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Abstract 

 There are two presently common onamastic (onomatological) methods of logographically 

naming and thus concisely describing an algebraic system; both methods are often used 

simultaneously. According to one method, an algebraic system is equivocally denoted by an 

atomic logographic symbol that originally denotes a certain underlying set of elements, which is 

regarded as the principal one, while all other objects of the algebraic system, properly named, are 

kept in mind and are regarded as implicit properties of that set or of its separate elements. That is 

to say, according to this method, an algebraic system is its principal underlying set of elements 

together with all its properties, which are implied and are not mentioned explicitly. According to 

the other method, an algebraic system is regarded as an ordered multiple, whose coordinates 

properly denote the defining objects of the algebraic system, and consequently the ordered 

multiple name is equivocally used as a proper name of the algebraic system. Thus, in this case, 

the togetherness of all constituents of the algebraic system is expressed by the pertinent ordered 

multiple name in terms of its coordinate names. In my recent article Iosilevskii [2016b]¸ I have 

demonstrated that both above onomastic methods are inconsistent. Therefore, in that article and 

also in my earlier article Iosilevskii [2015], I suggested and used another onomastic method of 

logographically naming the pertinent algebraic systems, namely that employing, as a name of an 

algebraic system, a complex logographic name the union of all explicit constituent sets of the 

system, namely, the underlying sets of elements, the surjective binary composition functions, and 

the bijective singulary inversion functions; a function is a set (class) of ordered pairs. In the 

present article, the latter onomastic method is substantiated and generalized in two respects. First, 

the set of explicit constituent sets of an algebraic system is now extended to include the injective 

choice, or selection, functions of all additive and multiplicative identity elements of the algebraic 
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system, belonging to its underlying sets, so that all those elements are now mentioned by the 

logographic name of the system. A general definition of an algebraic system is elaborated in such 

a way so as to make the new onomastic method universally applicable to any algebraic system. 

 
1. Introduction 

 In my recent articles Iosilevskii [2016a and 2016b], I have suggested contextually and used 

the new convenient consistent method of forming proper logographic names of the pertinent 

algebraic systems, according to which any given algebraic system is properly distinguished by a 

complex logographic name of the union of all sets (regular, or small, classes) of objects, which 

are explicitly dealt with by the algebraic system and which are therefore regarded as the 

interrelated constituent parts of the latter. In this case, the set of interrelated constituent sets of an 

algebraic system has been supposed to include all pertinent sets of the following three kinds 

(classes): the underlying sets of elements, the surjective binary composition functions, and the 

bijective singulary inversion functions; a function is a set (class) of ordered pairs. Names of the 

pertinent distinguished elements (if exist) of an algebraic system, i.e. names of the pertinent 

additive or multiplicative identities, – such names, e.g., as ‘0’, ‘1’, or ‘ 0̂ ’, – were not explicitly 

included in a complex logographic name of the algebraic system. If exists, a distinguished 

element of an algebraic system belongs to a certain one of its underlying sets of elements, and 

therefore it has been implied by its complex logographic name.  

 In this exposition, the above logographic onomatology of algebraic systems is modified so 

as the set of constituent sets of an algebraic system is supposed to include the injective choice, or 

selection, function of any given identity element of the algebraic system. Accordingly, the 

logographic name of the union of all explicit constituent sets of an algebraic system, which serves 

as a name of the algebraic system, includes now the names of injective choice (selection) 

functions of all existing distinguished elements of the system. Consequently, the latter elements 

are explicitly mentioned by the above modified union name. Also, the new onomastic method is 

supplemented by a general definition, which makes it to be universally applicable to any 

algebraic system. 
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 In this exposition, the main nomenclature (logographic notation and wordy terminology) of 

the article Iosilevskii [2016b] is retained. Nevertheless, for the reader’s convenience, I shall start 

with recalling some relevant fundamental notions of class and set theories in that notation.  

 1) A set is a class, but a class is not necessarily a set. I call a class “a regular class” if it is a 

set and “an irregular class” if it is not a set. In the contemporary literature on logic and 

mathematics, an irregular class is called a proper class, whereas a regular class, i.e. a set, is 

sometimes called a small class (see, e.g., Fraenkel et al [1973, p. 128, DEFINITION VII] for the 

former term or the article class in Wikipedia for both terms). The difference between an irregular 

class and a set (regular class) is discussed in detail in Iosilevskii [2016a, subsection I.9.3.2]). For 

instance, taxons (taxa, taxonomic classes) of any biological taxonomy of bionts (BTB) are 

irregular, or proper, classes, i.e. classes that are not sets. Particularly, the species (specific class) 

of men, that is formally called ‘Homo sapiens’ and informally “man”, exists as an irregular class 

but the set of all men does not exist in the sense that the expression “the set of all men” has no 

denotatum. By contrasts, in mathematics, a well-defined class of numbers as the class of natural 

(natural integer) numbers, the class of rational numbers, the class of real numbers, or the class of 

complex numbers is a regular class, i.e. a set. 

 2) = , = , and =  are equality signs by definition, a rightward one, a rightward one, and a 

two-sided one respectively, which are rigorously defined in Iosilevskii [2015, 2016a, and 2016b]. 

 3) ‘ 0ω ’ denotes, i.e. 0ω  is, the set of all natural numbers from 0 to infinity.  Given 0ω∈n , 

‘ 1ω ’, ‘ 2ω ’, etc denote the sets of natural numbers from 1, 2, etc respectively to infinity. Given 

0ω∈m , given mn ω∈ , ‘ nm,ω ’ denotes the set of natural numbers from a given number m to 

another given number n subject to n≥m. 

 4) A symbol of the form ‘{x|P(x)}’, called a class-builder (or particularly set-builder), 

which is designed to convert a given relation (condition) P(x) into a certain constant or variable 

class-valued (or correspondingly) term (‘P’ and ‘x’ are atomic placeholders having the 

appropriate ranges). 

 5) The unordered pair of two different (distinct) objects x and y is the set { }yx,  of those 

objects, such that 

{ } { }yzxzzyx === or  ,  . 
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subject to yx ≠  (cf. Halmos [1960, p. 10]). If yx =  then the set { }x  such that { } { }xxx ,= , 

having x as its only member, is called the singleton of x or less explicitly (more generally) a 

singleton. 

 6) The ordered pair ( )yx,  of two objects x and y, different or not, – particularly that of two 

different or same elements x and y of two different or same sets (or in general classes) X and Y 

respectively. – is conventionally defined as: 

( ) { } { }{ }yxxyx ,,, =  

 (see, e.g., Halmos [1960, pp. 22–25]). Therefore, by Axiom of extension (ibid. p. 2), for any four 

objects x, y, x', and y,. 

( ) ( )yxyx ′′= ,,  if and only if x=x' and y=y'. 

The set X×Y, defined as: 

( ){ }YyXxyxzzYX ∈∈==×  somefor  and  somefor  , , 

is called the Cartesian, or direct, product of X and Y (ibid. p. 24). Here and throughout this 

exposition, =  is the rightward sign of equality by definition, which, along with =  and = , is 

rigorously defined, e.g., in Iosilevskii [2015, 2016a, and 2016b]. 

 7) Given 2ω∈n , an ordered n-tuple of objects nn xxxx ,,...,, 121 −  is defined as a repeated, (n–

1)-fold ordered pair thus:  

( ) ( )
( )
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More specifically, an ordered n-tuple that is defined by the above formula is called the left-

associated repeated (or reiterative) (n–1)-fold (or (n–1)-ary) ordered pair of 1x , 2x , …, nx  in 

that order. Accordingly, for any 2n objects 1x , 2x ,…, nx , 1x′ , 2x′ , …, nx′ , 

( ) ( )nn xxxxxx ′′′= ,...,,,...,, 2121  if and only if 11 xx ′= , 22 xx ′= , ..., nn xx ′= .  

 8) An ordered n-tuple with any 2ω∈n  is indiscriminately called an ordered multiple. It is 

worthy of recalling that, in contrast to an ordered multiple, an ordered set is a set that serves as a 

domain of definition of the liner order relation (predicate) ≤. An ordered irregular class does not 

exist. 
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 9) It is useful for making some general statements to introduce a one-component univalent 

holor – a conceptual object, which is denoted by ‘ ]1,1[x ’ or ‘ ( )1x ’ and which can therefore be also 

called an ordered one-tuple, or ordered single, the understanding being that such an object is 

distinct from a scalar (nilvalent holor) and that it can have a scalar as its only component. 

