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Abstract	

A new class of dynamical system described by ODE coupled with their Liouville equation has been introduced and 
discussed. These systems called self-controlled, or self-supervised since the role of actuators is played by the 
probability produced by the Liouville equation. Following the Madelung equation that belongs to this class, non-
Newtonian properties such as randomness, entanglement, and probability interference typical for quantum systems 
have been described. Special attention was paid to the capability to violate the second law of thermodynamics, which 
makes these systems neither Newtonian, nor quantum. It has been shown that self-controlled dynamical systems can 
be linked to mathematical models of livings as well as to models of AI. The central point of this paper is the 
application of the self-controlled systems to NP-complete problems known as being unsolvable neither by classical 
nor by quantum algorithms. The approach is illustrated by solving a search in unsorted database in polynomial time 
by resonance between external force representing the address of a required item and the response representing 
location of this item.  

1.	Introduction.	
Self-controlled	dynamical	 systems,	 i.e.	 system	described	by	ODE	 coupled	with	 their	 Liouville	 equation,	 until	
recently	have	been	represented	only	by	the	Madelung	equations,	[1].	Madelung	decomposed	the	Schrödinger	
complex	variables	 into	real	and	imaginary	parts	and	obtained	his	 famous	hydrodynamic	version	of	quantum	
mechanics	
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Here ρ and S are the components of the wave functionψ = ρeiS / , and   is the Planck constant divided by 
2π . The last term in Eq. (2) is known as quantum potential. From the viewpoint of Newtonian mechanics, Eq. (1) 
expresses continuity of the flow of probability density, and Eq. (2) is the Hamilton-Jacobi equation for the action S of 
the particle. Actually the quantum potential in Eq. (2), as a feedback from Eq. (1) to Eq. (2), represents the difference 
between the Newtonian and quantum mechanics, and therefore, it is solely responsible for fundamental quantum 
properties.	The	detailed	analysis	of	these	equations	can	be	found	in	[2].	
				But	 what	 happened	 if	 the	 quantum	 potential	 is	 replaced	 by	 other	 feedbacks?	 Such	 replacement	 was	
introduced	 and	 investigated	 in	 [3,4,5].	 Obviously	 the	 modified	 version	 of	 the	 Madelung	 equation	 became	
independent	of	quantum	mechanics,	and	new	class	of	dynamic	equations	has	been	created.	Surprisingly	 this	
new	 dynamics	 belongs	 neither	 to	 quantum,	 nor	 to	 Newtonian	 physics:	 it	 represents	 a	 quantum-classical	
hybrid.	Philosophical	implications	of	that	are	discussed	in	[5].	At	the	same	time,	these	new	dynamical	systems	
can	be	called	self-controlled,	or	self-supervised	since	 the	role	of	actuators	 there	 is	played	by	 the	probability	
produced	by	the	Liouville	equation	that,	in	turn,	is	produced	by	the	original	ODE.		
	
2.	Self-controlled	dynamical	systems.		

								In	 order	 to	 illuminate	 specific	 features	 of	 the	 self-controlled	 systems	under	 consideration,	we	will	 start	
with	control	dynamics	that	described	by	a	system	of	ODE:	
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dv
dt
= F[v,U ]    (3)   

Here	
	v	=	v1,v2,…vn	is	the	vector	of	state	variables	to	be	controlled,	

u = u1,u2 ,...um 	is	the	control	vector	that	represents	external	actuators.	
Let	us	compare	the	control	system	Eq.	(3)	with	the	following	system	

dv
dt
= F[ρ(v)]        (4) 

where the probability ρ is introduced via the Liouville equation corresponding to Eq. (1) 

∂ρ
∂t
+∇•(ρF) = 0        (5)  	

It describes the continuity of the probability density flow originated by the error distribution  

ρ0 =ρ(t = 0)          (6) 
 in the initial condition of ODE (4).  
Comparison of Eqs.(3) and (4) shows that they have similar structure, and the role of the external actuator U  in the 
control system (3) is played by the term ρ (v) in the system (4). However the origins of these actuators are 
fundamentally different: the actuator U represents an external force, while the actuator ρ (v) is an internal one. 
Indeed it is defined by Eq. (5) that, in turn, uniquely follows from Eq. (4). That is why the system (4),(5) can be 
called self- controlled, or self-supervised. 
     From the physical viewpoint, the feedback from the Liouville equation is a fundamental step in our approach: in 
Newtonian dynamics, the probability never explicitly enters the equation of motion. In addition to that, the Liouville 
equation generated by Eq. (4) could be nonlinear with respect to the probability density ρ   

∂ρ
∂t
+∇•{ρF[ρ(V)]}= 0         (7) 

and therefore, the system (4),(5) departs from Newtonian dynamics. However although it has the same topology as 
quantum mechanics (since now the equation of motion is coupled with the equation of continuity of probability 
density as it does in the Madelung version of the Schrödinger equation), it belongs neither to quantum ,nor to 
Newtonian mechanics.. Indeed Eq. (4) is more general than the Hamilton-Jacoby equation: it is not necessarily 
conservative, and F is not necessarily the quantum potential although further we will impose some restriction upon it 
that links F to the concept of information, see Fig.1. 

 
Figure 1. Topology of self-controlled dynamics. 
Remark. Here and below we make distinction between the random variable v(t) and its values V in probability space. 
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3. Self-controlled dynamics with diffusion feedback. 
In	this	section,	following	[3,5,6]	we	will	concentrate	on	a	special	type	of	the	self-supervised	system	Eqs.	(4),(5).	
We	will	start	with	derivation	of	an	auxiliary	result	that	illuminates	departure	from	Newtonian	dynamics.	For	
mathematical	clarity,	we	will	consider	here	a	one-dimensional	motion	of	a	unit	mass	under	action	of	a	force	f	
depending	upon	the	velocity	v	and	time	t	and	present	it	in	a	dimensionless	form	

),( tvfv =!           (8)   	
referring	all	the	variables	to	their	representative	values	 .,, 00 etctv 	
If	initial	conditions	are	not	deterministic,	and	their	probability	density	is	given	in	the	form	
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	while ρ  is	 a	 single-	 valued	 function,	 then	 the	 evolution	 of	 this	 density	 is	 expressed	 by	 the	 corresponding	
Liouville	equation	
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The	 solution	 of	 this	 equation	 subject	 to	 initial	 conditions	 and	 normalization	 constraints	 (9)	 determines	
probability	density	as	a	function	of	V	and	t:	
	 ),( tVρρ = 	 	 	 (11)	
In	order	to	deal	with	the	constraint	(9)	let	us	integrate	Eq.	(10)	over	the	whole	space	assuming	that	 0→ρ 	at	

∞→||V 	and	 ∞<|| f 	.	Then	
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Hence,	the	constraint	(9)	is	satisfied	for	 0>t 	if	it	is	satisfied	for	 .0=t 	
						Let	us	now	specify	the	force	 f 	as	a	feedback	from	the	Liouville	equation	
	 )],([),( tvtvf ρϕ= 		 	(13)	
and	analyze	the	motion	after	substituting	the	force	(13)	into	Eq.(9)		

)],,([ tvv ρϕ=! 		 	 (14)	 	 	
Although	the	theory	of	ODE	does	not	impose	any	restrictions	upon	the	force	as	a	function	of	space	coordinates,	
the	Newtonian	physics	does:	equations	of	motion	are	never	coupled	with	the	corresponding	Liouville	equation.	
Moreover,	 it	can	be	shown	that	such	a	coupling	 leads	to	non-Newtonian	properties	of	 the	underlying	model.	
Indeed,	substituting	the	force	 f from	Eq.	(13)	into	Eq.	(10),	one	arrives	at	the	nonlinear	equation	of	evolution	
of	the	probability	density		
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Let	us	now	demonstrate	 the	destabilizing	effect	of	 the	 feedback	 (13).	For	 that	purpose,	 it	 should	be	noticed	
that	the	derivative	 v∂∂ /ρ must	change	its	sign	at	least	once,	within	the	interval ∞<<−∞ v ,	in	order	to	satisfy	
the	normalization	constraint	(9).	
	But	since	

Sign ∂ v
∂v

= Sign dφ
dρ
Sign ∂ρ

∂v
		 	(16)												

there	will	 be	 regions	of	v	where	 the	motion	 is	unstable,	 and	 this	 instability	 generates	 randomness	with	 the	
probability	distribution	guided	by	the	Liouville	equation	(15).	It	should	be	noticed	that	the	condition	(18)	may	
lead	to	exponential	or	polynomial	growth	of	v	(in	the	last	case	the	motion	is	called	neutrally	stable,	however,	as	
will	 be	 shown	below,	 it	 causes	 the	emergence	of	 randomness	as	well	 if	 prior	 to	 the	polynomial	 growth,	 the	
Lipchitz	condition	is	violated).	
3.1. Emergence of self-generated stochasticity. In order to illustrate mathematical aspects of the concepts 
of Liouville feedback in systems under consideration as well as associated with its instability and randomness, let us 
take the feedback (13) in the form  
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f = −σ2 ∂
∂v
lnρ,                         (17)                                                

to obtain the following equation of motion  

v = −σ2 ∂
∂v
lnρ,    (18)                                                   

