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Indian Buffet Process Deep Generative Models

Abstract

Deep generative models (DGMs) have brought about a major breakthrough, as well as
renewed interest, in generative latent variable models. However, an issue current DGM
formulations do not address concerns the data-driven inference of the number of latent
features needed to represent the observed data. Traditional linear formulations allow for
addressing this issue by resorting to tools from the field of nonparametric statistics: In-
deed, nonparametric linear latent variable models, obtained by appropriate imposition of
Indian Buffet Process (IBP) priors, have been extensively studied by the machine learning
community; inference for such models can been performed either via exact sampling or
via approximate variational techniques. Based on this inspiration, in this paper we exam-
ine whether similar ideas from the field of Bayesian nonparametrics can be utilized in the
context of modern DGMs in order to address the latent variable dimensionality inference
problem. To this end, we propose a novel DGM formulation, based on the imposition of an
IBP prior. We devise an efficient Black-Box Variational inference algorithm for our model,
and exhibit its efficacy in a number of semi-supervised classification experiments. In all
cases, we use popular benchmark datasets, and compare to state-of-the-art DGMs.

Keywords: Black-box variational inference; deep generative model; Indian Buffet Process;
semi-supervised learning.

1. Introduction

Linear latent variable (LLV) models, including, among others, factor analysis (FA) and
probabilistic principal component analysis (PPCA), have a long tradition in the field of gen-
erative modeling of high-dimensional observations with underlying latent structure. Their
properties have been extensively studied, variants capable of capturing artifacts such as
heavy tails and skewness have been developed in several works, while inference algorithms
for such models have been derived using maximum-likelihood, variational inference (VI),
as well as Markov chain Monte Carlo (MCMC) sampling (Lin et al., 2016; Montanari and
Viroli, 2010). One of the difficulties related with the utilization of LLV models concerns
the determination of the most appropriate number of latent variables (latent vector dimen-
sionality) for representing a given dataset. Traditionally, this problem has been addressed
by means of cross-validation; thus, multiple model configurations are trained, and each one
is evaluated on the basis of some criterion that measures model fit to a separate valida-
tion dataset. However, such techniques are considerably wasteful both in terms of data
exploitation (since a fraction of the data must be retained as validation set), as well as
computational time (McLachlan and Peel, 2000).

To alleviate these issues, several researchers have considered utilization of concepts from
the field of Bayesian nonparametrics. Nonparametric Bayesian models postulate a (theoret-
ically) infinite-dimensional latent variable space. Appropriate priors are imposed over the
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postulated (infinite-dimensional) latent variables, that allow for deriving effective, data-
driven posterior distributions over the latent dimension generation process. Specifically,
nonparametric formulations of LLV models are most often obtained by imposition of an
Indian Buffet Process (IBP) prior over the model latent variables (Chatzis, 2013; Gersh-
man et al., 2015; Meeds et al., 2006; Doshi-Velez and Ghahramani, 2009). The IBP prior
(Griffiths and Ghahramani, 2005) is a nonparametric prior for latent feature models in
which observations are influenced by a combination of hidden features; it offers a principled
prior in diverse contexts where the number of latent features is unknown. Eventually, the
so-obtained hierarchical graphical model uses only a finite set of “effective” latent variables
to represent the observed data points; this set is determined in a heuristics-free, data-driven
way, as an integral part of the resulting model inference algorithm (Chatzis, 2012).

Despite these advances, the linear assumptions of LLV models cannot be considered
realistic in most real-world data modeling scenarios. Traditionally, a solution towards the
amelioration of these issues has been obtained by postulating mixtures of local LLV models,
e.g. mixture of FA (MFA)-type models (Tipping and Bishop, 1999; Ghahramani and Hinton,
1997; Chatzis et al., 2008). This way, instead of attempting data modeling by means of
a global linear model, a global nonlinear model is obtained by combining local linearities.
Recently though, a much more potent solution has been obtained in the context of deep
learning techniques (LeCun et al., 2015). Specifically, in the last couple of years, immense
research interest has concentrated on the development of nonlinear latent variable models,
where the inferred latent variable posteriors are parameterized via deep neural networks.
This novel class of latent variable models is commonly referred to as deep generative models
(DGMs) (Rezende et al., 2014; Kingma and Welling, 2014; Rezende and Mohamed, 2015;
Gershman and Goodman, 2014; Burda et al., 2016). Inference for DGMs is performed
by means of stochastic gradient variational Bayes (SGVB). This mainly consists in a smart
reparameterization of the variational lower bound (Jaakkola and Jordan, 2000), which yields
simple differentiable unbiased estimators, amenable to standard stochastic gradient ascent
techniques (e.g., Adagrad (Duchi et al., 2010)).