Therefore, without loss of generality, ]1,1[x  or ( )1x  can be identified with the singleton { }1x  – the 

set having 1x  as its only member (element), so that  

( ) { }11]1,1[ xxx ==  .  

At the same time, a set of n elements with 2ω∈n  can alternatively be called an unordered n-

tuple. Therefore, ( )1x  as defined above, ) can be regarded as an ordered one-tuple and as an 

unordered one-tuple simultaneously. Thus, for any ,...}2,1{1 =∈ ωn , an ordered n-tuple, i.e. an n-

component univalent holor, is a nonempty set and is not a nonempty individual. A definition of 

the term “holor” can be found, e.g., in Moon and Spencer [1965, pp. 1, 14]), and also Iosilevskii 

[2016b, sub-subsection 2.3.1]. 

 10) If 1x  and 2x  are real numbers then the symbol ‘ ( )21, xx ’ is ambiguous, for it may stand 

either for the ordered pair of those numbers in that order or for the open interval ( )21, xx . 

Therefore, in denoting ordered pairs and ordered multiples, I use round brackets and angle 

brackets interchangeably, while preference is given to the latter in all doubtful cases. 

 11) In accordance with Definition 2.12 of Iosilevskii [2016b], given 2ω∈m , let ξ1 , ..., ξm  

be any m  objects to which a binary operation ∗ , denoted by the placeholder ‘∗ ’, applies 

repeatedly (iteratively) m−1 times in the successive order starting from ξ1  and 2ξ . Then  
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and in general 
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where the sequence ( )mm jjjj ,,...,, 121 −  is any permutation of the sequence ( )mm ,1,...,2,1 − ; the 

symbols ‘
1̀
∗
=

m

i
 and ‘∗ =

=

mi
i 1 ’, e.g., can be used interchangeably. In this case, ∗ ’ and ‘∗ ’ is a pair of 

proportional (homolographic) placeholders, which should be replaced by a pair of proportional 

tokens of the respective sizes of any desired binary functional constant as ‘×’,‘+’, ‘⋅’, ‘×’, ‘∩’, 

‘∪’, etc and also as ‘×′’, ‘+′’, +̂ , ‘+′ˆ ’, ‘+′’, ‘⋅′’, ‘ ⋅̂ ’, ‘ ⋅′ˆ ’, etc. Thus, if an initial binary functional 

constant ‘∗ ’ is furnished with some labels then ‘∗ ’ should be furnished with the same labels. 

Particularly, in accordance with Comment 2.3 of Iosilevskii [2016b], if the symbol ‘+’, e.g., is 

provided with some labels (as one or more primes, a caret, an overbar, a tilde, etc) then the 

symbol ‘+ ’ is provided with the same labels. It is therefore understood that if the convention of 

equivocal use of the sign ‘+’ instead of each one of the plus signs such as ‘+′’, +̂ , ‘+′ˆ ’, etc is 

adopted, tacitly or explicitly, then the sign ‘+ ’ should be used instead of any one of the signs 

‘+′ ’, ‘ +̂ ’, ‘+′ˆ ’, etc. In this case, the denotatum of the operator ‘+ ’ depends on the type of 

its summand (operatum). It is also understood that if the conventional symbol ‘Σ ’ is employed 

instead of ‘+ ’ then the symbols ‘Σ̂ ’, ‘Σ′ ’, and ‘Σ′ˆ  should be employed instead of ‘ +̂ ’, 

‘+′ ’, ‘+′ˆ  respectively; and similarly with ‘∏’ and ‘⋅’ in place of ‘Σ ’ and ‘+ ’. Thus, the 

conventional symbol ‘Σ ’ or ‘∏’ is equivocal, so that for avoidance of confusion it should be 

provided with additional labels to connote the functional constant, which denotes the binary 

addition or multiplication operation, underlying the sequence of repeated binary addition or 

multiplication operations equivocally denoted by ‘Σ ’ or ‘∏’ respectively. Under the above 

condition, the symbols ‘+ ’ and ‘Σ ’ or ‘⋅’ and ‘∏’ can be used interchangeably. 

 12) A binary operation ∗  is said to be: 

a) associative if and only if for any two ordered triples (repeated ordered pairs) of objects 

( )( )ζηξ ∗∗  and ( )( )ζηξ ∗∗  in the domain of its definition it satisfies the basic law 

of associativity: ( )( ) ( )( )ζηξζηξ ∗∗=∗∗ ; 
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a) commutative if and only if for any two ordered pairs of objects ( )ηξ ∗  and ( )ξη ∗  in 

the domain of its definition it satisfies the basic law of commutativity: ( ) ( )ξηηξ ∗=∗ . 

It has been rigorously proved in Iosilevskii [2016c, Essay 9] that a binary operation ∗  satisfies 

the generalized associativity law for any number of appropriate objects if it is associative and it 

has also been rigorously proved that∗  satisfies the generalized commutativity law for any number 

of appropriate objects if it is associative and commutative. In the latter case, it particularly 

follows from the above item that 
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 13) From the above items 6 and 7, it particularly follows that, given 2ω∈n , given n classes 

1X , 2X ,…, nX , the class of ordered n-tuples defined as: 
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is called the left-associated repeated (or reiterative) (n–1)-fold (or (n–1)-ary) Cartesian, or 

direct, product of 1X , 2X ,…, nX  in that order. The operation × is neither associative nor 

commutative. 

 14) Given 1ω∈n , given a set X, if XXXX n ==== ...21 , the set of ordered n-tuples 

defined as:  
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i.e. the left-associated repeated (or reiterative) (n–1)-fold (or (n–1)-ary) direct (or Cartesian) 

product of X by itself, is called the left-associated nth direct (or Cartesian) power of X, the 

understanding being that 
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( ){ } { }{ } XXxxXxxX ≠∈=∈=×
1111

1  .  

 15) The binary operation of union ∪ for sets or generally for classes is both associative and 

commutative (see, e.g., Halmos [1960, p. 13] and also Iosilevskii [2016a, Appendix 5]), so that 
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where the sequence ( )nn jjjj ,,...,, 121 −  is any permutation of the sequence ( )nn ,1,...,2,1 − . In this 

case, the arrangement of n–2 pairs of square brakets in either one of the two final (middle) 

definientia can be arbitrary, and not necessarily with the association to the left. 

 16) Given 2ω∈n , an unordered n-tuple of n different objects nn xxxx ,,...,, 121 −  is defined 

thus:  

{ } { } { } { }
{ } { } { }nn

nnnnnii
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(see, e.g., Halmos, [1960, p. 14]). If nn xx =−1  (e.g.) then { }nn xxxx ,,...,, 121 −  turns into 

{ }121 ,...,, −nxxx . 

 17) In the Clairaut-Euler placeholders ‘ ( )21, xxf ’ and ‘ ( )nn xxxxf ,,...,, 121 − ’ of functional 

forms, ‘ ( )21, xx ’ is a placeholder for an ordered pair, whereas ‘ ( )nn xxxx ,,...,, 121 − ’ is a placeholder 

for an ordered n-tuple of elements. 

 In order to justify the final general definition of the latest, more explicit version of the new 

subsistent logographic onamastics (onomatology) of algebraic systems, I shall, in the next three 

sections, develop it for the most fundamental specific classes of algebraic systems, namely for an 

abstract group, for an abstract field, along with an abstract commutative ring and an abstract 

integral domain, being its two successive predecessors, and also for an abstract affine additive 

group.  

 

8 

 



2. An abstract group 
 Definition 2.1: An abstract group. 1) Let G be a set of a finite or infinite number of 

elements and let each of the letters ‘x’, ‘y’, ‘z’, alone or furnished with any one of  the subscripts 

1, 2, etc or with any number of primes or with both, be a variable having G as its range. A group G 

is a set G together with a surjective binary composition function GGG →×:φ , an injective 

choice, or selection, function of an identity element e, { } { } GeG ⊂→:e , and a bijective singulary 

inversion function GG →:α , which satisfy the following axioms, called the Group Axioms or 

briefly GA’s.  