This equation should be complemented by the corresponding Liouville equation (in this particular case, the Liouville 
equation takes the form of the Fokker-Planck equation) 

∂ρ
∂t
= σ2

∂2ρ

∂V 2
       (19)                                           

Here v stands for a particle velocity, and σ2 is the diffusion coefficient. 
If   

σ2 = const. ,    (20)     
  

the solution of Eq. (19) subject to the sharp initial condition  

ρ =
1

2σ πt
exp(− V

2

4σ2t
)    (21)                                            

 describes diffusion of the probability density, and that is why the feedback (17) will be called a diffusion feedback. 
Substituting this solution into Eq. (18) at V = v, one arrives at the differential equation with respect to v (t) 

v = v
2t

        (22)                   

and therefore, 

v =C t           (23)                     
where C is an arbitrary constant. Since v = 0 at t = 0 for any value of C, the solution (23) is consistent with the sharp 
initial condition for the solution (21) of the corresponding Liouvile equation (19). The solution (23) describes the 
simplest irreversible motion: it is characterized by the “beginning of time” where all the trajectories intersect (that 
results from the violation of Lipcsitz condition at t =0, Fig.2), while the backward motion obtained by replacement of 
t with (-t) leads to imaginary values of velocities. 

 
 

Figure 2. Stochastic process and probability density. 
 
One can notice that the probability density (21) possesses the same properties. As shown in [2] and [4], the solution 
(23) has the same structure as the solution of the Madelung Eqs.(1) and (2), although the dynamical system (18), (19) 
is not quantum! 
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The explanation of such a “coincidence” is very simple: the system (18), (19) has the same dynamical topology as 
that of the Madelung equation where the equation of conservation of the probability is coupled with the equation of 
conservation of the momentum, (see Fig.1) As will be shown below, the system (18), (19) neither quantum nor 
Newtonian, and we will call such systems quantum-inspired, or self-controlled 

Further analysis of the solution (23) demonstrates that this solution is unstable since 

 
d v
dv

=
1
2t
> 0    (24)               

and therefore, an initial error  always grows generating randomness. Initially, at t=0, this growth is of infinite rate 
since the Lipchitz condition at this point is violated  

 
∂ v
∂v

→∞ at t→ 0                      (25)                  

This type of instability has been introduced and analyzed in [7]. The unstable equilibrium point ( v = 0 ) has been 
called a terminal repeller, and the instability triggered by the violation of the Lipchitz condition – non-Lipchitz, or 
terminal instability. The basic property of the non- Lipchitz instability is the following: if the initial condition is 
infinitely close to the repeller, the transient solution will escape the repeller during a bounded time while for a regular 
repeller the time would be unbounded. Indeed, an escape from the simplest regular repeller can be described by the 

exponent v = v0e
t . Obviously v→ 0  if v0 → 0 , unless the time period is unbounded. On the contrary, the 

period of escape from the terminal repeller (23) is bounded (and even infinitesimal) if the initial condition is infinitely 
small, (see Eq. (25)).  

Considering first Eq. (23) at fixed C as a sample of the underlying stochastic process (21), and then varying C, 
one arrives at the whole ensemble characterizing that process, (see Fig. 2). The curves that envelope the cross-

sectional blue areas at t* = const present the probability density distribution at constant times.   One can verify 
that, as follows from Eq. (21), [8], the expectation and the variance of this process are, respectively 

v = 0, v = 2σ2t              (26)                      

 The same results follow from the ensemble (23) at−∞≤C ≤∞ . Indeed, the first equality in (26) results 
from symmetry of the ensemble with respect to v = 0; the second one follows from the fact that 

v∝ v2 ∝ t                   (27)                    
It is interesting to notice that the stochastic process (21) is an alternative to the following Langevin equation, 

[8]   

v = Γ(t), Γ = 0, Γ = σ        (28)                    

that corresponds to the same Fokker-Planck equation (19). Here Γ(t) is the Langevin (random) force with zero 
mean and constant varianceσ .  
Thus, the emergence of self-generated stochasticity is the first basic non-Newtonian property of the self-controlled 
dynamics with the Liouville feedback.  
	
3.2. Entanglement. In this sub-section we will introduce a fundamental and still mysterious property that was 
predicted theoretically and corroborated experimentally in quantum systems: entanglement. Quantum entanglement is 
a phenomenon in which the quantum states of two or more objects have to be described with reference to each other, 
even though the individual objects may be spatially separated. This leads to correlations between observable physical 
properties of the systems. As a result, measurements performed on one system seem to be instantaneously influencing 
other systems entangled with it. Different views of what is actually occurring in the process of quantum entanglement 
give rise to different interpretations of quantum mechanics. Here we will demonstrate that entanglement is not a 
prerogative of quantum systems: it occurs in self-controlled systems under consideration. That will shed light on the 
concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems that 
includes quantum as well as self-controlled systems.  
In order to introduce entanglement, we will start with Eqs.(18) and (19) and generalize them to the two-dimensional 
case 
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v1 = −a11
∂
∂v1
lnρ− a12

∂
∂v2
lnρ,     (29)   

v2 = −a21
∂
∂v1
lnρ− a22

∂
∂v2
lnρ,     (30)  

∂ρ
∂t
= a11

∂2ρ

∂V1
2
+ (a12 + a21)

∂2ρ
∂V1∂V2

+ a22
∂2ρ

∂V 2
2

,   (31)  

As in the one- dimensional case, this system describes diffusion without a drift 
The solution to Eq. (31) has a closed form 

ρ =
1

2πdet[âij ]t
exp(− 1

4t
$bijViVj ), i =1,2.   (32)    

Here 

][ ijbʹ = 1]ˆ[ −
ija  , â11 = a11, â22 = a 22 , â12 = â21 = a12 + a21 , ,,ˆˆ jiijjiij bbaa ʹ=ʹ=  (33)  

Substituting the solution (32) into Eqs. (29) and (30), one obtains 

v1 =
b11v1 +b12v2

2t
      (34)   

v2 =
b21v1 +b22v2

2t
, bij = !bijâij    (35)     

Eliminating t from these equations, one arrives at an ODE in the configuration space 

dv2
dv1

=
b21v1 +b22v2
b11v1 +b12v2

, v2 → 0 at v1→ 0,  (36)  

This is a classical singular point treated in textbooks on ODE.  
Its solution depends upon the roots of the characteristic equation 

λ2 − 2b12λ+b
2
12 −b11b22 = 0      (37)   

Since both the roots are real in our case, let us assume for concreteness that they are of the same sign, for 
instance, 1,1 21 == λλ . Then the solution of Eq. (36) is presented by the family of straight lines 

v2 = Cv1, C = const.     (38)   
Thus, the solutions of Eqs. (29) and (30) are presented by two-parametrical families of random samples, as expected, 

while the randomness enters through the time-independent parameters C and C that can take any real numbers. Let 
us now find such a combination of the variables that is deterministic. Obviously, such a combination should not 
include the random parameters C orC~ . It easily verifiable that  

d
dt
(ln v1) =

d
dt
(ln v2 ) =

b11 + Cb12
2t

     (40)   

 
and therefore, 

( d
dt
ln v1) / (

d
dt
ln v2 ) ≡1      (41)   