Inspired from these advances, in this paper we address the problem of automatic data-
driven inference of the latent variable dimensionality in DGMs. Specifically, we examine
whether a nonparametric Bayesian formulation of DGMs, based on the utilization of the
IBP prior, would offer an attractive solution to this problem. To this end, we devise a novel
nonparametric hierarchical graphical formulation of DGMs, whereby the observed data are
described via a factorized latent variable construction, driven by some latent indicators of
data point allocation which are imposed an IBP prior. We derive an efficient inference al-
gorithm for our model by resorting to Black-Box VI (BBVI) (Ranganath et al., 2014; Ruiz
et al., 2016). We exhibit the efficacy of our approach in terms of semi-supervised classifi-
cation performance, as well as in terms of the obtained effective model sizes, considering
several popular benchmark datasets.

The remainder of this paper is organized as follows: In the next Section, we provide
an overview of the theoretical foundation of our work: We first provide a brief overview of
DGMs; subsequently, we concisely introduce the IBP prior and its utilization in FA-type
models; finally, we review the inferential framework that will be used in the context of
the proposed approach, namely BBVI. In the following Section, we introduce our proposed
model, and derive its inference algorithm. Next, we perform the experimental evaluation of
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our approach. Finally, we conclude this paper, summarizing our contribution and discussing
our results.

2. Theoretical Background

2.1. DGMs

In their basic formulation, DGMs assume that the observed random variables x are gener-
ated by some random process, involving an unobserved continuous random vector z, with
some prior distribution p(z). The observed variables x are considered i.i.d. given the cor-
responding latent variables z, with conditional likelihood function p(x|z;θ). This way, the
model’s log-marginal likelihood can be lower-bounded as (evidence lower bound, ELBO):

log p(X) ≥ L(φ) = Eq(z;φ)[log p(x, z)− log q(z;φ)] (1)

where Eq(z;φ)[·] is the expectation of a function w.r.t. the random variable z, drawn from
q(z;φ), and q(z;φ) is the approximate (variational) posterior over the latent variable z,
that is inferred from the data.

DGMs assume that the adopted likelihood and prior distributions come from a para-
metric family, and that their probability density functions (pdf’s) are differentiable almost
everywhere w.r.t. their parameters and the (latent) variables z. Specifically, DGMs as-
sume that the likelihood function of the model, log p(x|z;θ), as well as the resulting latent
variable posterior, q(z;φ), are parameterized via deep neural networks. For computational
efficiency, q(z;φ) is typically taken as a diagonal Gaussian:

q(z;φ) = N (z|µ(x;φ),diag σ2(x;φ)) (2)

where the µ(x;φ) and σ2(x;φ) are parameterized via deep neural networks, and diagχ is
a diagonal matrix with χ on its main diagonal.

Under these assumptions, DGMs yield a non-conjugate formulation, which does not
allow to analytically derive the expression of Eq(z;φ)[log p(x|z;θ)], and its gradient. To re-
solve these issues in a computationally efficient way, DGMs resort to SGVB: This consists in
drawing Monte Carlo samples from q(z;φ), which are further reparameterized as determin-
istic functions of the posterior mean µ(x;φ), variance σ2(x;φ), and some white random
noise variable ε. This novel reparameterization introduced by SGVB ensures derivation of
low variance estimators, under some mild conditions (Kingma and Welling, 2014). We have:

L(φ) ≈ 1

L

L∑
l=1

[log p(x, z(l))− log q(z(l);φ)] (3)

where
z(l) = µ(x;φ) + σ(x;φ) · ε(l) (4)

and
ε(l) ∼ N (0, I) (5)
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2.2. Nonparametric Modeling Using the IBP Prior

In many unsupervised learning problems, it is necessary to derive a set of latent variables
given a set of observations. A characteristic example is FA-type models: High-dimensional
observations are usually associated with a lower-dimensional space of possible latent features
that generate them. Identifying these sets of possible latent “properties,” and determining
which observed data point has each one of these “properties,” may be extremely benefi-
cial for the data modeling algorithm. Unfortunately, most traditional machine learning
approaches require the number of latent features as an input. In such cases, usually one has
to resort to application of a model selection technique to come up with a trade-off between
model complexity and fit.