 GA1: The closure law. For each ( ) GGyx ×∈,  there is exactly one z G∈  such that 

( )yxz ,φ= . 

 GA2:The associative law. For each ( )( ) [ ] GGGzyx ××∈,, , 

( )( ) ( )( )zyxzyx ,,,, φφφφ = .                                                   (2.1) 

 GA3: The identity law. There exists a unique element ( ) GGe ∈= e , which is called the 

identity element of G, such that for each x G∈ , 

( ) ( ) xexxe == ,, φφ .                                                       (2.2) 

The function e is called the choice, or selection, function of e in G, because ( ){ }eG,=e , i.e. e  is 

by definition the singleton of the ordered pair ( )eG, . Accordingly, ‘e’ is, mnemonically, the first 

letter of either one of the Greek nouns “εκλογή” \eklogí\, meaning choice or selection, or 

“επιλογή” \epilogí\, meaning selection. 

 GA4: The inverse law. For each x G∈ , there exists exactly one element ( ) Gx ∈α , which is 

called the inverse, or reciprocal, of x , such that 

( )( ) ( )( ) exxxx == αφαφ ,, ;                                                   (2.3) 

mnemonically, ‘α’ is the first letter of the Greek noun “αντιστροφή” \antistrofí\ meaning 

inversion. 

 2) The functions φ and α are respectively called the composition function (or operation) of 

G and the inversion function of G. Depending on my alternating mental attitude towards the 

logographs ‘G’ and ‘G’, «togetherness» of G with φ, e, and α is understood in one of the 

following two ways: 
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a) G equals G, i.e. G=G, subject to GA1–GA4 and hence also subject to all theorems that 

can be proved from GA1–GA4. 

b) ( ) [ ]αeφαeφ 



 GG == ,,,G  subject to the same properties. 

Here and throughout this exposition, =  is the rightward sign of equality by definition, which, 

along with =  and = , is rigorously defined in Iosilevskii [2015 and 2016b]. In the case a, ‘G’ is 

called (a') a group interchangeably with ‘G’ and it is also equivocally called (a") the underlying 

set [of elements] of the group G once it is mentally freed of the connotative properties GA1–GA4 

that are assigned to it and is hence freed of the functions φ, e, and α defined on it. In the case b, 

the latter mental attitude is expressed explicitly (denotatively). Under either definition a or b, 

G∈x  if x G∈ .• 

 Comment 2.1. 1) A mathematical structure, e.g. an ordered set or an algebraic system, is 

always defined as a set together with some relations (particularly functions) and perhaps together 

with some other given sets. Conventionally, this togetherness is formally expressed by defining 

the mathematical structure as an ordered multiple, whose coordinates are the pertinent sets and 

relations (see, e.g., MacLane and Birkhoff [1967, pp. 61, 63, 118, etc]). In accordance with this 

tacit convention, a group G should be defined, e.g., thus: 

( ) ( )( )( )αeφαeφ ,,,,,, GG == G .                                             (2.4) 

This definition is however inconsistent – like the similar definition of any other algebraic system, 

as was demonstrated in Iosilevskii [2016b]. For instance, under definition (2.4), [ ]G∈¬ x , which 

is an absurd. Therefore, I do not adopt such definitions. 

 2) In accordance with Definition 2.1,  

( ) ( ) { } ( )
( ) ( ) ( ) { } . ,

, , ,

vvv

dfdfdf

GeDGDD
GDGDGGD

⊆===
==×=

eαφ
αeφ

                                     (2.5) 

In general, ( )fDdf  is the domain of definition of the function f and ( )fDv  is the domain of 

variation, or domain of values, of the function f, the understanding being that ( ) ( )fDfD av ⊆ , 

where ( )fDa  is the domain of arrival of the function f. Also, in an axiomatic set theory, a binary 

relation in intension R from a set, X, to (onto or into) a set, Y, – a functional relation, i.e. a 

function f or not (e.g. a partial order relation ≤ in X if exists), – is conventionally treated as a 

certain set of ordered pairs (x, y) of an element x of X i.e. as a certain subset of the direct product 
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X×Y. Hence, R⊆X×Y, ( )RDdf ⊆X, ( )RDv ⊆Y, ( )RDa =Y, and similarly with ‘f’ in place of ‘R’. 

Particularly, it follows from (2.5) that 

( ) ( ) ( ) ( ) ( ) ( ) ∅=== αeeφαφ dfdfdfdfdfdf    DDDDDD  .                        (2.6) 

Also, in accordance with the above said, the set σ defined as  

[ ] [ ]αeφαeφαeφσ 





 ===                                       (2.7) 

is a function such that 

( ) [ ] { } ( ) GDGGGGD =×= σσ adf  , .                                       (2.8) 

Accordingly, φ, e, and α are restrictions of σ such that 

( ) ( ) ( ) ( )
( ) ( ) .each for  

,for   ,each for  
GG

GeGG
×∈=

===×∈=
ξξσξα

ξξσξeξξσξφ
                         (2.9) 

By (2.7)–(2.9), Definition 2.1 can be restated as the following one.• 

 Definition 2.1a: A group G is a set G together with a function σ, which satisfies the 

following Group Axioms ( GA’s.). 

 GA1a: The closure law. For each ( ) GGyx ×∈, , there is exactly one Gz∈  such that 

( )yxz ,σ= . 

 GA2a: The associative law. For each ( )( ) [ ] GGGzyx ××∈,, , 

( )( ) ( )( )zyxzyx ,,,, σσσσ = .                                              (2.1a) 

 GA3a: The identity law. There exists a unique element ( ) GGe ∈= σ , which is called the 

identity element of G, such that for each x G∈ , 

( ) ( ) xexxe == ,, σσ .                                                    (2.2a) 

 GA4a: The inverse law. For each x G∈ , there is exactly one element ( ) Gx ∈σ , which is 

called the inverse, or reciprocal, of x , such that 

( )( ) ( )( ) exxxx == σσσσ ,, .                                               (2.3a) 

 2) The function σ is called the unified, or synthesized, composition and inversion function 

(or operation) of G. Just as in Definition 2.1(2), «togetherness» of G with σ is understood in one 

of the following two ways depending on my mental attitude towards the logographs ‘G’ and ‘G’:  

a) G equals G, i.e. G=G, subject to GA1a–GA4a and hence also subject to all theorems 

that can be proved from GA1a–GA4a.  
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b) ( ) σσ 





GG == ,G  subject to the same properties. 

The comment that has been made in Definition 2.1(2) on the items a and b applies to the above 

items a and b with “GA1a–GA4a” and “function σ” in place of “GA1–GA4” and “functions φ, e, 

and α” respectively.• 

 Comment 2.2. In accordance with definition (2.7), the items 2a and 2b of Definition 2.1a 

are identical with the respective items of Definition 2.1. At the same time, definition (2.4) should 

in this case be replaced with the following completely different definition: 

( ) ( )αeφσ 

 ,, GG ==G ,                                              (2.4a) 

which is however inconsistent just as definition (2.4). Accordingly, as was already said earlier, I 

shall not define an algebraic system as an ordered multiple of its underlying sets and its intrinsic 

functions.• 

 Convention 2.1. In accordance with Definitions 2.1 and 2.1a, in the subsequent definitions 

of various algebraic systems, I shall distinguish, either informally, after the manner of the item 1 

or 2a of Definition 2.1 or 2.1a, or formally, after the manner of the item 2b of Definition 2.1 or 

2b, between an algebraic system, which will be denoted by the appropriate bold-faced 

logographic symbol, and its principal (major) underlying set, which will be denoted by the 

appropriate light-faced logographic symbol, not necessarily being a token of the former. 