Thus, the ratio (41)is deterministic although both the numerator and denominator are random,(see Eq.40). This is a 
fundamental non-classical effect representing a global constraint. Indeed, in theory of stochastic processes, two 
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random functions are considered statistically equal if they have the same statistical invariants, but their point-to-point 
equalities are not required (although it can happen with a vanishingly small probability). As demonstrated above, the 
diversion of determinism into randomness via instability (due to a Liouville feedback), and then conversion of 
randomness to partial determinism (or coordinated randomness) via entanglement is the fundamental non-classical 
paradigm that.  
3.3.	 Entanglement	 as	 reaction	 to	 global	 constraint.	 In	 this	 sub-section	 we	 will	 establish	 roots	 of	
entanglement	in	context	of	classical	mechanics,	and	turn	to	the	concept	of	global	constraint.	
a.	Criteria	 for	non-local	 interactions.	 Based	 upon	 analysis	 of	 all	 the	 known	 interactions	 in	 the	 Universe	 and	
defining	them	as	local,	one	can	formulate	the	following	criteria	of	non-local	interactions:	they	are	not	mediated	
by	another	entity,	such	as	a	particle	or	field;	their	actions	are	not	limited	by	the	speed	of	light;	the	strength	of	
the	 interactions	 does	 not	 drop	 off	 with	 distance.	 All	 of	 these	 criteria	 lead	 us	 to	 the	 concept	 of	 the	 global	
constraint	as	a	starting	point.		
b.	Global	constraints	in	physics.	It	should	be	recalled	that	the	concept	of	a	global	constraint	is	one	of	the	main	
attribute	of	Newtonian	mechanics.	 It	 includes	 such	 idealizations	as	 a	 rigid	body,	 an	 incompressible	 fluid,	 an	
inextensible	 string	 and	 a	 membrane,	 a	 non-slip	 rolling	 of	 a	 rigid	 ball	 over	 a	 rigid	 body,	 etc.	 All	 of	 those	
idealizations	 introduce	 geometrical	 or	 kinematical	 restrictions	 to	 positions	 or	 velocities	 of	 particles	 and	
provides	“instantaneous”	speed	of	propagation	of	disturbances.	Let	us	discuss	the	role	of	the	reactions	of	these	
constraints.	 One	 should	 recall	 that	 in	 an	 incompressible	 fluid,	 the	 reaction	 of	 the	 global	 constraint	 0≥⋅∇ v 	
(expressing	 non-negative	 divergence	 of	 the	 velocity	 v)	 is	 a	 non-negative	 pressure	 0≥p ;	 in	 inextensible	

flexible	 (one-	or	 two-dimensional)	bodies,	 the	 reaction	of	 the	global	 constraint	 ,0
ijij gg ≤ i,j	=1,2	 (expressing	

that	 the	 components	 of	 the	metric	 tensor	 cannot	 exceed	 their	 initial	 values)	 is	 a	 non-negative	 stress	 tensor	
0≥ijσ ,	i,j=1,2.	It	should	be	noticed	that	all	the	known	forces	in	physics	(the	gravitational,	the	electromagnetic,	

the	strong	and	the	weak	nuclear	forces)	are	local.	However,	the	reactions	of	the	global	constraints	listed	above	
do	not	belong	to	any	of	these	local	forces,	and	therefore,	they	are	non-local.	Although	these	reactions	are	being	
successfully	 applied	 for	 engineering	 approximations	 of	 theoretical	 physics,	 one	 cannot	 relate	 them	 to	 the	
origin	 of	 entanglement	 since	 they	 are	 result	 of	 idealization	 that	 ignores	 the	 discrete	 nature	 of	 the	matter.	
However,	there	is	another	type	of	the	global	constraint	in	physics:	the	normalization	constraint,	(see	Eq.	(9)).	
This	 constraint	 is	 fundamentally	 different	 from	 those	 listed	 above	 for	 two	 reasons.	 Firstly,	 it	 is	 not	 an	
idealization,	and	therefore,	it	cannot	be	removed	by	taking	into	account	more	subtle	properties	of	matter	such	
as	 elasticity,	 compressibility,	 discrete	 structure,	 etc.	 Secondly,	 it	 imposes	 restrictions	 not	 upon	 positions	 or	
velocities	 of	 particles,	 but	 upon	 the	 probabilities	 of	 their	 positions	 or	 velocities,	 and	 that	 is	 where	 the	
entanglement	comes	from.	Indeed,	if	the	Liouville	equation	is	coupled	with	equations	of	motion	as	in	quantum	
mechanics,	 the	normalization	condition	 imposes	a	global	 constraint	upon	 the	state	variables,	and	 that	 is	 the	
origin	 of	 quantum	entanglement.	 In	 quantum	physics,	 the	 reactions	 of	 the	normalization	 constraints	 can	be	
associated	 with	 the	 energy	 eigenvalues	 that	 play	 the	 role	 of	 the	 Lagrange	 multipliers	 in	 the	 conditional	
extremum	 formulation	 of	 the	 Schrödinger	 equation,	 Landay,L.,	 1997,	 [17].	 In	 self-controlled	 systems,	 the	
Liouville	equation	 is	 also	 coupled	with	equations	of	motion	 (although	 the	 feedback	 is	different).	And	 that	 is	
why	the	origin	of	entanglement	in	self-controlled	systems	is	the	same	as	in	quantum	mechanics.						
c.	Speed	of	action	propagation.	Further	illumination	of	the	concept	of	entanglement	follows	from	comparison	of	
quantum	 and	 Newtonian	 systems.	 Such	 a	 comparison	 is	 convenient	 to	 perform	 in	 terms	 of	 the	 Madelung	
version	of	the	Schrödinger	equation:	Eq.(1)	and	(2}	

0)( =∇•∇+
∂
∂ S
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ρρ 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

0
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∂
∂
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m
VS

t
S !

	 	 	

	 	 	 	 	 	 	
 As shown in [9], the Newtonian mechanics ( 0=! ), in terms of the S and ρ as state variables, is of a hyperbolic type, 
and therefore, any discontinuity propagates with the finite speed S/m, i.e. the Newtonian systems do not have non-
localities. But the non-relativistic quantum mechanics ( 0≠! ) is of a parabolic type. This means that any disturbance 
of S or ρ in one point of space instantaneously transmitted to the whole space, and this is the mathematical origin of 
non-locality. But is this property is a prerogative of quantum evolution? Obviously, it is not. Any parabolic equation 
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(such as Navier-Stokes equations or Fokker-Planck equation) has exactly the same non-local properties. However, the 
difference between the quantum and classical non-localities is in their physical interpretation. Indeed, the Navier-
Stokes equations are derived from simple laws of Newtonian mechanics, and that is why a physical interpretation of 
non-locality is very simple: If a fluid is incompressible, then the pressure plays the role of a reaction to the 
geometrical constraint 0≥⋅∇ v , and it is transmitted instantaneously from one point to the whole space (the Pascal 
law). One can argue that the incompressible fluid is an idealization, and that is true. However, it does not change our 
point: Such a model has a lot of engineering applications, and its non-locality is well understood. The situation is 
different in quantum mechanics since the Schrodinger equation has never been derived from Newtonian mechanics: It 
has been postulated.  
    Let us turn now to the self-controlled systems. The formal difference between them and quantum systems is in a 
feedback from the Liouville equation to equations of motion: the gradient of the quantum potential is replaced by the 
information forces, while the equations of motion are written in the form of the second Newton’s law rather than in 
the Hamilton-Jacoby form. But as in quantum mechanics, the global constraint is the normalization condition 
expressed by Eq. (9). That is why both quantum and self-controlled systems possess the same non-locality: 
instantaneous propagation of changes in the probability density, and this is due to similar topology of their dynamical 
structure, and in particular, due to a feedback from the Liouville equation.    
4.	Self-controlled	dynamics	with	shock	feedback.	
4.1. Shock waves in probability space. In order to introduce more surprising properties of self-controlled dynamics, 
we replace the diffusion feedback Eq. (17) by the following one 
 
f = ξρ, ξ = const.,        (42)   

and therefore, the equation of motion and the Liouville equation are 
v = ξρ                                                                                                               (43)  

∂ρ
∂t
+ ξ

∂
∂V
(ρ2 ) = 0, ,          (44)                                                                                                                

The solution of Eq. (44) subject to the initial conditions ρ0 (V )  and the normalization constraint (9) is given in the 
following implicit form, [10],  

ρ(V ,t) =ρ0 (V − ξρt), ρ0 =ρt=0         (45)   
This solution subject to initial conditions and the normalization constraint, describes propagation of initial 

distribution of the density ρ0 (V )  with the speed V that is proportional to the values of this density, i.e. the higher 
values of ρ propagate faster than lower ones. As a result, any compressive part of the wave, where the propagation 
velocity is a decreasing function of V, ultimately “breaks” to give a triple-valued (but still continuous) solution for 
ρ(V ,t) . Eventually, this process leads to the formation of strong discontinuities that are related to propagating 
jumps of the probability density. In the theory of nonlinear waves, this phenomenon is known as the formation of a 
shock wave. Thus, as follows from the solution (45), a single-valued continuous probability density spontaneously 
transforms into a triple-valued, and then, into discontinuous distribution. That is why the feedback (42) can be called 
the shock feedback. 