A solution to this problem is offered in the context of Bayesian nonparametrics. Non-
parametric Bayesian approaches treat the number of latent features as a random quantity to
be determined as part of the posterior inference procedure. The IBP is the most common
nonparametric prior for latent feature models (Griffiths and Ghahramani, 2005). It is a
prior on infinite binary matrices that allows us to simultaneously infer which features influ-
ence a set of observations and how many features there are. The form of the prior ensures
that only a finite number of features will be present in any finite set of observations, but
more features may appear as more observations are received.

Let us consider a set of N objects that may be assigned to a total of K →∞ features.
Let Z = [zik]N,K

i,k=1 be a N ×K matrix of assignment variables, with zik = 1 if the ith object
is assigned to the kth feature (multiple zik’s may be equal to 1 for a given object i), zik = 0
otherwise. The IBP imposes a prior over [Z], a canonical form of Z that is invariant to
the ordering of the features (Griffiths and Ghahramani, 2005). The imposed prior takes the
form

p([Z]) =
αK∏

h∈{0,1}N\{0}N Kh!
exp{−αHN}

×
K∏
k=1

(N −mk)!(mk − 1)!

N !

(6)

Here, mk is the number of objects assigned to the kth feature (s.t. zik = 1), α is the
innovation hyperparameter of the IBP prior which regulates the number of effective model
features K, HN is the Nth harmonic number, and Kh is the number of occurrences of
the non-zero binary vector h among the columns in Z. Each drawn latent dimension, z·k,
is considered to be associated with some parameters, θk, that relate it with the observed
random variables, x, in the context of the postulated model likelihood function, p(x|z;θ).
These parameters are assumed to be drawn, in turn, from some base distribution, and are
also inferred as part of the model training procedure.

Apart from MCMC (Griffiths and Ghahramani, 2005), inference for a latent feature
model imposed an IBP prior can also be performed by means of VI. This is based on an
alternative formulation of p(Z) (Doshi-Velez et al., 2009b), which consists in the following
equivalent hierarchical representation:

zik ∼ Bernoulli(πk) ∀i (7)
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πk =

k∏
j=1

vj (8)

vk ∼ Beta(α, 1) ∀k (9)

This equivalent hierarchical construction of the IBP prior results in a conjugate model
formulation, which facilitates straightforward application of conventional VI, in a compu-
tationally elegant manner.

2.3. BBVI

Existing DGMs are a characteristic case of non-conjugate models the ELBO expression of
which involves analytically intractable posterior expectations. As we discussed previously,
DGMs handle this problem by resorting to stochastic optimization, where noisy gradients
are formed with Monte Carlo approximation. However, such an approach must address a
core problem with Monte Carlo estimates of the gradient, namely their prohibitively high
variance. The solution devised to address this issue, namely SGVB, reduces the variance
by means of the reparameterization trick (4). However, this solution is only amenable to
models with continuous latent variables.

BBVI is an alternative to SGVB, amenable to non-conjugate probabilistic models that
entail both discrete and continuous latent variables. Let us consider a probabilistic model
p(x, z) and a sought variational family q(z;φ). BBVI optimizes the ELBO (1) by relying
on the “log-derivative trick” (Glynn, 1990; Williams, 1992) to obtain Monte Carlo estimates
of the gradient. Specifically, by application of the identities

∇φq(z;φ) = q(z;φ)∇φlog q(z;φ) (10)

Eq(z;φ)[∇φlog q(z;φ)] = 0 (11)

the gradient of the ELBO (1) reads

∇φL(φ) = Eq(z;φ)[f(z)] (12)

where
f(z) = ∇φlog q(z;φ) [log p(x, z)− log q(z;φ)] (13)

The so-obtained Monte Carlo estimator, based on computing the posterior expecta-
tions Eq(z;φ)[·] via sampling from q(z;φ), only requires evaluating the log-joint distribution
log p(x, z), the log-variational distribution log q(z;φ), and the score function ∇φlog q(z;φ),
which is easy for a large class of models. However, the resulting estimator may have high
variance, especially if the variational approximation q(z;φ) is a poor fit to the actual pos-
terior. In order to reduce the variance of the estimator, one common strategy in BBVI
consists in the use of control variates.

