of these samples, from the given endpoint sample (that one
already has) at te of one cycle. The fact that spacing is 2T implies this
is taking the original filter output and doubling its frequency with phase
distorted. (thus maximum angular frequency can now be treated as 1 for
interpolated samples - see the definition for steps and cycles below.)

• This is done using n16 samples in the unit interval ∆t = 1 before te that
one already has.

• By polynomial interpolation error formula, upper bound on interpolation
error magnitude is less than 1/n4n

16−4n8 ≈ 1/nn
16

for each interpolated
sample. (Recall the first item/bullet point.)

While equal spacing interpolation is used in this paper, for numerical improve-
ment, other spacings may be used with minor adjustments to interpolation
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procedures.
Now one has it: for each sample, O(n2)-digit precision is used, there are n20
samples that needs to be dealt for interpolation. Interpolation calculation sensi-
tivity to numerical error is already considered as part of error-controlling - and
one can treat these errors as adding up to errors in zero frequency amplitude.
(the upper bound of error for each filter output/input sample can be considered
as the upper bound of error for calculating nh. And one knows that nh must be
a non-negative integer.) As shown above, this is so small as to be ignore-able.
For computational complexity, one can take sufficient measure of O(n498) for
each interpolation problem. While actual time complexity will be much smaller
than this obviously, for saving space I will not go into calculating actual time
complexity. As long as it is known that complexity is not exponential to n, the
paper serves its intention.
There will be n2 interpolations - meaning that sufficient time complxity is
O(n500) - this dominates other time complexity considerations, and thus to-
tal procedure amounts to O(n500).
Now to explanations of why the interpolation problem as posed is needed.

Definition 6.17 (steps,cycles). Steps are part of a cycle. For each step a
in cycle b, there is filter input ia,b(t) with maximum angular frequency with
non-zero amplitude (or treated effectively as so) at 1. After taking ∆t = n2

(n18 samples), transient response decays to sufficient intended low-pass filtering
purpose of the first-order Butterworth filter to produce oa,b(t). But one wishes
to obtain much more low-pass filtering, and one filters n2 times - implying total
of n2 steps for each cycle. At the last step of each cycle, interpolation is done
as to double the frequency with phase distorted. This is done by taking the last
n16 samples and interpolating next n20 samples, as shown in the above bullet
points for interpolation.

The followings are the important points for interpolation/steps/cycles:

• Phase does not matter for finding nh, but for convenience one may keep
phase at zero frequency as zero (and this is indeed done by filter laplace
transform equation in 7). Phase at other frequencies do not matter. Thus
phase distortion does not matter.

• Filter gain response at zero frequency is 1.

• Effectively, moving from one cycle to the next cycle moves down cutoff
frequency from the perspective of the first filter input f(t), but without
trade-off between cutoff frequency and transient response control.

Interpolation is the crucial part of this digitization scheme, for:

• Naive approach of reducing down cut-off frequency makes transient re-
sponse control very difficult.

• Naive approach of not interpolating but using original samples of f(t)
to simulate doubling frequency does not work, as this approach requires
exponential number of samples of f(t) relative to n.
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Now let us see how much transient response decays for each step and why the
number of cycles and steps are justified. Since one uses ∆t = n2 for each step to
wait for decaying steady-state response, decaying factor is e−n

2/2 of its original
transient response. At maximum, initial transient response has magnitude of
nn, and one can see this decaying factor is enough to make remaining transient
response to be irrelevant.
n2 steps for each cycle is to ensure that at ω = 1/2 of the cycle filter in-
put, steady-state response guarantees that magnitude of amplitude decays by
1/2n

2/2. This makes steady-state response from angular frequency 1/2 to 1
ignore-able. Thus, when frequency is doubled by interpolation mechanism (and
passing appropriate input to a new cycle), these frequencies from 1/2 to 1 (or 1
to 2 in new cycle input) can be ignored.
Number of cycles is n2, because one wishes to reach cut-off frequency 1/nn+1

in terms of original input. Because one doubles frequency after each cycle,
1/2n

2

< 1/nn+1 is sufficient to reach the desired cut-off frequency.
To summarize, one needs n18 samples for each step with sampling interval T = 1,
n2 steps for each cycle, and there are n2 cycles. At the end of the cycle, inter-
polation is done to double frequency with phase distortion.
Thus,

y(t/nn+1) = f(t) (8)

for the grid mechanism to ensure that maximum angular frequency is 1. The
whole digitization scheme amounts to O(n500) time complexity.

7 Conclusion

This paper introduces an analog circuit, involving a n × n grid (subcircuit)
and a low-pass filter that allows us to compute the number of hamiltonian
paths in an ideal physical environment, with the assumption of ideal osciall-
tors/mixers/frequency multipliers, with a different degree of relaxation also
examined. Then the paper formulates time complexity of such a circuit and
concludes that it is O(n log n), with non-exponential space complexity. Also
for a certain non-ideal case described in this paper, time complexity is O(n5).
However, in most cases, analog computation is undesirable, and a possible dig-
itization scheme is proposed.
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