 
Figure 3. Formation of shock wave in probability space. 
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In aerodynamical application of Eq. (44), when ρ stands for the gas density, these phenomena are eliminated through 
the model correction: at the small neighborhood of shocks, the gas viscosity ν  cannot be ignored, and the model 
must include the term describing dissipation of mechanical energy. The corrected model is represented by the 
Burgers’ equation    

∂ρ
∂t
+
∂
∂V
(ρ2 ) = ν ∂

2ρ

∂V 2
                                                                   (46)  

As shown in [10], this equation has continuous single-valued solution (no matter how small is the viscosityν ), and 
that provides a perfect explanation of abnormal behavior of the solution of Eq. (44). Similar correction can be applied 
to the case when ρ stands for the probability density if one includes Langevin forces Γ(t)  into Eq. (43) 

v =ρ+ νΓ(t), < Γ(t) >= 0, < Γ(t)Γ( $t ) >= 2δ(t − $t )      (47)  
Then the corresponding Fokker-Planck equation takes the form (46). It is reasonable to assume that small random 

forces of strength ν <<1 are always present, and that protects the mathematical model (43), (44) from 
singularities and multi-valuedness in the same way as it does in the case of aerodynamics. 
          It is interesting to notice that Eq. (46) can be obtained from Eq. (43) in which random force is replaced by an 
additional Liouville feedback 

f = ξρ−σ2 ∂
∂v
lnρ,                                                                                    (48)                                                                                                                                                                                                      

i.e. the shock feedback (42) is combined with the diffusion feedback (17) and therefore 
 

v = ξρ−σ2 ∂
∂v
lnρ,        (49)  

It is easily verifiable that the solution of Eq. (46) satisfies the constraint (9) if the corresponding initial condition 
does, [10]. 
   It should be emphasized that despite the mathematical similarity between Eq.(46) and the Bergers equation, the 
physical interpretation of Eq.(46) is fundamentally different from that of the Burgers equation: it is a part of the 
dynamical system (46),(49) in which Eq. (46) plays the role of the Liouville equation generated by Eq. (49).  
Mathematical details of the short-time behavior of solution to the system (46), (49) can be found in [4]. Here, 
following [10], we describe the long-term behavior when t→∞ . 

The long-term behavior of the solutions to Eq.(46) can be adopted from the theory of the Burger equation by 
considering an initial step  

ρ(V ) =
ρ1 V > 0
ρ2 >ρ1 V < 0

"
#
$

%$

&
'
$

($
          (50)                      

that diffuses into the steady profile: 

ρ =ρ1 +
ρ2 −ρ1

1+ exp
ρ2 −ρ1
2ν

(V −Ut)
     (51)       

moving with the constant speed 

U =
ρ1 +ρ2
2

 for ξ =
1
2

     (52)  

Special solutions for a moving single hump, triangle wave and N wave can also be presented in closed analytical 
form. For instance, the exact solution for Eq. (46) is, [10], 
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ρ(V ,t) =

V −η
t
e−G/2σ dη

−∞

∞

∫

e−G/2σ dη
−∞

∞

∫
      (53)     

where     

  G(η,v.t) = ρ
0

η

∫ ( $η ,t = 0)d $η +
(V −η)2

2t
       (54)                   

 Although this solution is well known, it should be emphasized that in our case it occurs in the probability space. This 
means that if one runs Eq. (49) independently many times starting with different initial conditions and compute the 
statistical characteristics of the family of these solutions, he will arrive at the evolution of the probability density 
described by Eq. (46). 
One can verify that the additional (normalization) constraint imposed upon the probability density that is a state 
variable of the Burgers equation is satisfied 

d
dt

ρdV = [σ ∂ρ
∂V−∞

∞

∫ −
1
2
ρ2 ]

−∞

∞

= 0     (55)  

Indeed, as follows from (55), if the normalization constraint is satisfied at the initial condition, it will be satisfies for 
all times. 
     Let us now turn to Eq. (51) that describes the long-term behavior of an initial shock of probability and consider a 
train of such shocks that overtake one another merging to a single shock of increased strength. The solution of the 
combined shock of probability as a nonlinear function of the original shocks can be written in the following form, 
[10] 

ρ =
ρ1 f1 +ρ2 f2
f1 + f2

, ρ2 >ρ1      (56)  

where 
     

fi = exp(−
ρiV
2σ

+
ρi
2t
4σ
), i =1,2.     (57)              

Thus, Eqs. (56) and (57) give the rule for combining probabilities in dynamics with the shock feedback. 

4.2. Violation of the second law of thermodynamics. In this sub-section we will derive a distinguished property of 
the system (46),(49) that is associated with violation of the second law of thermodynamics i.e. with the capability of 
moving from disorder to order without help from outside. That property can be predicted qualitatively even prior to 
analytical proof: due to the nonlinear term in Eq. (46), the solution form shock waves in probability space, and that 
can be interpreted as “concentrations” of probability density, i.e. departure from disorder. In order to demonstrate it 
analytically, let us turn to Eq. (46) and find the change of entropy H 

 

∂H
∂t

= −
∂
∂t

ρlnρdV = −
1
ξ
ρ(lnρ+1)dV =

1
ξ
∂
∂V−∞

∞

∫
−∞

∞

∫
−∞

∞

∫ (ρ2 ) ln(ρ+1)dV

=
1
ξ
[ |
−∞

∞

ρ2 (lnρ+1)− ρdV
−∞

∞

∫ ]= − 1
ξ
< 0

 (58)                                                                                      

Obviously, presence of small diffusion, whenσ2 <<1, does not change the inequality (58) during certain period of 
time. (However, eventually, for large times, diffusion takes over, and the inequality (58) is reversed).  
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      Thus the system (46), (49) is capable to decrease with no external interactions. Indeed the information force 
represented by the feedback (48) is generated by the Liouville equation that, in turn, is generated by the equation of 
motion (49). In addition to that, the particle described by ODE (49) is in equilibrium v = 0 prior to activation of the 
feedback (48). Therefore the solution of Eqs. (46), and (49) is capable to violate the second law of thermodynamics, 
and that means that this class of dynamical systems does not belong to physics as we know it. This conclusion 
triggers the following question: are there any phenomena in Nature that can be linked to dynamical systems (46), 
(49)? The answer was given in [3,5]: the self-controlled dynamics provides extension of modern physics to include 
physics of life and it can provide mathematical model for artificial intelligence. 

4.3. Interference of probabilitries. In Newtonian physics, the probability is introduced via the Liouville equation 
describing the continuity of the probability density flow. This equation is linear with respect to the probability 
density, and therefore, according to the superposition principle, the probabilities are combined by summation: when 
an event can occur in several alternative ways, the probability of the event is the sum of the probabilities for each way 
considered separately, i.e.  

ρ =ρ1 +ρ2         (59)    

In quantum physics, the probability is introduced via the Schrödinger equation that is linear with respect to 
probability amplitude, i.e. with respect to the square root of the probability density. Therefore, when an event can 
occur in several alternative ways, the probability amplitude of the event is the sum of the probability amplitudes for 
each way considered separately. In other words, the probability interference in quantum mechanics follows from the 
linearity of the Schrödinger equation with respect to the probability amplitudes iψ  as state variables. Due to linear 
superposition of these amplitudes, the following rule can be formulated 

ψ = ψ1 +ψ2 , ρi =|ψi |
2 , ρ =|ψ1 +ψ2 |

2≠ρ1 +ρ2    (60)                                 

and this phenomenon is known as interference of probabilities: the probabilities are combined as the intensities of 
waves. 
The situation with interference of probabilities in self-controlled dynamics is more complex: it depends upon the type 
of information forces. Indeed, in the diffusion feedback, the Liouville equation  (19) is linear with respect to the 
probability density, and the probabilities are combined according to Eq. (59). i.e. without interference. But in the 
shock feedback, the Liouville equation (46) is nonlinear with respect to the probability density, and consequently, the 
probabilities interfere. However, this interference is different from the quantum one and it is illustrated below. 
  Indeed, the rule of combining the probabilities is different from both the classical as well as quantum as follows 
from Eq. (56) 

ρ =
ρ1 f1 +ρ2 f2
f1 + f2

, ρ2 >ρ1       (61)   

   where  fi = exp(−
ρiV
2σ

+
ρi
2t
4σ
), i =1,2.     (62)   

This means that when an event can occur in several alternative ways, the probability of the event is the sum of 
nonlinear combinations of the probabilities for each way considered separately.  
More general case of interference of probability in self-controlled dynamics was discussed in [11].  

5. Self-controlled dynamics with soliton feedback.  

Let us turn to the feedback (48) and modify it as following 

f = c0 +
1
2
c1ρ+

b
ρ
∂2ρ

∂v2
      (63)  
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b > 0, c0 > 0, c1 > 0.  

Then the equation of motion is  

	
     (64) 

 

Then the corresponding Liouville equation will turn into the following PDE 

∂ρ
∂t
+ (c0 + c1ρ)

∂ρ
∂V

+b ∂
3ρ

∂V 3
= 0      (65)   

that is a celebrated Korteweg-de Vries (KdV) equation. 