Accordingly, in statements following the definition of an algebraic system, I may use the light-

faced logographic symbol of the principal underlying set of the algebraic system equivocally, 

after the manner of the item 2a of Definition 2.1 or 2.1a, for mentioning, i.e. as a name of, the 

entire algebraic system, – in agreement with the common practice. • 

 Comment 2.3: Definition 2.1 or 2.1a determines a class of algebraic systems, namely the 

class of groups, and not an individual member of the class. Particularly, Definition 2.1 (e.g) 

determines neither the underlying set G nor the composition function φ of a concrete group. In 

other words, Definition 2.1 is a categorial definition of a group, i.e. classifying and not 

particularizing (not individualizing, not identifying) one. The class of groups is alternative 

denoted by the count noun “group” (without any limiting modifier as the indefinite or definite 

article), whereas a common (general) member of that class, i.e. an object that has that class as its 

classifying property, is called “a group”. Any two groups, i.e. any two objects, each of which is, 
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in accordance with Definition 2.1, entitled to be called ‘a group’, are indistinguishable in the 

framework of Definition 2.1, apart from the verbal (phonographic) or logographic names of the 

groups and their attributes (as ‘G’ ,‘G’, ’φ’, ‘α’, or ‘e’). In accordance with the item 1 of section 

1, a set is a class, but a class is not necessarily a set. From the standpoint of cognitive processes, 

the most natural restriction of the class of groups (e.g.) is not the set of all groups, but rather a 

unique abstract object (substance), which is defined by Definition 2.1 and which is called “an 

abstract group”. In order to distinguish a group from any other group, the former should be 

provided with a certain additional distinguishing property, called “difference” or “differentia” (pl. 

“differentiae”). If the differentia of a group is its strictly typifying (not individualizing) property 

then the pertinent definition of the group through a genus (as that specified in Definition 2.1) and 

the differentia is another classifying definition that defines the corresponding narrower class of 

groups or, equivalently, an abstract group of the corresponding narrower class (as an abstract 

commutative group, an abstract cyclic group, an abstract continuous group, etc.). If the differentia 

of a group is its individualizing property then the pertinent definition of the group through a 

genus and the differentia is an individualizing definition that defines the corresponding particular 

(concrete) group (as the symmetry group of a single crystal of NaCl).  

 The above remarks apply, mutatis mutandis, to any class of algebraic systems that will be 

introduced in the sequel. In this connection, I shall make explicit the following general 

convention, which usually remains implicit.• 

 Convention 2.2: Whenever I treat of two different abstract or concrete, congeneric or 

conspecific, algebraic systems (as groups, fields, vector spaces, or affine spaces) that satisfy a 

given classifying definition, I tacitly assume that there are certain, i.e. specific but unspecified, 

differentiae by which the two systems can be distinguished from each other.• 

 Theorem 2.1. The conjunction of GA1-GA4 is redundant. In fact, the axioms GA3 and 

GA4 are theorems that are provable from GA1 and GA2 and from the following two axioms (cf. 

Hall [1963, sec 1.3]). 

 GA3′: The left identity law. There exists an element e G∈ , which is called a left identity 

element, suc 

h that for each x G∈ , 

xxe =),(φ .                                                            (2.10) 
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 GA4′: The left inverse law. For each x G∈ : there is an element ( ) Gx ∈α , which is called a 

left inverse, or left reciprocal, of x , such that 

( ) exx =),(αφ .                                                         (2.11) 

 Proof: 1) Let 

)(xx α=′  , ))(()( xxx αα=′′=′′  .                                           (2.12) 

Let, in accordance with GA3′ and GA4′, for some x G∈ , 

( ) exx =′,φ , ( ) exx =′′′ ,φ ,                                                 (2.13) 

subject to (2.12) By (2.13) and by the pertinent variants of (2.1), (2.10), and (2.11), it follows that 

( ) ( )( ) ( ) ( )( ) ( )( )( )
( )( )( ) ( )( ) ( ) ,,,,,,,

,,,,,,,,,
exxxexxxxx

xxxxxxxxxxexx
=′′′=′′′=′′′′=

′′′′=′′′′=′=′

φφφφφφ
φφφφφφφφφ

                 (2.14) 

i.e. a left inverse x′ of x is also its right inverse. Likewise,  

( ) ( )( ) ( )( ) ( )exxxxxxxxex ,,,,,, φφφφφφ =′=′== ,                              (2.15) 

i.e. a left identity element e is also a right identity element. 

 2) Assume now that there are two different symmetric (two-sided) identity elements 1e  and 

2e , so that xexxe == ),(),( 11 φφ  for each x G∈ , and xeyye == ),(),( 22 φφ  for each Gy∈ , in 

accordance with GA3′. At 2ex =  and 1ey = , the above two equations yield 

( ) ( ) 212211 ,, eeeeee === φφ , i.e. there is exactly one identity element. Thus, GA3 is established.  

 3) Likewise, let us assume that a certain element x has two different inverse elements 1x′  

and 2x′ , so that ( ) ( ) ( ) ( ) exxxxxxxx =′=′=′=′ ,,,, 2211 φφφφ . Hence, by the pertinent variants of 

(2.2) and (2.1), it follows that 

( ) ( )( ) ( )( ) ( ) 2212211 ,,,,,, xexxxxxxxxex ′=′=′′=′′=′=′ φφφφφφ ,                       (2.16) 

i.e. each element of G has exactly one inverse. Thus, GA4 is also established.• 

 Theorem 2.2. 

( ) ee =α .                                                             (2.17) 

 Proof: From (2.2) at )(ex α  and (2.3) at ex  , it follows that 

eeeeee === ))(,()),(()( αφαφα . QED.• 

 Theorem 2.3. For each x G∈ , 

xx =))((αα .                                                          (2.18) 
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 Proof: Under definitions (2.12), it follows from Definition 2.1 that 

( ) ( )( ) ( )( ) ( ) xxexxxxxxexx ==′′′=′′′=′′=′′ ,,,,,, φφφφφφ ,                        (2.19) 

where use of the following equations in that order has been made: (i) the variant of (2.2) with 

‘ x ′′ ’ in place of ‘x’; (ii) (2.3) in the form 

exxxx =′=′ ),(),( φφ ;                                                   (2.20) 

(iii) the variant of (2.1) with ‘ x ′′ ’, ‘ x′ ’, and ‘x’ in place of ‘x’, ‘y’, and ‘z’, respectively; (iv) the 

variant of (2.20) with ‘ x ′′ ’ in place ‘ x′ ’ and ‘ x′ ’ in place ‘x’; (v) (2.2). QED.• 

 Definition 2.2: An abstract commutative group. A group G is called a commutative, or 

Abelian, group if the following additional axiom holds. 

 GA5: The commutative law. For each ( ) GGyx ×∈, . 

),(),( xyyx φφ = .                                                       (2.21) 

In accordance with Definition 2.1(2), a commutative, or Abelian, group G is more precisely 

defined in one of the following two alternative ways: 

a) G equals G, i.e. G=G, subject to GA1–GA5 and hence also subject to all theorems that 

can be proved from GA1–GA5. 

b) ( ) [ ]αeφαeφ 



 GG == ,,,G  subject to GA1–GA5.• 

 Comment 2.4. 1) Definition 2.2 is a typifying differentia, which, along with Definition 2.1, 

is a classifying definition of an abstract commutative (Abelian) group. Once GA1–GA4 are 

supplemented by GA5, the function φ, which has been introduced in Definition 2.1, changes so 

that the new, homonymous function φ contains, e.g., an ordered pair ( ) ( )( )yxxy ,,, φ  besides then 

ordered pair ( ) ( )( )yxyx ,,, φ  Therefore, a function φ that satisfies the conjunction of GA1–GA4 

and a function φ that satisfies the conjunction of GA1–GA5 should in principle be denoted 

differently, – say, as ‘φ’ and as ‘ cφ ’, respectively. Alternatively, Definition 2.2 should be 

supplemented by a statement such as: «The symbol ‘φ’ which has been introduced in Definition 

2.1, is now freed of its previous denotatum (meaning) and it denotes a function that satisfies the 

conjunction of GA1–GA5.» In stating Definition 2.2, this statement is tacitly omitted. A similar 

implicit procedure will tacitly be followed in the sequel every time when an initial conjunction of 

axioms that was imposed on a function earlier in the course of defining an algebraic system is 
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then supplemented by some additional axioms to include the function into the corresponding new 

algebraic system.• 

 Definition 2.3. For each ( ) GGyx ×∈, , 

[ ] ( )yxyxyx ,φφφ ==  .                                                   (2.22) 

A functional form schema ‘ ( )yx,φ ’ is said to be one in the Clairaut-Euler, or inhomogeneous, 

representation, while either denotatively concurrent functional form schema ‘ yxφ ’ or ‘[ yxφ ]’ is 

said to be one in the bilinear, or homogeneous, or algebraic, representation.• 

 Definition 2.4. 1) If the placeholder ‘φ’ is specified by any one of the conventional signs of 

multiplication, e.g. if ⋅φ , then the group G is said to be multiplicative. In this case, 

yxyxyx ⋅= φφ ),( , 1ee  , ( ) -1xx α , 1e .                                (2.23) 

Consequently, 

a) yx ⋅  is called the product of x and y, or the element obtained from multiplication of x 

by y, 

b) 1 and is called the multiplicative identity element, 

c) 1−x  is called the multiplicative inverse of x.  

