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Implied Integration. In this document, we define a fully formalized notion of the “Implied
Integral” which works for a broad variety of symbolic expressions. We show that it is equal
to the ordinary integral up to a generalized constant term, and we show that this generalized
constant is in some sense optimal.

A Small Observation

The constant term in the indefinite integral is not optional. One may suspect that it is a
technicality which can be avoided, producing a genuine transformation between function
spaces, by simply setting C = 0 when it arises. This is not in fact the case. Suppose we
wish to find a canonical antiderivative for sec2(x) tan(x) with this approach. There are two
natural ways to do this (and no reason to prefer one over the other):∫

sec2(x) tan(x) dx =

∫
tan(x) d tan(x) = tan2(x)∫

sec2(x) tan(x) dx =

∫
sec(x) d sec(x) = sec2(x)

Of course tan2(x) 6= sec2(x), so this attempt has failed. Note that this is easily resolved once
we put the constants back in: tan2(x) + C = sec2(x) + (C − 1). The only way to resolve
this conflict, without providing an ad-hoc justification to prefer one trigonometric substi-
tution over the other, or putting the constants back in entirely, is to say that the result of
the integral is dependent not only on the function, not only on the symbolic expression we
use to represent that function, but even is dependent on the method we use to resolve the
integral. Of these three options, we believe that replacing the constants is the least repulsive.

Extending this observation: no matter how we define the implied integral, we want the
following expressions to be true:∫

bxc sec2(x) tan(x) dx = bxc
∫

tan(x) d tan(x) = bxc tan2(x) + C∫
bxc sec2(x) tan(x) dx = bxc

∫
sec(x) d sec(x) = bxc sec2(x) +D

Note that this time, we have a bigger issue: it does not suffice to take D = C − 1; instead
we must take D = C − bxc. Therefore, even permitting arbitrary constants is not sufficient;
we must be prepared for C or D to be a piecewise constant function. (You may wonder why
we do not declare these integrals to be bxc(trig2(x) + C) instead. To see why this approach
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is untenable, we suggest the reader try to integrate sec2(x) tan(x) + 1.

Formal Definitions in a Weak Setting

To motivate the full definition, we begin by considering a class of functions I will call E+weak:
these are elementary functions and their finite composites, together with the floor function.
However, in E+weak the floor function may not be composed with other functions on the right.
In simpler terms, this means that we may use bxc, but we may not do anything at all “inside”
the floor function, so we cannot have bx2c or bsin(x)c, or even bx + 1

2
c. However, we may

may compose on the left, so the functions given by sin(x − bxc) or log(x)
bxc are allowed; these

are contained in E+weak. Clearly this class does not contain all the functions we wish to work
with, but making this restriction for now will allow us to avoid some thorny technicalities.

The key observation is this: essentially, the functions E+weak are functions of two variables: x
and bxc. Formally, we may say that E+weak = {g : g(x) = π(f, x) for some f ∈ E2}, where E2
is the set of elementary functions in two variables, say x and t and their finite composites
(no floors allowed), and π is the “evaluation map”:

π : E2 × R→ R
(f, x) 7→ f(x, bxc)

which evaluates the two-variable function f at t = bxc. We follow this definition up immedi-
ately with a caveat: although we wrote things this way to avoid a circular definition, we will
usually write g = π(f), thinking of π as a “projection map” L1(x, t)→ L1(x) by currying π.
[If you are not familiar with L1(x), it is just a very large class of functions, in the variable
x, which contains anything reasonable. L1(x, t) is similar, but for two-variable functions in
x and t.]

Also, we use the notation π to emphasize that this is something like a projection. It is, in
particular, a linear operator. We will also be interested in right-inverses of this operator,
which, by analogy to bundle constructions, we will call a jump extension. To be concrete
about it, given a one-variable function g, we say that any f such that g = π(f) is a jump
extension of g, and we say that a map σ : E+weak → E2 is a jump section if it sends each g
to one of its jump extensions. (Note that this implies π ◦ σ is the identity on E+weak.)

There is a distinguished jump section which we call the trivial jump section σ0, which has
no t-dependence at all. In other words, σ0 sends every g to the f such that f(x, t) = g(x).
However, we usually will be interested in considering jump sections on the “other extreme”,
which intuitively means that we replace all instances of bxc with t in the symbolic repre-
sentation of the function. But the whole reason for this elaborate edifice is that there is
no way of defining such a thing by completely function-theoretic methods; if we could just
“substitute bxc = t” then there wouldn’t be any need for all this rigamorole.

We now define I0 to be an “integration” operator, which takes in a one-variable function and
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puts out a two-variable function (in x and t):

I0 : E2 → L1(x, t)

f 7→
∫ x

0

f(ξ, t) dξ.

This idea defines a whole family of linear operators Ia where the lower limit of 0 is replaced
with a, but it does not really matter for our purposes which a is used, so we will use 0. (The
skeptical reader is encouraged to trace the following proofs to verify this independence.)

The Weak Implied Integral

We finally are able to define the implied integral in this weak setting. Through this section,
g is a function in E+weak. To denote “the implied integral of g” we use the notation∫

g dJ or

∫
g(x) dJ

and we provide the following definition: For any jump section σ, the implied integral
associated to σ is π ◦ I0 ◦ σ : E+weak → L1(R), or in other words∫

g dJ =

∫ x

0

f (ξ, bxc) dξ,

where f = σ(g) is the relevant jump extension of g. Let us try to understand why this
definition is correct.