The Korteweg–de Vries (KdV) equation was discovered in 1895  by Korteweg and de Vries, but this equation was 
forgotten during a long time. It was recently rediscovered by M. Kruskal who obtained it from the Fermi-Pasta-Ulam 
model [12]. Since then, the mathematical theory behind the KdV equation became rich and interesting, and, in the 
broad sense, it is a topic of active mathematical research. A homogeneous version of this equation that illustrates its 
distinguished properties is nonlinear PDE of parabolic type (65). However a fundamental difference between the 
standard KdV equation and Eq. (65) is that Eq. (65) dwells in the probability space, and therefore, it must satisfy the 
normalization constraint 

ρdV =1
−∞

∞

∫          (66)  

But since the KdV equation has the conservation invariants, [10] 

ρdV =Const.,
−∞

∞

∫         (67)  

ρ2 dV =Const.,
−∞

∞

∫  etc.       (68)  

the constraint (66) becomes a particular case of the invariant (67); consequently, if the normalization constraint is 
satisfied at t = 0, it is satisfied all the time. That allows one to apply all the known result directly to Eq. (65). 
However it should be noticed that the conservation invariants (67) and (68) have different physical meaning: they are 
not related to conservation of momentum and energy, but rather impose constraints upon the Shannon information. 

We will start the analysis of the equation (65) with consideration of its linear version when c1 = 0   

∂ρ
∂t
+ c0

∂ρ
∂V

+b ∂
3ρ

∂V 3
= 0       (69)  

 
The first applications of linear (parabolic) version of KdV equation (1.2) appear in models of shallow water waves 
[10].  The equation is also conservative, and its solution is represented by a train of traveling waves  

ρ(v,t) = Aeikv−ωt                                   (70)  
 
where ω  is the frequency, and k is the wave number. For KdV equation, these two constants are connected by the 
following dispersion relation 
 

ω = c0k −bk
3                            (71)  

v = c0 +
1
2
c1ρ+

b
ρ
∂2ρ

∂v2
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If the initial profile ρ = u(v,0)  is presented as a sum of the Fourier harmonics, then each of this harmonic will 
propagate with the phase speed  
 
C =ω / k .        (72)  
 
Comparing equations (71) and (72), one can see that each Fourier harmonics will propagate with different phase 
speed that depends upon its wave number k. Therefore any initial profile eventually is dispersed over the whole 
positive subspace, Fig.4.  
 

 
Figure 4. Linear dispersion of initial profile. 
 
An important property of the linear version of the KdV equation is the dependence of its solution on the initial 
conditions for all times.  
      Let us assume now that b = 0, c0 = 0 . We get the equation 

∂ρ
∂t
+ c1ρ

∂ρ
∂V

= 0                                       (73)                       

 
Unlike the previous versions of the KdV equation, this is a nonlinear KdV of hyperbolic type. It appears in models of 
free particles flow, traffic jam, etc. This is the simplest equation that describes formation of shock waves. Its closed 
analytical solution can be written only in an implicit form, and here we will analyze it only qualitatively.  We will 
start our analysis with studying a propagation of an initial profile ρ =ρ(v,0) . This equation has been considered 
in the Section 4. As follows from Eq. (73), the higher values of ρ  propagate faster than lower ones. As a result, the 
moving front becomes steeper and steeper, and finally a strong discontinuity representing a shock emerges, see Fig.3.   
Since closed form solution of Eq. (65) is not available, we will continue with the solution for large time. The rationale 
for that is the assumption that eventually the solution tends to a stationary shape as a result of a balance between 
dispersion and shock wave formation. Therefore we will seek the solution in the form of a stationary motion 
ρ(v,t) = f (v −Ut) = u(ζ) at t→∞            (74)    
Substituting Eq.(74) into Eq. (65) one obtains 

−U ∂ρ
∂ζ

+ (c0 + c1ρ)
∂ρ
∂ζ

+b ∂
3ρ

∂ζ3
= 0                 (75)            

Integrating this equation with respect to ζ and setting the arbitrary constant to zero, one arrives at the ODE in its 
final form 

b ∂
2ρ

∂ζ2
+ (c0 −U )ρ+

c1
2
ρ2 = 0             (76)  

The solution of this equation is a soliton moving with the speed U 
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ρ = aSech2[
c1a

12b
(v −Ut)]      (77)  

    
where 

U = c0 +
1
3
c1a         (78)   

see Fig. 5. It should be emphasized that the soliton (77) does not depend upon initial conditions, and consequently it 
can be considered as a static attractor in probability space. This means that in physical space, a solution of Eq. (77) 
eventually approach a stochastic attractor.  

 
Figure 5. Soliton as an attractor of  KdV solution.   

6. Self-controlled dynamics with integral feedback 
Let us specify the feedback as 

f = ξ
ρ(v,t)

[ρ(η,t)−ρ*(η
−∞

v

∫ )]dη       (79)         

that we call integral feedback. 
Here )(* vρ is a preset probability density satisfying the constraints (9), and ξ is a positive constant with 
dimensionality [1/sec]. With the feedback (79), the equation of motion and the corresponding Liouville equation take 
the form, respectively 

v = ξ
ρ(v,t)

[ρ(η,t)−ρ*(η
−∞

v

∫ )]dη                                                           (80) 

∂ρ
∂t
+ ξ[ρ(t)−ρ*]= 0                                                                         (81)  

  The last equation has the analytical solution  

ρ = [(ρ0 −ρ
*)e−ξt +ρ*]                                                               (82)  

Subject to the initial condition 

ρ(t = 0) =ρ0         (83)  
that satisfies the constraints (9). 
This solution converges to a preset stationary distribution )(* Vρ . Obviously the normalization condition for ρ is 

satisfied if it is satisfied for ρ0 and ρ*. Indeed, 
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ρ
−∞

∞

∫ VdV = [ ∫ (ρ0 −ρ*)VdV ]e−ξt +
−∞

∞

∫ ρ*VdV =1  (84)   

Rewriting Eq. (82) in the form 

ρ =ρ0e
−ξt +ρ*(1− e−ξt )      (85)                      

one observes that 0≥ρ at all 0≥t  and .∞>>∞− V  
As follows from Eq. (82), the solution of Eq. (81) has an attractor that is represented by the preset probability 

densityρ*(V ) . Substituting the solution (82) into Eq. (80), one arrives at the ODE that simulates the stochastic 
process with the probability distribution (82) 

v = ζe−ξt

[ρ0 (v)−ρ
*(v)]e−ξt +ρ*(v)

[ρ0 (η)−ρ
*(

−∞

v

∫ η)] dη                 (86)  

It is reasonable to choose the solution (82) as starting with a sharp initial condition  

ρ0 (V ) = δ(V )        (87)             
 As a result of that assumption, all the randomness is supposed to be generated only by the controlled instability of 
Eq. (86). Substitution of Eq. (87) into Eq. (86) leads to two different domains of v: v ≠ 0  and v=0 where the 
solution has two different forms, respectively 

ρ*

−∞

v

∫ (ξ)dξ = ( C
e−ξt −1

)1/ξ , v ≠ 0     (88)   

  0≡v         (89)                

Indeed, v = ζe−ξt

ρ*(v)(e−ξt −1)
ρ*(

−∞

v

∫ η)]dη   

whence 
ρ*(v)

ρ*(η)dη
−∞

v

∫
dv = ζe−ξt

e−ξt −1
dt  . Therefore, ln ρ*(

−∞

v

∫ η)dη= ln( C
e−ξt −1

)1/ξ   and that leads 

to Eq. (4.10) that presents an implicit expression for v as a function of time since ρ* is the known function. Eq. 

(4.11) represents a singular solution, while Eq. (4.10) is a regular solution that includes arbitrary constant C . The 
regular solutions is discontinuous:  
v→∞ at t→ 0, v = 0 at t = 0    (90)   

  the Lipschitz condition is violated 

| ∂ v
∂v
|→∞ at t→ 0 , | v |→ 0     (91)   

and therefore, the uniqueness of the solution is lost thereby generating randomness.  
 As follows from Eq. (88), all the particular solutions for different values of C possess the same property (90), and 
that leads to non-uniqueness of the solution due to violation of the Lipchitz condition. Therefore, the same initial 
condition at t→ 0  yields infinite number of different solutions forming a family (88); each solution of this family 
appears with a certain probability guided by the corresponding Liouville equation (81). For instance, in cases plotted 
in Fig.6, a) and Fig.6, b), the “winner” solution is, respectively,  
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 a) b) 

                                               Figure 6. Stochastic processes and their attractors. 

v1 = ε→ 0, ρ(v1) =ρmax , and v = v2 , ρ(v2 ) = sup{ρ}               

since it passes through the maximum of the probability density . However, with lower probabilities, other solutions of 
the same family can appear as well. Obviously, this is a non-classical effect. Qualitatively, this property is similar to 
those of quantum mechanics: the system keeps all the solutions simultaneously and displays each of them “by a 
chance”, while that chance is controlled by the evolution of probability density (82). It should be recalled that, as in 
quantum mechanics,[2], the choice of displaying a certain solution is made only once, at t=0, i.e. when the solution 
departs from the deterministic to a random state; since than, it stays with this solution as long as the Liouville 
feedback is present.  