It is generally accepted to abbreviate ‘ yx ⋅ ’ as ‘ xy ’, but I shall not follow this practice here.  

 2) If the placeholder ‘φ’ is specified by any one of the conventional signs of addition, e.g. if 

+φ , then the group G is said to be additive. In this case,  

yxyxyx += φφ ),( , 0ee  , ( ) xx -α , 0e .                              (2.24) 

Consequently, 

a) yx +  is called the sum of x and y, or the element obtained by addition of y to x; 

b) 0 is called the additive identity element, or the null element, 

c) x-  is called the additive inverse of x or the opposite of x. 

 Comment 2.5. For convenience in further references, Definitions 2.1 and 2.2 and Theorems 

2.2 and 2.3 are restated below so as to explicitly define an abstract multiplicative group, an 

abstract commutative multiplicative group, an abstract additive group, and an abstract 

commutative additive group in the notations, which are most easily adjustable to further 

applications.•  
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 Definition 2.5: An abstract multiplicative group. 1) A multiplicative group M is a set S of 

elements  together with a surjective binary multiplication function SSS →×⋅ : , an injective 

choice (selection) function of the unity (multiplicative identity) element, { } { } SS ⊂→ 11 :e , and a 

bijective singulary multiplicative inversion function SS →:-1 , which satisfy the following 

axioms, called the Multiplicative Group Axioms (MGA’s). The elements of M are denoted by the 

variables ‘a’, ‘b’, and ‘c’ that are taken alone or furnished with any one of the subscripts 1, 2, etc 

or with any number of primes or with both. 

 MGA1: The closure law. For each ( ) SSba ×∈, , there is exactly one Sc∈  such that 

bac ⋅= . 

 MGA2: The associative law. For each ( )( ) [ ] SSScba ××∈,, , 

cbacba ⋅⋅=⋅⋅ )()( .                                                     (2.25) 

 MGA3: The identity law. There exists a unique element ( ) SS ∈= 11 e , which is called the 

unity, or multiplicative identity, of S, such that for each Sa∈ , 

aaa =⋅=⋅ 11 .                                                         (2.26) 

 MGA4: The inverse law. For each Sa∈ : there is exactly one element Sa ∈−1 , which is 

called the multiplicative inverse, multiplicative reciprocal, of a, such that 

1-1-1 =⋅=⋅ aaaa .                                                      (2.27) 

 2) Formally, 

( ) [ ] Π=⋅=⋅= −−








 SSS 1
1

1
1   ,,, eeM ,                                 (2.28) 

where 

( ) [ ]1
1

1
1

−− ⋅=⋅=Π   ,, 



 ee                                               (2.29) 

subject to MGA1–MGA4. The binary function ⋅ is called the multiplication function (or 

operation) of M or on S×S, whereas the singulary function -1  is called the multiplicative inversion 

function (or operation) of M or on S.• 

 Corollary 2.1.  

11-1 = .                                                               (2.30) 

( ) aa =
-11-  for each Sa∈ .                                               (2.31) 

 Proof: The corollary is the instance of Theorems 2.2 and 2.3 subject to (2.23).•  
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 Definition 2.6: An abstract commutative multiplicative group. A multiplicative group M is 

called a commutative, or Abelian, multiplicative group if and only if the following additional 

axiom holds. 

 MGA5: The commutative multiplication law. For each ( ) SSba ×∈, , 

abba ⋅=⋅ .                                                           (2.32) 

Thus, a commutative (Abelian) multiplicative group M is defined by (2.28) and (2.29) subject to 

MGA1–MGA5.• 

 Definition 2.7. In accordance with MGA1 and MGA5 with ‘ -1y ’ in place of ‘y’, there is a 

composite binary function SSS →×:/ , denoted also by ‘’, such that 

abbaba
b
a

⋅=⋅== 1-1-  for each ( ) SSba ×∈, ,                              (2.33) 

The binary function / is called the division operation of M or on S×S, whereas the element a/b is 

called the quotient of a by b, or the element obtained from division of a by b.•  

 Definition 2.8: An abstract vector additive group. 1) A vector additive group Â is a set Ê  

together with a surjective binary addition function EEE ˆˆˆ:ˆ →×+ , an injective choice (selection) 

function of the null (additive identity) element, { } { } EE ˆˆˆ:ˆ ⊂→ 0
0
e , and a bijective singulary 

additive inversion function EE ˆˆ:ˆ →- , which satisfy the following axioms, called the Additive 

Group Axioms (AGA’s). The elements of Ê , , called vectors, are denoted by the careted variables 

‘ x̂ ’, ‘ ŷ ’, and ‘ ẑ ’ that are taken alone or furnished with any one of the subscripts 1, 2, etc or with 

any number of primes or with both. 

 AGA1: The closure law. For each ( ) EEyx ˆˆˆ,ˆ ×∈ , there is exactly one Ez ˆˆ∈  such that 

yxz ˆˆˆˆ += . 

 AGA2: The associative law. For each ( )( ) [ ] EEEzyx ˆˆˆˆ,ˆ,ˆ ××∈ , 

zyxzyx ˆˆ)ˆˆˆ()ˆˆˆ(ˆˆ ++=++ .                                                 (2.34) 

 AGA3: The identity law. There exists a unique element ( ) EE ˆˆˆ
ˆ ∈=
0

0 e , which is called the 

null, or additive identity, of Ê , such that for Ex ˆˆ∈ , 

xxx ˆˆˆˆˆˆˆ =+=+ 00 .                                                       (2.35) 
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 AGA4: The additive inverse law. For each Ex ˆˆ∈ : there is exactly one element Ex ˆˆˆ ∈- , 

which is called the additive inverse, or additive reciprocal, or opposite of x̂ , such that 

( ) ( ) 0-- ˆˆˆˆˆˆˆˆˆ =+=+ xxxx .                                                  (2.36) 

 2) Formally, 

( ) [ ] [ ]Σ=+=+= ˆˆˆˆˆˆ,,ˆ,ˆˆ
ˆˆ 







 EEE --
00
eeA ,                                 (2.37) 

where 

( ) [ ]--
00 ˆˆˆ,,ˆˆ
ˆˆ 



 ee +=+=Σ                                                (2.38) 

subject to AGA1–AGA4. The binary function +̂  is called the addition function (or operation) of 

Â  or on EE ˆˆ × , whereas the singulary function -̂  is called the additive inversion function (or 

operation) of Â  or in (and also of) Ê .• 

 Comment 2.6. The notation that is used in Definition 2.8 is the variant of the notation that 

has been introduced by the specifications (substitutions) (2.24) with ‘ +̂ ’, ‘ -̂ ’, ‘ 0̂ ’, ‘ x̂ ’, ‘ ŷ ’, ‘ ẑ ’ 

in place of ‘+’, ‘-’, ‘0’, ‘x’, ‘y’, ‘z’, respectively. Conversely, the variant of Definition 2.8, in 

which all carets are omitted, is a valid alternative definition of an additive group that will, more 

specifically. be called a scalar additive group, while its elements are called scalars.  

The carets have been introduced in Definition 2.8 in order to avoid in the sequel confusion 

between the operations on vector elements of a vector additive group and the similar operations 

on scalar elements of a filed in the cases where these two algebraic systems are used as 

constituent parts of a single whole algebraic system such as a vector (or linear) space or such as 

an affine space. The two variants of the definition of an additive group are conveniently 

incorporated without confusion into the entire system of notation that has been developed for the 

latter spaces in Iosilevskii [2016b] (see also the next section of this article).• 

 Corollary 2.2. 