A control variate is a random variable that is included in the estimator, preserving its
expectation but reducing its variance. The most usual choice for control variates, which we
adopt in this work, is the so-called weighted score function: Under this selection, the ELBO
gradient becomes

∇φL(φ) =

N∑
n=1

Eq(z;φ)[fn(z)− anhn(z)] (14)
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where fn(·) and hn(·) are the nth component of f(·) and h(·), respectively, we denote

hn(z) = ∇φlog q(zn;φ) (15)

and the constants an are given by (Ranganath et al., 2014)

an =
Cov (fn(z), hn(z))

Var (hn(z))
(16)

On this basis, derivation of the sought variational posteriors is performed by utilizing
the gradient expression (14) in the context of popular, off-the-shelf optimization algorithms,
e.g. AdaM (Kingma and Ba, 2015) and Adagrad (Duchi et al., 2010).

3. Proposed Approach

As discussed in the Introduction, the ultimate goal of this work is to enable automatic, data-
driven inference of the latent vector dimensionality of DGMs. To this end, we examine the
efficacy of a nonparametric DGM formulation, based on the utilization of the IBP prior;
this is in direct analogy to previous successful formulations of nonparametric LLV models,
e.g. (Chatzis, 2012).

Specifically, let us consider a modeled dataset X = {xi}Ni=1. The proposed IBP-DGM
assumes a conditional likelihood p(xi|zi;θ), parameterized by deep neural networks, and
selected similar to the case of conventional DGMs; for instance, in case of real observations,
xi ∈ RD, a diagonal Gaussian likelihood is selected; in cases of binary observations, xi ∈
{0, 1}D, we opt for a Bernoulli likelihood. Further, we introduce the following hierarchical
prior formulation for the latent variables zi:

zi = z̃i · ẑi (17)

p(z̃i) = N (z̃i|0, I) (18)

p(ẑi) =
K→∞∏
k=1

Bernoulli(ẑik|πk) (19)

πk ,
k∏

j=1

vj , k ∈ {1, . . . ,∞} (20)

p(vk) = Beta(vk|α, 1), k ∈ {1, . . . ,∞} (21)

The introduction of the binary latent variables ẑi in Eq. (17) essentially allows for the
model to infer which latent features z̃ik, k ∈ {1, . . . ,K → ∞}, are active for each one
of the observed data xi. This way, if a latent feature, say the kth, yields drawn samples
of the indicators ẑik that are equal to zero for every observation, xi, it will be effectively
ignored by the model. This mechanism induces sparsity, essentially reducing the number of
“effective” latent variables to a finite and possibly limited set of inferred latent features.

However, under the infinite dimensional setting prescribed in Eqs. (17)-(21), Bayesian
inference is not feasible. For this reason, we employ a common strategy in the literature
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of Bayesian nonparametrics, formulated on the basis of a truncated, implicitly finite, rep-
resentation of the IBP (Teh et al., 2007; Doshi-Velez et al., 2009a). That is, we fix a value
K �∞, letting the posterior over the vk have the property q(vK = 0) = 1. In other words,
we set the πk equal to zero for k > K ∀i. Note that, under this setting, our model continues
to employ a full IBP prior: truncation is not imposed on the model itself, but only on
the derived posterior distribution to allow for a tractable inference procedure (Doshi-Velez
et al., 2009a).

Under this truncated variational framework, we conclude the formulation of IBP-DGM
by postulating that the sought variational posteriors take on the following forms:

q(z̃i;φ) = N (z̃i|µ(xi;φ),diag σ2(xi;φ)) (22)

q(ẑi;φ) =
K∏
k=1

Bernoulli(ẑik|π̂k(xi;φ)) (23)

q(vk;φ) = Beta(vk|ak(xi;φ), bk(xi;φ)), k ∈ {1, . . . ,K} (24)

Note that, in Eqs. (22)-(24), the µ(xi;φ), σ2(xi;φ), π̂k(xi;φ), ak(xi;φ), and bk(xi;φ) are
parameterized by deep neural networks. Specifically, we postulate a single deep network,
with separate outputs for each one of the parameterized functions.