As shown in [16], the self-control dynamics with integral feedback can finds the global maximum of an integrable, 
but not necessarily differentiable function. The idea of the algorithm is very simple: introduce a positive function to 
be maximized as the probability density to which the solution is attracted. Then the larger value of this function will 
have the higher probability to appear. 

6.1. Examples. 

Example1. Let us start with the following normal distribution 

2*
2

2
1)(

V

eV
−

=
π

ρ     (92)  

Substituting the expression (92) and (87) into Eq. (88) at V=v, and ξ =1 one obtains 

0),
1

( 11 ≠
−

=
−

− v
e
Cerfv t

     (93)  

 
Example 2. Let us choose the target density *ρ  as the Student’s distribution, or so-called power law distribution 

2/)1(
2

* )1(
)
2
(

)
2
1(

)( +−+
Γ

+
Γ

= ν

νν
νπ

ν

ρ
VV    (94)   

Substituting the expression (94) and (87) into Eq. (88) at V=v, ν=1, and ξ =1one obtains 

0)
1

cot( ≠
−

= − vfor
e
Cv t          (95)                   

The 3D plot of the solutions of Eqs.(93) and (95),  are presented in Figures 7a, and 7b, respectively.   
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Figure 7a. Dynamics driving random events        Figure 7b. Dynamics driving  
                 to normal distribution.                                     random events to power law.  
  
6.2.	A	mystery	of	power-law	statistics.	
	
This	 sub-section	was	 inspired	 by	 a	mysterious	 power-law	 statistics	 that	 predicts	 social	 catastrophes:	wars,	
terrorist	attacks,	market	crushes	est.	Resent	interest	in	literature	is	concentrated	on	half-a-century	finding	that	
the	 severity	 of	 interstate	 wars	 is	 power-law	 distributed,	 and	 that	 belongs	 to	 the	 most	 striking	 empirical	
regularities	 in	 world	 politics.	 Surprisingly,	 similar	 catastrophes	 were	 identified	 in	 physics	 (Ising	 systems,	
avalanches,	earthquakes),	and	even	in	geometry	(percolation).	Although	all	these	catastrophes	have	different	
origins,	their	similarity	is	based	upon	the	power	law	statistics,	and	as	a	consequence,	on	scale	invariance,	self-
similarity	and	 fractal	dimensionality,	 [12].	According	 to	 the	 theory	of	 self-organized	criticality,	 that	explains	
the	 origin	 of	 this	 kind	 of	 catastrophes,	 each	 underlying	 dynamical	 system	 is	 attracted	 to	 a	 critical	 point	
separating	two	qualitatively	different	states	(phases).	This	attraction	is	represented	by	a	relaxation	process	of	
slowly	driven	 system.	Transitions	 from	one	phase	 to	 another	are	accompanied	by	 sudden	 release	of	 energy	
that	 can	 be	 associated	 with	 a	 catastrophe,	 and	 the	 severity	 of	 the	 catastrophe	 is	 power	 law	 distributed.	
However,	 in	 order	 to	 overcome	 the	 critical	 point	 and	 enter	 a	 new	phase,	 a	 slow	 input	 of	 external	 energy	 is	
required.	The	origin	of	this	energy	is	well	understood	in	physical	systems,	but	not	in	social	ones,	since	there	
are	no	well-established	models	of	social	dynamics.	For	that	reason,	we	turn	to	the	previous	section	and	start	
with	comparison	the	underlying	dynamics	of	normal	and	power	law	distribution,	(see	Figs.	7a,	and	7b).	Let	us	
recall	 that	 the	 normal	 distribution	 is	 commonly	 encountered	 in	 practice,	 and	 is	 used	 throughout	 statistics,	
natural	 sciences,	 and	 social	 sciences	 as	 a	 simple	 model	 for	 complex	 phenomena.	 For	 example,	 the	
observational	error	in	an	experiment	is	usually	assumed	to	follow	a	normal	distribution,	and	the	propagation	
of	uncertainty	is	computed	using	this	assumption.	But	statistical	 inference	using	a	normal	distribution	is	not	
robust	 to	 the	 presence	 of	 outliers	 (data	 that	 is	 unexpectedly	 far	 from	 the	 mean,	 due	 to	 exceptional	
circumstances,	 observational	 error,	 etc.).	When	 outliers	 are	 expected,	 data	may	 be	 better	 described	 using	 a	
heavy-tailed	distribution	such	as	the	power-law	distribution.	As	demonstrated	in	Fig.	8,	normal	and	power	law	
distributions	 have	 very	 close	 configurations	 excluding	 the	 tails.	 However	 despite	 of	 that,	 the	 types	 of	 the	
random	 events	 described	 by	 these	 statistics	 are	 of	 fundamental	 difference.	 Indeed,	 processes	 described	 by	
normal	distributions	are	usually	coming	from	physics,	chemistry,	biology,	etc.,	and	they	are	characterized	by	a	
smooth	evolution	of	underlying	dynamical	events.	On	the	contrary,	the	processes	described	by	power	laws	are	
originated	from	events	driven	by	human	decisions	(wars,	terrorist	acts,	market	crushes),	and	therefore,	they	
are	 associated	 with	 catastrophes.	 Surprisingly,	 the	 3D	 plots	 of	 Eqs.(93)	 and	 (95)	 (see	 Figs.7a	 and	 7b)	
describing	dynamics	that	drives	random	events	to	the	normal	and	the	power	 law	distributions,	respectively,	
demonstrate	 the	same	striking	difference	between	these	distributions,	 that	 is:	a	smooth	evolution	to	normal	
distribution,	and	“violent”,	full	of	densely	distributed	discontinuities	transition	to	power	law	distribution.		
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Is	this	a	coincidence?	Indeed,	the	proposed	self-controlled	dynamics	is	based	upon	global	assumptions,	and	it	
does	not	bear	any	specific	information	about	a	particular	statistics	as	an	attractor.		However	the	last	statement	
should	be	slightly	modified:							
	

	
	
Figure	8.	Normal	and	power	law	distributions.	
	
actually	the	model	of	self-controlled	dynamics	is	tailored	to	describe	Livings’	behavior,	and	in	particular,	
decision	making	process.	Is	that	why	the	self-controlled		dynamics	captures	“violent”	properties	of	power	law	
statistics	that	is	associated	with	human	touch?	This	is	an	open	problem,	and	the	self-control	dynamics	could	
have	a	solution.	
7. Self-controlled dynamics with functional feedback 

 One of the limitations of classical dynamics, is inability to change the structure without an external input. As will be 
shown below, the self-controlled dynamics can change the locations and even the type of the attractors being 
triggered only by a feedback from the Liouville equation, i.e. by an internal effort. We will start with a simple 
dynamical system 

v = 0, v = 0 at t = 0      (96)    

and than apply the following control 

 f = −kv + av −σ ∂
∂v
lnρ ,       (97)                

where ∫∫
∞

∞−

∞

∞−

=−= VdVVdVVVV ρρ ,)( 2 ,    (98)   

are time-dependent functional, and k,a,σ are constant coefficients.  

Then the controlled version of the dynamics of motion (96) is changed to 

v = −kv + av −σ ∂
∂v
lnρ      (99)         
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while f represents the information forces that play the role of internal actuator.  

Let us notice that the internal actuator (97) is a particular case of the information force (63) at  

c0 = −kv + av , c1 = 0, c2 = σ, c3 = 0   (100)          

while C0 is a functional. 

For a closure, Eq. (99) is complemented by the corresponding Liouville equation    

∂ρ
∂t
= kV ∂ρ

∂V
− aV ∂ρ

∂V
+σ

∂2ρ

∂V 2
,     (101) 

to be solved subject to sharp initial condition 

ρ0 (V ) = δ(V ) at t = 0,     (102)   

As shown above, the solution of Eq. (99) is random, while this randomness is controlled by Eq. (101). Therefore in 
order to describe it, we have to transfer to the mean values v and v . For that purpose, let us multiply Eq.(101) by 
V .Then integrating it with respect to V over the whole space, one arrives at ODE for the expectation v (t)  

v = −kv + av        (103)  

Multiplying Eq.(101) by 2V , then integrating it with respect to V over the whole space, one arrives at ODE for the 
variance v (t)  

v = −2kv + 2av v + 2σ       (104)   

Let us find fixed points of the system (93) and (94) by solving the system of algebraic equations:   
                               

0 = −kv + av       (105)  

0 = −2kv + 2av v + 2σ      (106)  

By selecting  

σ =
k 3

2a2
       (107)  

we arrive at the following single fixed point 

v * = k
2a
, v * = k

2

2a2
     (108)   

In order to establish whether this fixed point is an attractor or a repeller, we have to analyze stability of the 
homogeneous version of the system (103), (104) linearized with respect to the fixed point (108) 

v = −kv + av        (109)    

v = −kv + k
2

a
v       (110)  

Analysis of its characteristic equation shows that it has non-positive roots: 
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λ1 = 0, λ2 = −2k < 0             

and therefore, the fixed point (108) is a stochastic attractor with stationary mean and variance. However the higher 
moments of the probability density are not necessarily stationary: they can be found from the original PDE (101). 