00- ˆˆˆ = .                                                              (2.39) 

( ) xx ˆˆˆˆ =--  for each Ex ˆˆ∈ .                                                (2.40) 

 Proof: The corollary is the instance of Theorems 2.2 and 2.3 subject to the pertinent variant 

of (2.24) (see Comment 2.6).• 
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 Definition 2.9: A commutative additive vector group. An additive group Â  is called a 

commutative (or Abelian) additive vector (or linear) group (CAVG) , or briefly commutative 

additive group (CAG), if and only if the following additional axiom holds. 

 AGA5: The commutative addition law. For each ( ) EEyx ˆˆˆ,ˆ ×∈ , 

xyyx ˆˆˆˆˆˆ +=+ .                                                        (2.41)• 

Thus, an abstract commutative (Abelian) additive group Â  is defined by (2.37) and (2.38) 

subject to AGA1–AGA5.• 

 Definition 2.10. In accordance with AGA1 and AGA5 with ‘ ŷ-̂ ’ in place of ‘ ŷ ’, there is a 

composite binary function EEE ˆˆˆ:ˆ →×−  such that 

( ) ( ) xyyxyx ˆˆˆˆˆˆˆˆˆˆˆ +=+=− --  for each ( ) EEyx ˆˆˆ,ˆ ×∈ .                           (2.42) 

The binary function −̂  is called the subtraction operation of Â  or on EE ˆˆ × , whereas the 

element yx ˆˆˆ −  is called the difference x̂  minus ŷ  or the element obtained by subtraction of the 

element ŷ  from the element x̂ .• 

 Comment 2.7: It is commonly accepted to denote a binary subtraction operation by the 

same sign as that denoting the singulary operation of additive inversion. For avoidance of 

confusion, I do not, however, follow this practice.• 

 
3. An abstract field and relevant algebraic systems 

 Definition 3.1. A field S is a set S of elements together with the following functions: a 

surjective binary addition function SSS →×+ : , a surjective binary multiplication function 

SSS →×⋅ : , an injective choice (selection) function of the null (additive identity) element, 

{ } { } SS ⊂→ 00 :e , an injective choice (selection) function the unity (multiplicative identity) 

element, { } { } SS ⊂→ 11 :e , a bijective singulary additive inversion function SS →:- , and a 

bijective singulary multiplicative inversion function { } { }00-1 -- SS →:  – the functions that 

satisfy the following axioms, called the Field Axioms (FA’s). The elements of S are denoted by 

the variables ‘a’, ‘b’, ‘c’, ‘d’ that are taken alone or furnished with any one of the subscripts 1, 2, 

etc or with any number of primes or with both (cf. Definition 2.5).  
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 FA1: The closure laws. For each ( ) SSba ×∈, , there is (i) exactly one Sc∈  such that 

bac +=  and (ii) exactly one Sd ∈  such that bad ⋅= . 

 FA2: The associative laws. For each ( )( ) [ ] SSScba ××∈,, , 

cbacba ++=++ )()( ,                                                   (3.1) 

cbacba ⋅⋅=⋅⋅ )()( .                                                       (3.2) 

 FA3: The null element and unity element laws. S  contains the null element ( ) SS ∈= 00 e  

and the unity element ( ) SS ∈= 11 e , such that 

01≠ .                                                                  (3.3) 

and for each Sa∈ , 

aa =+ 0 ,                                                               (3.4) 

aa =⋅1 .                                                               (3.5) 

 FA4: The additive and multiplicative inverse element laws.  

 i) For each Sa∈  there is exactly one element Sa∈- , called the additive inverse of a or 

the opposite of a, such that 

0-- =+=+ aaaa )()( .                                                    (3.6) 

 ii) For each { }0-Sa∈  (so that 0≠a ) there is a unique element { }0-1 -Sa ∈ , which is 

called the multiplicative inverse of a, such that 

1-1-1 =⋅=⋅ aaaa .                                                        (3.7) 

 FA5: The commutative laws. For each ( ) SSba ×∈, , 

abba +=+ ,                                                            (3.8) 

abba ⋅=⋅ .                                                             (3.9) 

 FA6: The distributive law for over +. For each ( )( ) [ ] SSScba ××∈,, , 

cabacba ⋅+⋅=+⋅ )( .                                                (3.10)• 

 Corollary 3.1. An algebraic system A such that 
)0(S –>A 

( ) [ ] [ ]Σ=+=+= 







 SSS -- 00 ee ,,,A                                   (3.11) 
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(cf. (2.37) and (2.38)), whose functions satisfy FA1(i) and the conjunction of equations (3.1), 

(3.4), (3.6), and (3.8), bound by the respective typified universal quantifiers, is an abstract 

commutative additive group. 

 Proof: FA1(i) and the conjuncts of FA2-FA5 which contain equations (3.1), (3.4), (3.6), 

and (3.8) as operata are the variants AGA1-AGA5 of Definitions 2.8 and 2.9 with 

‘S’, ‘+’, ‘ 0e ’, ‘0’, ‘-’, ‘a’, ‘b’, ‘c’                                          (3.12) 

in place of  

‘ Ê ’, ‘ +̂ ’, ‘
0̂
e ’, ‘ 0̂ ’, ‘ -̂ ’, ‘ x̂ ’, ‘ ŷ ’, ‘ ẑ ’                                    (3.13) 

in that order.• 

 Corollary 3.2. 

00- = .                                                              (3.14) 

( ) aa =--  for each Sa∈ .                                                (3.15) 

 Proof: In accordance with Corollary 3.1, the corollary is the pertinent variant of Corollary 

2.2.• 

 Corollary 3.3.  

11-1 = .                                                               (3.16) 

( ) aa =
-11-  for each { }0-Sa∈ .                                            (3.17) 

 Proof: (3.16) is the same as (2.30) and it follows straightforwardly from (3.5) and (3.7) for 

a 1. (3.17) is the instance of (2.31) with ‘ { }0-S ’ in place of ‘S’ and it immediately follows 

from FA4(ii) with ‘ ( )-11-a ’ in place of ‘a’.• 

 Definition 3.2. In accordance with FA1(i) and equation (3.8) of FA5 with ‘ b- ’ in place of 

‘b’, there is a composite binary function SSS →×− :  such that 

( ) ( ) abbaba +=+=− --  for each ( ) SSba ×∈, .                             (3.18) 

The binary function − is called the subtraction operation of S or on S×S, and also of A, whereas 

the element ba −  is called the difference a minus b or the element obtained by subtraction of the 

element b from the element a. The whole of the above definition is the pertinent variant of 

Definition 2.10.• 
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 Definition 3.3. In accordance with FA4(ii), the range of the functional form ‘ -1b ’ equals 

{ }0-S , i.e. the element 1−b  exists for each { }0-Sb∈ . Consequently, it follows from FA4(ii) and 

equation (3.9) of FA5 with ‘ -1b ’ in place of ‘b’ that there is a composite binary function 

{ }[ ] SSS →× 0-:/ , denoted also by ‘’, such that 

bababa
b
a

⋅=⋅== 1-1-  for each ( ) { }[ ]0-SSba ×∈, ,                         (3.19) 

The binary function / is called the division operation of S or on { }[ ]0-SS × , whereas the element 

a/b is called the quotient of a by b, or the element obtained from division of a by b. The whole of 

the above definition is, mutatis mutandis, the same as Definition 1.7.• 

 Theorem 3.1.  

000 =⋅=⋅ aa  for each Sa∈ .                                            (3.20) 

 Proof: Multiply both sided of the equation aa =+ 0 , (3.4), by a to get ( ) aaaa ⋅=+⋅ 0 . 