If we believe that the point of a jump section is to try to replace bxc’s with t’s, then
∫
g dJ

is the operation that first does that, then integrates with respect to the original variable
(treating all instances of t as a constant), and finally performs the substitution t = bxc. So
it really does, in this sense, capture the notion of “treating bxc as a constant”.

However, you may object that the notation is misleading. The definition appears to be sen-
sitive to the exact way in which we chose to “replace bxc with t”; in other words, there is
some σ-dependence; but this is not reflected in the notation for the implied integral. The
justification for this is the following proposition:

Proposition: If σ1 and σ2 are jump sections, the implied integral of g associated to σ1 and
the implied integral of g associated to σ2 differ only by a piecewise constant function, whose
discontinuities occur only at integers (but not necessarily at all integers).

Proof: Suppose that G1 is the implied integral of g associated to σ1, and G2 similarly for σ2.
The proposition claims that G1 and G2 are piecewise constant on the open intervals between
integers; more formally, for any real numbers x, y such that N < x < y < N + 1, we want to
show G1(x)−G2(x) = G1(y)−G2(y); or equivalently that G1(y)−G1(x) = G2(y)−G2(x).
This is true, since
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G1(x)−G1(y) =

∫ x

0

(σ1g) (ξ, bxc) dξ −
∫ y

0

(σ1g) (ξ, byc) dξ

=

∫ x

0

(σ1g) (ξ,N) dξ −
∫ y

0

(σ1g) (ξ,N) dξ

=

∫ y

x

(σ1g) (ξ,N) dξ

=

∫ y

x

g(ξ) dξ

=

∫ y

x

(σ2g) (ξ,N) dξ

=

∫ x

0

(σ2g) (ξ,N) dξ −
∫ y

0

(σ2g) (ξ,N) dξ

=

∫ x

0

(σ2g) (ξ, bxc) dξ −
∫ y

0

(σ2g) (ξ, byc) dξ

= G2(x)−G2(y)

The first three steps and the last four steps are simply applying the definitions and using stan-
dard manipulations of the integral. The fourth equality is the substance of the calculation:
it holds by the definition of a jump section: for all x ≤ ξ ≤ y we have that N < ξ < N + 1,
which means N = bξc. Therefore, we know that (σg)(ξ,N) = g(ξ) for any jump section σ;
in particular σ = σ1 (in the fourth equality) and σ = σ2 (in the fifth).

The result of this proposition is that although the implied integral may have a σ-dependence,
the σ only makes a difference up to a piecewise constant part. But, from the initial obser-
vations in the previous section, the implied integral cannot be more well-defined than up
to a “piecewise constant of integration”. So indeed, this result shows that the definition is
as good as one can hope for, except that we might ask for a larger class of functions that E+weak.

Speaking of which, where exactly did we use E+weak? We made such a big fuss about it, but
it did not seem to come up in the computation at all. In fact, formally it made no difference
and we could have gone on without it. However, the rub is in the idea of substituting t = bxc:
if g had been, say bxc + bx2c, then when passing to the jump section, we would have been
forced to either

• leave bx2c in the x-part, in which case it would have been integrated normally by I0
(nope).

• or we would have had to encode it to the t-part, in which case it would have been
indistinguishable from bxc and π would not have been able to “decode it” properly.
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This “problem” has a really easy solution: just use more dummy variables.

A Fully-Formed Implied Integral

Since this is meant to be analogous to the previous two sections, but in more variables, I
will stop motivating things and move very quickly through definitions:

By E+, we mean the elementary functions, the floor function, and their finite composites,
with the following technical restriction∗: the set of points of continuity must be open. Clearly
there are only countably many such functions, so the space of functions bE+c, which consists
of all functions of the form bec for some e ∈ E+, is countable. Denote these functions by
α1, α2, α3 · · · , and let Eω be the set of elementary functions and their finite composites, but in
infinitely many variables x, t1, t2, t3, · · · , which have open sets of continuity (in the product
topology)∗.

[ ∗ I actually suspect this is not a restriction at all; which is to say, I think all E+ functions
have this property. But this is a crucial property and I don’t have a proof of my suspicion,
so I’ll play it safe. ]

Define π to be the “evaluation map”

π : Eω × R→ R
(f, x) 7→ f(x, α1(x), α2(x), α3(x), · · · )

But again, we will usually write g = π(f), thinking of π as L1(x, t1, t2, t3, · · · )→ L1(x).

Given a one-variable function g, we say that any f ∈ Eω such that g = π(f) is a jump
extension of g, and we say that a map σ : E+ → Eω is a jump section if it sends each g
to one of its jump extensions. The trivial jump section σ0, is the one sending every g to the
f such that f(x, t1, t2, t3, · · · ) = g(x).

Define I0 to be the “integration operator”

I0 : Eω → L1(x, t1, t2, . . . )

f 7→
∫ x

0

f(ξ, t) dξ.

Finally, for any jump section σ, the implied integral associated to σ is

π ◦ I0 ◦ σ : E+ → L1(R),

or in other words ∫
g dJ =

∫ x

0

f (ξ, α1(x), α2(x), α3(x), · · · ) dξ,

where f = σ(g) is the relevant jump extension of g.
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Again, we have a well-definedness proposition:

Proposition: [I need a couple more hours to work through these details.]