Thus as a result of a feedback control, an isolated dynamical system (96) that prior to control was at rest, moves to 
the stochastic attractor (108) having the expectation v * and the variance v * .  

8. Intelligence of self-controlled systems.  

     The distinguished property of the self-controlled system introduced above definitely fits into the concept of 
intelligence. Indeed, the evolution of intelligent living systems is directed toward the highest levels of complexity if 
the complexity is measured by an irreducible number of different parts that interact in a well-regulated fashion. At the 
same time, the solutions to the models based upon dissipative Newtonian dynamics eventually approach attractors 
where the evolution stops while these attractors dwell on the subspaces of lower dimensionality, and therefore, of the 
lower complexity (until a “master” reprograms the model). Therefore, such models fail to provide an autonomous 
progressive evolution of intelligent systems (i.e. evolution leading to increase of complexity). At the same time, self-
controlled systems can create their own complexity based only upon an internal effort. 

Thus the actual source of intelligent behavior of the systems introduced above is a new type of force - the information 
force - that contributes its work into the Law of conservation of energy. However this force is internal: it is generated 
by the system itself with help of the Liouvile equation. The machinery of the intelligence is similar to that of control 
system with the only difference that control systems are driven by external actuators while the intelligent particle is 
driven by a feedback from the Liouvile equation without any external resources. New modification of intelligent 
systems that lead to modeling decisions based upon intuition and utilizing interference of probabilities are introduced 
in [5]. 

9. Self-controlled dynamics for advanced computing.   

9.1.	 Combinatorial	 optimization.	 Combinatorial	 problems	 are	 among	 the	 hardest	 in	 the	 theory	 of	
computations.	 	 They	 include	 a	 special	 class	 of	 so	 called	NP-complete	 problems,	which	 are	 considered	 to	 be	
intractable	by	most	theoretical	computer	scientists.		A	typical	representative	of	this	class	is	a	famous	traveling-
salesman	problem	(TSP)	of	determining	the	shortest	closed	tour	that	connects	a	given	set	of	n	points	on	the	
plane.	 	As	for	any	of	NP-complete	problem,	here	the	algorithm	for	solution	is	very	simple:	 	enumerate	all	the	
tours,	compute	their	lengths,	and	select	the	shortest	one.		However,	the	number	of	tours	is	proportional	to	n!		
and	 that	 leads	 to	 exponential	 growth	 of	 computational	 time	 as	 a	 function	 of	 the	 dimensionality	 n	 of	 the	
problem,	 and	 therefore,	 to	 computational	 intractability.	 It	 should	 be	 noticed	 that,	 in	 contradistinction	 to	
continuous	optimization	problems	where	the	knowledge	about	the	length	of	a	trajectory	is	transferred	to	the	
neighboring	trajectories	through	the	gradient,	here	the	gradient	does	not	exist,	and	there	is	no	alternative	to	a	
simple	enumeration	of	tours.	
	 The	class	of	NP-complete	problems	has	a	very	interesting	property:		if	any	single	problem	(including	
its	worse	case)	can	be	solved	in	polynomial	time,	then	every	NP-complete	problem	can	be	solved	in	polynomial	
time	as	well.	 	But	despite	that,	there	is	no	progress	so	far	in	removing	a	curse	of	combinatorial	explosion:	 	 it	
turns	 out	 that	 if	 one	manages	 to	 achieve	 a	 polynomial	 time	of	 computation,	 then	 the	 space	or	 energy	 grow	
exponentially,	i.e.,	the	effect	of	combinatorial	explosion	stubbornly	reappears.		That	is	why	the	intractability	of	
NP-complete	problems	 is	being	observed	as	a	 fundamental	principle	of	 theory	of	computations,	which	plays	
the	same	role	as	the	second	law	of	thermodynamics	in	physics.	
	 At	the	same	time,	one	has	to	recognize	that	the	theory	of	computational	complexity	is	an	attribute	of	a	
digital	 approach	 to	 computations,	 which	 means	 that	 the	 monster	 of	 NP-completeness	 is	 a	 creature	 of	 the	
Turing	machine.	 	As	an	alternative,	one	can	turn	to	an	analog	device,	which	replaces	digital	computations	by	
physical	 simulations.	 	 Indeed,	 assume	 that	 one	 found	 such	 a	 physical	 phenomenon	 whose	 mathematical	
description	is	equivalent	to	that	of	a	particular	NP-complete	problem.		Then,	incorporating	this	phenomenon	
into	 an	 appropriate	 analog	 device	 one	 can	 simulate	 the	 corresponding	 NP-complete	 problem.	 	 In	 this	
connection	it	is	interesting	to	note	that,	at	first	sight,	NP-complete	problems	are	fundamentally	different	from	
natural	phenomena:	 	 they	 look	 like	man-made	puzzles	and	their	 formal	mathematical	 framework	 is	mapped	
into	 decision	problems	with	 yes/no	 solutions.	 	However,	 one	 should	 recall	 that	 physical	 laws	 could	 also	 be	
stated	in	a	“man-made”	form:		the	least	time	(Fermat),	the	least	action	(in	modifications	of	Hamilton,	Lagrange,	
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or	 Jacobi),	and	the	 least	constraints	(Gauss).	Moreover	self-controlled	systems	under	consideration	have	the	
direct	link	to	model	of	livings.	So	may	be	this	is	the	answer	to	the	problem?	
				Finally let us quote a recent statement posed in [13]: Can NP-complete problems be solved efficiently in the 
physical universe? The answer given by the author, Scott Aaronson, is negative. To our opinion, it could be positive 
if we complement the “physical world” with self-controlled systems capable to violate the second law of 
thermodynamics in order to find short cuts to solutions of combinatorial problems. 
 
9.2. Search	in	unsorted	database.	
In	this	section	we	will	apply	the	self-controlled	dynamics	to	solve	the	problem	of	search	in	unsorted	database	
by	improving	the	Grover’s	algorithm.	Grover's algorithm is a quantum algorithm that finds with high probability the 
unique input to a black box function that produces a particular output value, using just O(N1/2) evaluations of the 
function, where N is the size of the function's domain. It was originated by Lov Grover in 1996. The problem can be 
illuminated by a trivial example: find the address of a telephone subscriber in a telephone book based upon his 
telephone number. The analogous problem in classical computation cannot be solved in fewer than O(N) evaluations 
(because, in the worst case, the Nth member of the domain might be the correct member). Unlike other quantum 
algorithms, which may provide exponential speedup over their classical counterparts, Grover's algorithm provides 
only a quadratic speedup. However, even quadratic speedup is considerable when N is large. At roughly the same 
time that Grover published his algorithm, it was proved that no quantum solution to the problem can evaluate the 
function fewer than O(N1/2) times, so Grover's algorithm is asymptotically optimal [14]. However that proof does not 
contradict our claim to improve the Grover algorithm since the self-controlled dynamics is neither quantum nor 
Newtonian: it represents a quantum-classical hybrid capable to violate the second law of thermodynamics. and 
therefore, it does not belong to the world of physics as we know it, [5]. 
 
9.3.	Non-homogeneous	 self-controlled	 system	with	diffusion	 feedback	 for	 solving	NP-complete	problem.	
Following	[15	],	let	us	introduce	an	inhomogeneous	version	of	Eq.	(18)	

 v = − 1
ρ
[a2 ∂ρ

∂v
e−ωt l

2πk
sin 2πk

lk=1

k=m

∑ v],0 ≤ v ≤ l,t > 0,       (111)           

Then the corresponding Liouville equation takes the form of an inhomogeneous parabolic equation subject to an 
aperiodic force  
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It	 should	 be	 noticed	 that	 the	 sums	 in	 Eqs.	 (111)	 and	 (112)	 are	 finite,	 and	 they	 do	 not	 represent	 even	
truncated	Fourier	expansions,	while	all	the	harmonic	terms	are	equally	powerful.	Obviously	this	system	is	still	
self-supervising,	but	not	isolated	any	more.	