Now, ( ) 00 ⋅+⋅=+⋅ aaaaa , by (3.10), while 0+⋅=⋅ aaaa , by (3.4). Hence, 

00 +⋅=⋅+⋅ aaaaa . Addition of -(a⋅a) to, i.e. subtraction of a⋅a from, both sides of the above 

equation yields 00 =⋅a , by the pertinent variants of (3.1) and (3.6). Use of (3.9) at 0b  

completes the proof of the theorem.• 

 Comment 3.1. If 10 =  then 001 =⋅=⋅= aaa  for each Sa∈ , by (3.5) and (3.20). This 

result explains the necessity in axiom (3.3).• 

 Comment 3.2. All rules of calculation, which are familiar for rational or real numbers, can 

be deduced from Definitions 3.1–3.3 in analogy with the rules stated in Corollaries 3.2 and 3.3 

and in Theorem 3.1. In the sequel, I shall use all these rules without any comments. In this case, 

Comment 2.7 applies also to the binary subtraction operation introduced in Definition 3.2.• 

 Definition 3.4. An algebraic system )1(S  such that 

( ) [ ] ( ) )1(
ˆ

1 ,,,, Ξ=⋅+=⋅= 



 SS 101 -, eeeAS                                  (3.21) 
subject to 

( ) [ ]1010 --, eeee 



 ⋅+=⋅+=Ξ ,,,)1(                                    (3.22) 

is called an abstract commutative ring if the functions included into )1(Σ satisfy FA1–FA3, 

FA4(i), FA5, and FA6,. Accordingly, these axioms are alternatively called the Commutative Ring 

Axioms or briefly and more specifically CRA1-CRA6 in that order.• 
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 Corollary 3.4. 

( ) Ξ=⋅+== −−




 SS 1
10

1 -, ,,,,, )1( eeSS                                     (3.23) 

subject to 

( ) [ ]1
10

1
10 --, −− ⋅+=⋅+=Ξ  ,,,, 



 eeee ,                               (3.24) 

i.e. in words, a field is a commutative ring together with FA4(i) as an additional axiom. 

 Proof: The corollary follows from Definitions 3.1 and 3.4.• 

 Comment 3.3: 1) In ordinary non-technical English the copula ‘to be’ and especially its 

third person singular form ‘is’, followed by a predicative either with an article ‘a’ or ‘the’ or 

without, is a common denominative (generic, class) name which equivocally denotes many 

different relations in intension such as those of class-membership, class-inclusion, identity, 

entailment, and some others. Particularly, in the sentence of Corollary 3.4, following the train of 

equalities (3.23), the occurrence of the link-verb ‘is’ is a verbal counterpart of the occurrence of 

the sign of equality by definition, ‘= ’,  in (3.23). Therefore, in this case, ‘is’ is used as a name of 

the corresponding identity relation in intension. 

2) At the same time, one may also assert that a commutative ring is a commutative 

additive group and that a field is both a commutative additive group and a commutative ring. 

This means that among three classes of algebraic systems, namely the [class of] groups, the [class 

of] commutative rings, and the [class of] fields, the first is the most inclusive one and the last is 

the least inclusive one. Analogously, the proposition that Socrates is a man means that Socrates is 

a member of the class of men (Homo sapiens) or that the singleton of Socrates, i.e. the class 

consisting of Socrates as its only member, is a subclass of the class of men.  

 3) On the other hand, it follows from (3.21) and (3.23) that 

SSA ⊂⊂ )1( .                                                          (3.25) 

These inclusion relations for the sets, being members of the corresponding ones of the above 

three classes of algebraic systems, are opposite to the inclusion relations for the classes 

themselves, indicated in the item 2.• 

 Definition 3.5. 1) A commutative ring )1(S  is called an integral domain if and only if it 

satisfies the following additional axiom, called the cancellation law: 

 For each ( ) SSba ×∈, , for each { }0-Sc∈ , 

[ ] [ ]babcac =⇔⋅=⋅ .                                                  (3.26) 
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 2) In agreement with Definition 3.4, CRA1–CRA6, i.e. FA1–FA3, FA4(i), FA5, and FA6, 

along with the above cancellation law are alternatively called the Integral Domain Axioms or 

briefly and more specifically IDA1–IDA7 in that order.• 

 Comment 3.4. Let ‘N’, ‘I’, ‘Q’, ‘R’, and ‘C’ denote the sets of natural numbers (including 

the natural null, i.e. the empty set, ∅), natural integers (strictly positive, strictly negative, and 

null), and rational, real, and complex numbers respectively. Under the conventional definition of 

a semigroup (see, e.g., MacLane and Birkhoff [1967, p. 61), the algebraic system N, defined as: 

( ) [ ]10,,,, eeee 



 ⋅+=⋅+= NN 10N ,                                   (3.27) 

is a specific additive and multiplicative semigroup simultaneously. The set N contains neither 

negative numbers nor fractional numbers, so that neither an additive inversion function nor a 

multiplicative inversion function can be defined on it. Therefore, N is not a group. At the same 

time, the algebraic system I, defined by (3.21) with ‘I’ and ‘I’ in place of ‘ )1(S ’ and ‘S’ 

respectively, i.e. as: 
)1(Σ= 

 II ,                                                           (3.28) 

is a specific commutative ring. In this case, the algebraic system ( )2Z , defined as 

( ) ( ) )1(22 Σ= 

 ZZ                                                     (3.29) 

subject to 

( ) { }InI mnmZ ∈∈⋅+=  and22  ,                                       (3.30) 

is another specific commutative ring. The field of rational, real, and complex numbers, denoted 

by ‘Q’, ‘R’, or ‘C’ respectively, is defined by the instance of definition (3.23) and (3.24) with ‘Q’ 

and ‘Q’, or ‘R’ and ‘R’, or ‘C’ and ‘C’, in place of ‘S’ and ‘S’, respectively, so that 

Ξ=Ξ=Ξ= 









 CRQ CRQ  , , ,                                         (3.31) 

subject to (3.24), where now ‘0’  and ‘1’ equivocally denote the respective rational, real, or 

complex integers. In this case, the set C can be conventionally be defined as: 

{ }RyRxyxC ∈∈−⋅+=  and 1 .                                          (3.32) 

Under the definition 

( ) { }Q qQ pqpK ∈∈⋅+= and22  ,                                      (3.33) 
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which is analogous to both (3.30) and (3.32), the instance of (3.21) with ‘ ( )2K ’ and ‘ ( )2K ’ in 

place of ‘S’ and ‘S’ respectively subject to the instance of (3.22) with ‘0’ and ‘1’, denoting the 

respective rational numbers, in place of ‘0’ and ‘1’, defines the specific field ( )2K .• 

 
4. An abstract affine additive group 

 Peliminary Remark 4.1. The subject matter of this section coincides with an initial portion 

of section 4 of Iosilevskii [2016b], which is cosmetically modified as follows. First, I employ the 

symbols ‘ Â ’ and ‘ A ’ in place of ‘ gÊ ’ and ‘ gE ’ respectively that are employed in the latter 

article. In this way, I just demonstrate how all distinguished (identity) elements of an algebraic 

system can consistently be mentioned explicitly in the logographic name of the system. The 

logographic names of vector and affine spaces of various classes that have been introduced and 

used in the above article can be modified likewise.• 

 Definition 4.1. 1) Let Â  be a commutative additive group (CAG) defined by Definitions 

2.8 and 2.9 and let E  be as before the underlying set of its elements called vectors; E  may 

sometimes be identified with Â . In accordance with Definition 2.8, the binary composition 

operation of addition and the singulary operation of additive inversion in Â  (or respectively on 

EE ˆˆ ×  and on E ) are denoted by ‘ + ’ and ‘ -̂ ’ respectively. The latter operation is defined 

relative the additive identity element of Â  (or of, and also in, E ) that is denoted by ‘ 0’ and is 

called the null vector. Elements (vectors) of E  are denoted by the variables ‘ x̂ ’, ‘ ŷ ’, and ‘ ẑ ’, 

which can be furnished with some appropriate labels as Arabic numeral subscripts ‘1’, ‘2’, etc or 

as primes.  

 2) An affine additive group (AAG) A  is an algebraic system that consists of a certain 

underlying set of points E , called its affine additive group manifold (AAGM), and of a certain 

vector group Â  whose underlying set E  of elements, called vectors, is related to E  by a binary 

surjection 

EEEV ˆ :ˆ →×  ,                                                        (4.1) 

which satisfies the following two AAGM axioms (AAGMA’s). 
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 AAGMA1: The law of composition of vectors from ordered pairs of points – The set of 

bijections between E  and E . For each ( ) EEyx 

 ×∈, , there is exactly one  z E∈  such that 

( ) ( )yxVyVz x 







,ˆˆˆ ==                                                         (4.2) 

and conversely for each ( ) EExz 

 ×∈ ˆ,ˆ , there is exactly one  y E∈  such that (4.2) holds, i.e.  