Finally, regarding the parameters θ of the postulated model likelihood, p(x|z;θ), we
impose a simple spherical prior of the form:

p(θ) = N (θ|0, I) (25)

In addition, to facilitate computational tractability, we consider that the sought variational
posterior q(θ) collapses to a single point, θ̂, that essentially constitutes a point-estimate; in
other words, we assume

q(θ) = δθ̂(θ) (26)

where δθ̂(θ) is a distribution over θ with all its mass concentrated on θ̂.
This concludes the formulation of the proposed IBP-DGM. Inference for the proposed

model is performed by resorting to BBVI, which was described in the previous Section.
Specifically, the expression of the ELBO of the model becomes

L(φ,θ) =E
[
log p(x|z̃ · ẑ;θ) + log p(z̃)− log q(z̃;φ)

+ log p(ẑ)− log q(ẑ;φ) + log p(θ)− log q(θ)

+
K∑
k=1

{
log p(vk)− log q(vk;φ)

}] (27)

and is amenable to BBVI with the control variates selected as described in the previous
Section. In this context, to effect the entailed approximate ELBO optimization procedure,
we resort to the AdaM optimization algorithm (Kingma and Ba, 2015); we use a learning
rate of 3× 10−4, and an exponential decay rate for the first and second moment at 0.9 and
0.999, respectively.

7



3.1. Semi-supervised Learning Using IBP-DGMs

Recently, it has been shown that DGMs are extremely potent in the context of semi-
supervised learning tasks (Kingma et al., 2014). On this basis, in this work we evaluate the
efficacy of IBP-DGM under such a semi-supervised learning setting. Indeed, when it comes
to semi-supervised learning, IBP-DGM retains its formulation discussed previously, except
for the introduction of a prior p(y) over the labels y of the observed data points, as well as
a corresponding variational posterior q(y;φ). Specifically, we assume that

p(y = c) =
1

C
, ∀c (28)

and
q(y;φ) = Cat(y|$(x)) (29)

where $(x) is parameterized via a deep network, and C is the total number of possible
classes. In addition, the likelihood function of the model is also modified to take into account
(possible) label information; we assume a likelihood function of the form p(x|z̃ · ẑ, y;θ).
This way, the model ELBO eventually yields the expression

L(φ,θ) = E
[
log p(x|z̃ · ẑ, y;θ) + log p(y)− log q(y;φ)

+ log p(ẑ)− log q(ẑ;φ) + log p(z̃)− log q(z̃;φ)

+ log p(θ)− log q(θ) +

K∑
k=1

{
log p(vk)− log q(vk;φ)

}] (30)

which is amenable to BBVI. The latter can be effected via the AdaM algorithm, as discussed
previously.

4. Experiments

To exhibit the efficacy of our approach, we perform evaluation in a series of semi-supervised
classification tasks. To this end, we use several benchmark datasets, namely MNIST,
Rotated MNIST, MNIST+Background Images, MNIST+Random Background, Rotated
MNIST+Background Images, and (Small-)NORB. In all cases, we perform model evalu-
ation considering two alternative architectures of the deep networks parameterizing the
postulated likelihood and posterior distributions. The first alternative comprises simple
Dense Layer (DL) architectures. The second one is based on the Memory Network (MN)
architecture recently proposed in (Li et al., 2016).

The MN architecture employs an external hierarchical memory to capture variant in-
formation at different abstraction levels trained in an unsupervised manner. Hence, it is
appropriate for parameterizing generative latent variable models, such as DGMs. This kind
of additional memory mechanism can help to reduce the competition between invariant fea-
ture extraction and local variant reconstruction in the context of both bottom-up inference
and top-down generation; this is especially true when label information is provided (e.g., in
semi-supervised learning). This way, it allows for developing DGMs with a possibly large
external memory, and an attention mechanism that puts more emphasis on a select subset
of the inferred latent variables, and less to the rest.
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Specifically, each (deterministic) MN layer first performs computation of some low-level
generative information hg given the layer input hin

hg = fg(hin;W g, bg) (31)

where fg is a proper nonlinear transformation, and W g, bg are the weights and biases of
the transformation. Subsequently, the MN layer accesses its memory mechanism to retrieve
additional information that is not incorporated in the low-level information encoded by hg.
To this end, the MN layer needs to compute first how to properly access its memory. This
is effected via an attention mechanism, parameterized by a controlling matrix A and a bias
vector ba; the corresponding control information, ha, reads