We	will	solve	this	equation	subject	to	the	following	initial	and	boundary	conditions	
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and	the	normalization	constraint		

∫ =
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Before	writing	down	the	solution,	we	will	verify	satisfaction	of	 the	constraint	(114).	For	that	purpose,	 let	us	
integrate	Eq.	(112)	with	respect	to	v		
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As	follows	from	the	boundary	conditions	in	(113),	
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Therefore,	the	normalization	constraint	will	be	satisfied	for	all	 0≥t 	
Exploiting	the	superposition	principle	for	the	linear	equation	(112),	we	will	represent	the	solution	as	a	sum	of	
free	and	forced	components.	These	components	are,	respectfully	
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Here	we	will	be	 interested	only	 in	the	case	(118)	that	represents	a	resonance	between	two	aperiodic	terms,	
namely:	exponentially	decaying	force	and	exponentially	decaying	free	motion.	Indeed,	the	solution	(118)	has	a	
well-pronounced	maximum	at		

22)(/1* a
i
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while	the	solutions	(116)	and	(117)	are	monotonously	decay.	

Let	us	now	reaffirm	the	scenario	of	transition	from	deterministic	to	random	state	described	by	Eqs.	(21),	
(22),	 and(23).	 	 	 For	 that	 purpose,	 rewrite	 Eq.	 (116)	 in	 a	 different,	 but	 an	 equivalent	 form	 (based	 upon	
reflections	from	the	boundaries)	
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It	can	be	verified	that	for	vanishingly	small	times	
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	and	therefore,	the	transition	scenario	remains	the	same.		

It	should	be	noticed	that	prior	to	running	Eq.	(111),	the	analytical	solution	of	Eq.	(112)	in	the	form	of	the	sum	
of	Eqs.	(116),	(117),	and	(120)	is	to	be	substituted	for	ρ.	

Turning	to	n-dimensional	case	we	have	 (122)	 	 																																													
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Eq.	(123)	has	the	following	eigen-values	of	decay	
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		If	the	excitation	ω in	Eqs.	(122)	and	(123)	are	selected	as	following	
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it	will	generate	resonance	with	the	eigen-value	(124),	and	the	corresponding	“decay”	will	dominate	over	the	
rest	of	decays;	in	terms	of	Eq.	123)	this	means	that	the	probability	density	ρ	will	tend	to	its	maximum	at	
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along	that	trajectory	which	is	the	“winning”	solution	of	the	system	(122),	Fig.	6.	The	value	of	this	maximum	is	
irrelevant,	but	its	location	is	important:	it	is	given	by	the	following	values	of	the	coordinates	

.,...2,1*),(* nitvv ii == 		 	 	 	 	 	 	 	(127)								

						 			
Figure	6.	Resonance	in	the	probability	space	
	
					The	algorithm	is	formulated	as	the	following.	Consider	an	unsorted	data-base	consisting	of	 nn 	items	labeled	
with	a	string	of	numbers	 njjj ,..., 21 as	shown	in	Eq.(125)	for	n=m.	Obviously	a	label	 includes	permutations	of	
these	numbers.	Turning	to	Eqs.	(122),	notice	that	each	solution	to	this	system	can	be	 labeled	similarly	 if	 the	
winning	solution	 in	Eqs.	 (123)	has	 its	maximum	at	a	point	with	 the	coordinates nvvv **,...*, 21 defined	by	Eqs	
(126).	Then	one	can	introduce	the	forced	excitation	defined	by	Eq.	(125)	that	provides	the	resonant	solution	of	
Eq.	(123),	and	as	a	result,	the	coordinates	 nvvv **,...*, 21 	of	this	maximum	will	represent	the	address	of	the	item	
in	question.	According	to	Eq.	(125),	the	number	of	possible	values	of	forced	excitations	ω 	providing	required	

resonances	is	equal	to nn ,	and	that	is	exactly	the	number	of	the	items	to	be	retrieved.	Therefore,	each	item	can	
be	retrieved	by	the	corresponding	resonance	with	the	forced	excitation	(having	the	values	from	the	set	(55))	
with	 the	probability	 that	dominates	over	 the	probabilities	 for	wrong	addresses	 to	occur.	Strictly	speaking,	a	
non-resonance	solution	has	a	smaller,	but	non-zero	probability	 to	occur;	 then	by	a	 few	number	of	Bernoulli	
trials,	the	most	probable	solution	can	be	found.	Indeed,	the	probability	of	success	 sρ 	and	failure	 fρ 	after	the	
first	trial	is,	respectively	

	
4.	Search	in					

ρs = ψ1, ρ f =1−ψ1 			 	 	 	 	 	 	 (128)	

Then	the	probability	of	success	after	M	trials	is	

ρsM =1− (1−ψ)
M →1 at M →∞ 	 	 	 	 	 (129)	

	Therefore,	after	polynomial	number	of	trials,	one	arrived	at	the	solution	to	the	problem	(unless	the	function	
ψ 	is	flat).		
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Let us now briefly review the procedure of the retrieval. Assume that the label of the item to be found is
.1

...
nkk jjω . 

The first step is to write down the analytical solution to Eq. (123) that consists of free and forced motions as in the 
one-dimensional case: 
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where Cj are constants to be found from the initial conditions, and  
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     The second step is to substitute the solution (130) into Eq. (122). The third step is to run the system (122), measure 
the values of iv at */1 ω=t and obtain the address of the item in the form of a string of coordinates nvvv **,...*, 21 , 
Fig. 7. 

 

 
 

Figure 7. Maximum probability, selected (1) and not selected (2) items.  

It should be noticed that the capacity of the unsorted database is of order )( nnO i.e. exponential with respect to its 
dimensionality n, while all the resources providing its implementation are of order O(n), i.e. polynomial since the 
number of equations in the system (122) is n, and the number of terms in the analytical solution to Eq.(123) (to be 
substituted into Eqs. (122)) are of the order O(n) as well. Indeed, the infinite sum in Eq. (131) converges very fast to 
equal distribution of the probability density, and practically, only the forced component of the solution represented by 
Eq. (132) is important, and this component contains O(n2) number of terms. 

10. Discussion and conclusion 

A new class of dynamical system described by ODE coupled with their Liouville equation has been introduced, 
discussed and illustrated. These systems called self-controlled, or self-supervised since the role of actuators is played 
by the probability produced by the Liouville equation. Following the Madelung equation that belongs to this class, 
non-Newtonian properties such as randomness, entanglement, and probability interference typical for quantum 
systems have been described. Special attention was paid to the capability to violate the second law of 
thermodynamics, which makes these systems neither Newtonian, nor quantum. It has been shown that self-controlled 
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dynamical systems can be linked to mathematical models of livings as well as to models of AI. The central point of 
this paper is the application of the self-controlled systems to NP-complete problems known as being unsolvable 
neither by classical nor by quantum algorithms. The approach is illustrated by solving a search in unsorted database 
in polynomial time by resonance between external force representing the address of a required item and the response 
representing location of this item. The basic idea of this approach is to create a new kind of dynamical systems that 
would preserve superposition of random solutions, while allowing one to measure its state variables using classical 
methods. In other words, such a hybrid system would reinforce the advantages and minimize limitations of both 
quantum and classical aspects. These systems have been analyzed in [5] and [16]. It has been shown there that along 
with preservation of superposition, such an important property of quantum systems as direct-product-decomposability 
in hybrids is lost. Let us recall that the main advantage of this property in terms of quantum information is in blowing 
up an input of a polynomial complexity into an output of exponential complexity, with no additional resources 
required, Fig. 8. 

 

Figure 8. Mapping	combinatorial	optimization	to	quantum	mechanics. 

The challenge of our approach was in finding a ‘‘replacement” for the fundamental property of the Schrödinger 
equation in quantum-classical hybrids. It turns out that eigen-values of linear parabolic PDE possess similar property. 
Indeed, consider a linear n-dimensional parabolic PDE subject to boundary conditions. Then the eigen-values 

corresponding to each variable form a sequence of monotonously increasing positive numbers λi
(1)...λ(n)i . 

However, each linear combination of these eigen-values represents another eigen-value of the solution, and that is the 
same ‘‘combinatorial explosion” that is illustrated in Fig. 8. Due to that property, for each n-string-number label, one 
can find an excitation force that activates the corresponding eigen-value. The second challenge was to satisfy a global 
(normalization) constraint imposed upon the probability density (in addition to boundary conditions). That was 
achieved via a special form of the excitation force. Finally these work ads a positive comment to a question posed in 
[7]: Can NP-complete problems be solved efficiently in the physical universe? The answer given by the author, 
Scott Aaronson, is negative. To our opinion, it could be positive if we complement the “physical world” with self-
supervised systems capable to violate the second law of thermodynamics in order to find short cuts to solutions of 
combinatorial problems.  
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