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Abstract

We give a theory of n-scale previously called as n dimensional time
scale. In previous approaches to the theory of time scales, multi dimen-
sional scales were taken as product space of two time scales [1, 2]. Here
we define an n-scale as an arbitrary closed subset of Rn. Modified for-
ward and backward jump operators, ∆-derivatives and multiple integrals
on n-scales are defined.

1 n-Scales

Previous studied in the literature considered multi-dimensional time scales as
product space of two or many time scales [1, 2]. However this is a rather
severe restriction. In this section we define multi-dimensional time scales and
name them as n-scales. This is mainly because when multiple dimensions are
introduced, other dimensions may denote space rather than time.

Just as a 1-scale (i.e. time scale) is a nonempty arbitrary closed subset of
R, we would like to define an n-scale as a nonempty arbitrary closed subset of
Rn. Though it may not be problematic for continuous parts of n-scales, defining
neighborhood relations for discrete parts is crucial. When an n-scale is taken
as a direct product of two time scales [1], the very nature of direct product
gives neighborhood relations and the problem does not appear. However when
generalizing the time scale structure to n-scales one must specify neighborhood
relations in the form of an undirected graph. This graph can also connect
boundary of discrete points to continuous parts of an n-scale.

Definition 1.1. An n-scale (Tn, G) is a tuple where Tn is a nonempty arbi-
trary closed subset of Rn and G is a directed graph that does not contain cyclic
edge appointments. The graph should cover the measure zero subsets of T. G
indicates the neighborhood structure of measure zero subsets of Tn.

In Figure 1 a simplistic 2-scale is drawn. This definition is much more
flexible. For example the discrete meshes used to numerically solve partial
differential equations are seen to be n-scales. The difference in n-scales is that
it unifies discrete and continuous structures.
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Figure 1: A 2-scale consisting of ten points. The straight lines denote the
neighborhood structure.

Definition 1.2. The graph structure lets one know the neighbors of p that can
be reached through following directions indicated by the graph. The neighbors can
be labelled with numbers such as 1, 2, . . . np. The directed forward jump operator
σi yields the ith neighbor of p. In a similar manner, ρi denotes the ith neighbor
of p in the reverse direction that is found in the graph.

Theorem 1.1. A graph G can be chosen for an n-scale such that in every cell of
G one can find one point where all of its neighbors can be reached via σ operator.

Proof. The proof is algorithmic. We begin with an undirected graph and will
make it directed with the desired property.

1. Choose a random point (p) and connect it with one of its neighbors (say
that it is q) via forward directed edge.

2. Choose a cell that includes the point p.

3. Connect p with its other neighbor in the cell with forward directed edge
and repeat this same procedure until q is reached.

4. Choose one edge in the previous cell label the point where edge emerges
as p′ and reaches to q′.

5. Repeat commands 2–5 until all the graph becomes directed.

Now, let us move on to definition of directed derivatives. Suppose that we
want to calculate a derivative of a function f at a point p. There are two cases
to consider: 1) p lies in the interior of a continuous region, 2) p is an element of
discrete set of points.

Definition 1.3. In the first case, the definition ∆-derivative is usual partial
derivative. However in the second case, we need the graph structure of the n-
scale. It allows one to navigate through the neighboring points. The derivative
directed to the i’th neighbor is just the difference equation
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(a) The plot of ex on T.
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(b) The integral of ex on T.

Figure 2

f∆
i (p) =

fσi(p)− f(p)

∆xi(p)
(1)

where fσi(p) is the function f evaluated at the ith neighbor of the point p
and ∆xi(p) is the distance between the point p and its ith neighbor.

We move on to define integrals on n-scales. It would be useful to begin with
an example from 1-scales. Let T = [0, 1] ∪ [2, 3]. We would like to integrate ex

on T. The result of the integral is the sum of areas that lie below the function
ex on T plus the area of the rectangle where time scale makes a jump. See
Figure 2 for an illustration.

What one observes in Figure 2 is two fold. First, the region between 1
and 2 that is excluded by the time scale gives a contribution to the integral.
Hence we understand that the connection structure of a time scale is important
in calculating integrals as well as its domain. Second, the contribution to the
integral from the separation site is proportional to the value of the function
on right scattered point. For example if we integrated e3−x on T the result of
the integral would be higher because the contribution to the integral from the
separation site would be e2 instead of just e. Hence we conclude time scales
induce a direction in space. This directionality can be traced back to definition
of ∆-derivatives in that whether one uses right scattered points or left scattered
points in the definition of difference equations.

Integration on a n-dimensional subset of an n-scale is the usual Riemann
integral. So, there is no need to much in this part. What is important, however,
is integration in measure zero sets. These sets will give contribution to the
integral as we have seen in the example of integration of ex on a 1-scale. For
that purpose let us illustrate the integration on discrete subsets with a simple
example. The general rule can be inferred via induction.

Suppose we want to integrate a function f on a discrete subset of an n-scale.
For that purpose we focus on a small subset where each vertex is connected
to one another. See Figure 3. It could be of a rectangular shape instead of a
triangle, it is not important. In the figure we see three points. 1 is connected
to 2 and 3, 3 is connected to 2. Observe that all of the neighbors of 1 can be
reached via σ. The integral of f is simple to calculate: value of f at 1×the area
of the triangle.

Definition 1.4 (Integration on n-scales). Let T be an n-scale, and f be a
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Figure 3: A simple 2-scale consisting of three points. The integral of a function
f equals its value at the point 1 times the area of the triangle.

piecewise continuous function on each subset of T with respect to dimension of
each subset. The integral of f is the sum of Riemann integrals on n-dimensional
subsets of T and integrals on measure zero subsets that are calculated using the
triangulation rule.

We illustrate how to take ∆-integrals on n-scales using a simple example of
the 2-scale drawn in Figure 4. The edge length is a where as the points are
positioned at vertices of equilateral triangles.

Suppose we want to integrate f(x, y). As one looks carefully to the connec-
tion structure of the 2-scale, one sees that the points that contributes to the
integral are 1, 2, 3, 4, 5, 6, 7. However note that point 1 contributes with multi-
plicity six. The are of each equilateral triangle with side length of a is a2

√
3/4.

Let p(n) be the coordinates of the point n. Then the result of the integral is as
follows: ∫

T
f(x, y)∆x∆y =

a2
√

3

4

7∑
i=1

mif(p(i)) (2)

where mi is the number of triangles considered with p(i) as the starting
point. As it is seen on Figure 4 m1 = 6 where as mi = 1 for i 6= 1. The point 1
seems to have a special role but it is illusory. Its multiplicity being six is because
of the special way that the graph is chosen. It is also important to show that
by choosing a suitable graph, one can favor some points over the others.
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Figure 4: A highly symmetrical 2-scale consisting of thirteen points. Elements
of 2-scale are located at vertices of equilateral triangles. Each edge has the
length a.
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