ha = fa(hg;A, ba) (32)

where fa is a proper nonlinear transformation. The so-obtained control vector, ha, is used
to eventually retrieve appropriate information from the memory of the MN layer; this is
parameterized as

hm = fm(ha;M) (33)

where M is the matrix of stored memories of the considered MN layer, and fm is a proper
nonlinear transformation. The low-level generative information hg is eventually combined
with the memory information, hm, retrieved via the established attention mechanism, to
obtain the final output of the MN layer. We have (Li et al., 2016)

hout = fout(aout + bout · cout) (34)

where
aout = a1 + a2 · hg + a3 · hm + a4 · hg · hm (35)

cout = σ(c1 + c2 · hg + c3 · hm + c4 · hg · hm) (36)

σ(·) is the logistic sigmoid function, and the bout and {aj , cj}4j=1 parameterize fout.
In all our experiments, for simplicity and computational tractability, we use architectures

comprising only one hidden layer (DL or MN), with 500 (deterministic) units. We use ReLU
nonlinearities for all the postulated (deterministic) hidden units (Nair and Hinton, 2010).
The used MN layers comprise 100 memory slots; that is the number of rows of matrix A in
Eq. (32), or, conversely, the number of columns of the memory matrix M (Li et al., 2016).
In all cases, the maximum size of the postulated latent vectors z (truncation threshold K
of the variational posterior) is set to 50. Our source codes have been developed in Python,
and make use of the Tensorflow1 and Edward2 (Tran et al., 2016) libraries.

4.1. Semi-supervised Classification Performance

Here, we discuss the performance of our approach in the task of semi-supervised classifica-
tion. To provide some comparative results, apart from our method we also evaluate the M2
approach proposed in (Kingma et al., 2014), which constitutes the parametric equivalent

1. https://www.tensorflow.org
2. http://edwardlib.org
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of IBP-DGM in the context of semi-supervised learning. We perform evaluations under an
experimental setup where 1% of the available training data is presented to the trained mod-
els as labeled training examples (randomly selected, in equal proportions from each class),
while the rest is used as unlabeled training examples.

For the MNIST dataset, we combine the training set of 50, 000 examples with the val-
idation set of 10, 000 examples into our available training dataset. Before each epoch, the
normalized MNIST images are binarized by sampling Bernoulli distributions, similar to
(Uria et al., 2014). For the considered MNIST variants (i.e., MNIST+Background Im-
ages, MNIST+Random Background, Rotated MNIST+Background Images, and Rotated
MNIST), we retain the original split into 12, 000 training examples and 50, 000 test exam-
ples. Finally, regarding NORB, this set comprises 24, 300 training samples and an equal
amount of test samples distributed across 5 classes (animal, human, plane, truck, car). We
normalize all NORB images, following the procedure suggested in Miyato et al. (2016), us-
ing image pairs of 32× 32; this results in 2, 048-dimensional inputs. We add uniform noise
between 0 and 1 to each pixel value, to allow for effectively modeling them by means of
Gaussian conditional likelihoods p(x|z̃ · ẑ, y;θ). We normalize the NORB dataset by 256.

In Tables 1-2, we provide the obtained performance results (error rates %) of the eval-
uated methods under the two considered experimental scenarios. These figures are average
performance results over 50 repetitions of our experiments, with different random training
data splits into labeled and unlabeled subsets each time. As we observe, our approach yields
a clear improvement over the competition in all cases. To examine the statistical significance
of the observed performance differences, we run the Student’s-t statistical significance test
on the pairs of performances of our method and M2. The test rejected the null hypothesis,
with p-values below 10−8, in all cases.

Further, an interesting observation is that the obtained improvement of IBP-DGM over
M2 is more profound in the case of the DL parameterization. We suspect this result is
due to the fact that the MN parameterization introduces an attention mechanism which
essentially puts more emphasis on some latent characteristics of the data, while putting less
emphasis on some others. This might turn out to be more beneficial for some parametric
model than for a nonparametric one, which already includes a (different sort of) mechanism
for latent feature selection (retention or omission).

In the same vein, another important finding is that IBP-DGM with DL parameteriza-
tion outperforms M2 with MN parameterization. This finding shows that the nonparametric
Bayesian latent feature selection/reinforcement mechanisms of IBP-DGM are more potent
compared to attention-driven mechanisms based on conventional neural network architec-
tures (such as the MN architecture), which currently constitute the state-of-the-art in the
literature of DGMs.

4.2. Inferred Effective Latent Variable Dimensionality

In this Section, we attempt to get deeper insights into the function and the outcomes of the
IBP-induced mechanisms of our model that perform effective model size inference. To this
end, we examine the values of the posteriors over the latent indicators, q(ẑ·k;φ), obtained
in each one of the previously considered experimental scenarios. In Figs. 1 and 2, we depict
the means and error bars (over the used training data points) of these values, obtained at
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Figure 1: Posterior probabilities q(ẑ·k;φ), for each postulated latent variable k ∈
{0, . . . , 49}, under the DL parameterization scheme: (a) MNIST; (b) Rotated
MNIST; (c) MNIST+Background Images; (d) MNIST+Random Background; (e)
Rotated MNIST+Background Images; (f) NORB.
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Table 1: Semi-supervised test error (%) using the considered DL parameterization.
Method M2 IBP-DGM

MNIST 8.10 7.85

Rotated MNIST 38.80 32.82

MNIST+Background Images 16.16 8.99

MNIST+Random Background 12.34 7.78

Rotated MNIST+Background Images 12.69 8.03

NORB 18.02 15.14

Table 2: Semi-supervised test error (%) using the considered MN parameterization.
Method M2 IBP-DGM

MNIST 8.04 7.45

Rotated MNIST 37.29 32.80

MNIST+Background Images 9.08 7.94

MNIST+Random Background 7.87 6.85

Rotated MNIST+Background Images 8.42 7.95

NORB 15.57 14.88

the end of IBP-DGM model training. As we observe, our model tends to yield high enough
posterior values only for the first 10-12 latent components. In the case of MNIST and its
considered variants, an additional 8-10 latent components turn out to yield non-negligible
posteriors, thus allowing for being considered as “modestly” active. Hence, in all cases we
observe that our model effectively retains only a fraction of the originally postulated latent
variables.

Another very characteristic finding is that, in most cases, the posterior values, q(ẑ·k;φ),
of the active components tend to yield higher mean values, and most importantly, higher
standard deviations, in the case of the DL parameterization. In our view, this outcome
vouches for our previous claims that the attention mechanisms of the MN network are
actually complementary to the nonparametric feature omission/retention mechanisms of the
IBP prior: Both put more emphasis on some postulated latent variables, while putting less
emphasis on some others. The IBP-induced mechanism seems more potent per se; however,
its concurrent utilization with the MN mechanism could be beneficial for the overall model.
When the MN mechanism is missing, the IBP-induced mechanism is the only one that
is responsible for appropriately handling the procedure of putting more or less emphasis
on some latent variables for each data point; hence the higher standard deviation of the
q(ẑ·k;φ) values of the active components across the training data points in the case of the
DL network parameterization (depicted in Fig. 1).

5. Conclusions

In this paper, we addressed the problem of performing inference over the latent variable
dimensionality of DGMs. To this end, we drew inspiration from analogous efforts in the
context of traditional LLV models. Specifically, we devised a nonparametric formulation
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Figure 2: Posterior probabilities q(ẑ·k;φ), for each postulated latent variable k ∈
{0, . . . , 49}, under the MN parameterization scheme: (a) MNIST; (b) Rotated
MNIST; (c) MNIST+Background Images; (d) MNIST+Random Background; (e)
Rotated MNIST+Background Images; (f) NORB.
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of DGMs, effected by postulating a hierarchical graphical model driven by appropriate
imposition of an IBP prior. We performed inference for the so-derived IBP-DGM model by
resorting to the BBVI inference scheme.

To evaluate the efficacy of the proposed approach, we applied it to semi-supervised
data classification tasks, where existing DGMs have been shown to yield state-of-the-art
performance; in all cases, we used benchmark datasets. As we showed, our approach is quite
effective in terms of inferring the latent variable dimensionality. Indeed, we empirically
found that our model retains only a fraction of the initially postulated large number of
latent features. In addition, we observed that our method yields competitive classification
performance compared to existing DGMs; this fact vouches for the utility of performing
inference over the latent vector dimensionality of DGMs.

Our future work in this line of research focuses on extensions of our approach to DGM
formulations suitable for modeling data with temporal dynamics and interdependencies, as
well as to the related problem of modeling heteroscedastic time-series.
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