( )







y V zx= −1 .                                                             (4.3) 

That is to say, given  x E∈ , the singulary functions  :  



V E Ex  →  and  :  



V E Ex
− →1  , as defined in 

terms of the binary function (4.1) by (4.2) and (4.3), are two mutually inverse bijections  

 AAGMA2: The Chasle, or triangle, law. For each ( ) ×∈ 3,, Ezyx 

 , 

( ) ( ) ( ) 0̂,ˆˆ,ˆˆ,ˆ =++ xzVzyVyxV  .                                               (4.4) 

 3) The commutative additive group (CAG) Â  and its underlying vector set Ê  are said to 

be adjoint of the AAG A  and of its underlying point set (AAGM) E  respectively. 

«Togetherness» of E , Â , and V̂  as constituent parts forming a single whole algebraic system A  

can be expressed by the following formal definition of the latter 

( ) [ ] ( )VEEVEEVEVE ˆˆ,,ˆ,ˆ,ˆˆˆˆˆˆˆ,ˆ, ˆˆ ,--
00
ee +=+=== 



















 AAA            (4.5) 

subject to (2.37).• 

 Comment 4.1: Definition 4.1 has been made with the purpose to introduce specifically the 

notions of an affine additive group and of an affine additive group manifold for convenience in 

further references. At the same time, Definition 4.1 can obviously be altered to introduce the like 

notions with “multiplicative” instead of “additive” or in general without either qualifier. With the 

help of the appropriate substitutions, all corollaries that are deduced below from Definition 4.1 

can be restated so as to become corollaries of the respective modified definition.• 

 Corollary 4.1: The identity law for V . For each  x E∈ . 

( )

,  V x x = 0                                                               (4.6) 

and hence 

( ) 0̂ˆ =xVx 

,                                                               (4.7) 

( ) xVx 



=− 0̂ˆ 1 .                                                              (4.8) 
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 Proof: (4.6) follows from (4.4) at xyz 







 == . (4.7) follows from (4.2) at xy 



 = , by (4.6). 

(4.8) follows from (4.3) at 0̂ˆ =z , by (4.7).•  

 Corollary 4.2: The basic inversion law for V . For each ( ) EEyx 

 ×∈, , 

( ) ( )yxVxyV  ,ˆˆ,ˆ -= ,                                                         (4.9) 

where ( )yxV 



 ,-  is the additive inverse of ( )yxV 



, . That is to say, ( )xyV ,ˆ  and ( )yxV 



,  are the 

additive inverse of each other  

 Proof: By the variant of (4.6) with ‘ y ’ or ‘ z ’ in place of ‘ x ’, it follows from (4.4) at 

yz  =  that 

( ) ( ) 0,,














=+ xyVyxV  for each ( ) EEyx 

 ×∈, .                                 (4.10) 

The corollary immediately follows from (4.10) by the item CAGA4 of Definition 2.4.•  

 Corollary 4.3: A modified triangle law. For each ( ) ×∈ 3,, Ezyx 

 , 

( ) ( ) ( )zxVzyVyxV  ,ˆ,ˆˆ,ˆ =+ .                                                (4.11) 

 Proof: By the equation ( ) ( )zxVxzV 



 ,ˆ-,ˆ = , which is the variant of (4.9) with ‘ z ’ in place of 

‘ y ’, and also by the item CAGA4 of Definition 2.4, equation (4.11) is equivalent to (4.4).• 

 Corollary 4.4. The binary surjection V̂ , (4.1), has the property that for each ( ) EEyx 

 ×∈, , 

there is exactly one  z E∈  such that 

( ) ( ) ( ) ( )xVxyVyxVyVz yx 











ˆˆ,ˆˆ,ˆˆˆ -- ====                                        (4.12) 

and conversely for each ( ) EEyz 

 ×∈ ˆ,ˆ , there is exactly one Ex 

∈  such that both (4.12) and hence 

(4.3) hold and in addition 

( )zVx y ˆˆˆ 1 -−=


 .                                                          (4.13) 

That is to say, in accordance with AAGMA1, relation (4.3) is the inverse of relation (4.12) at x  

held constant, whereas relation (4.13) is the inverse of relation (4.12) at y  held constant. At the 

same time, relations (4.3) and (4.13) are mutually inverses at ẑ  held constant. 

 Proof: The train of equations (4.12) is the train (4.1), which is developed by supplementing 

it by equation (4.9) and also by the variant with ‘ x ’ and ‘ y ’ exchanged of the definition 

occurring in (4.1). The train (4.12) is equivalent to this one:  

( ) ( ) ( ) ( )yVyxVxyVxVz xy 











ˆˆ,ˆˆ,ˆˆˆˆ --- ==== ,                                    (4.121) 
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while (4.13) is equivalent to the first equation in (4.121). QED.• 

 Comment 4.2. By Corollary 4.1, at 0̂ˆ =z  and yx 



 = , the conjunction of equations (4.12) 

and (4.13) reduces to the conjunction of the variants of equations (4.6)–(4.8) with ‘ y ’ in place of 

‘ x ’.• 

 Theorem 4.1. There is a binary composition surjection 

:  
P E E E  × → ,                                                       (4.14) 

such that for each  z E∈ : (a) for each  x E∈ , there is exactly one  y E∈  such that 

( ) ( ) ( )







,  






y P x P x z V zz x= = = −  1 ,                                             (4.15) 

and conversely (b) for each  y E∈ , there is exactly one  x E∈  such that 

( ) ( ) ( )zVyPyPx yzz ˆˆˆ 1
ˆˆ

1
ˆ --

−− ===












 .                                            (4.16) 

By (4.16), for each  z E∈ , 

zz PP ˆˆ
1

ˆ -
 =− ,                                                             (4.17) 

the understanding being that the singular functions 
 :  



P E Ez  →  and  :  



P E Ez
− →1  ,                                            (4.18) 

which are defined in terms of the binary function (4.1) by (4.15) and (4.16), are two mutually 

inverse bijections. 

 Proof: The final definientia of the trains of definitions (4.15) and (4.16) are given by 

equations (4.3) and (4.13) respectively, which are, by Corollary 4.4, mutually inverses at ẑ  held 

constant. At the same time, the relation ‘ ( )yPx z 





1
ˆ
−= ’, occurring in (4.16), is the inverse of the 

relation ‘ ( )xPy z 


 ˆ= ’, occurring in (4.15), while the definition ( ) ( )zVyP yz ˆˆˆ 1
ˆˆ --

−=






 , occurring in 

(4.16), is the variant of the definition ( ) ( )zVzxP x ˆˆˆ, 1−=






 , occurring in (4.15), with ‘ y ’ in place of 

‘ x ’ and ‘ ẑ-̂ ’ in place of ‘ ẑ ’.• 

 Comment 4.3. It should be recalled that the function 


Vx
−1 , e.g., is the inverse of 



Vx  at x  

held constant. At the same time, the function 


Pz
−1  is the inverse of 



Pz  at z  held constant. 

Therefore, the equations ‘ ( ) ( )










P x V zz x= −1 ’ and ( ) ( )zVyP yz ˆˆˆ 1
ˆˆ --

−=






 , e.g., which occur in (4.14) and 
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(4.15), cannot be rewritten as ‘ ( ) ( )










P x V zz x
− =1 ’ and  ‘ ( ) ( )zVyP yz ˆˆˆ1

ˆˆ -- 





 =− ’ respectively. The former 

two equations are true by definition, whereas the latter two are false.• 

 Definition 4.2. 1) The surjection (4.1) is called the first, or basic, surjection of the affine 

additive group manifold E  and also the vectorization of the set  E E× . 

 2) The surjection (4.13) is called the second surjection of the affine additive group manifold 

E  and also the pointillage of the set  E E× . 

 3) Given  x E∈ , the bijection 


Vx  as defined by (4.2) is called the vectorization of the point 

set E  relative to the point x , whereas the inverse bijection 


Vx
−1  is called the pointillage of the 

vector set E  relative to the point x . 

 4) Given  z E∈ , the bijection 


Pz  as defined by (4.14) and having the property (4.16) is 

called the translation of the affine additive group manifold E  over the vector z . In this case, the 

inverse bijection 


Pz
−1  is, by (4.16), the translation of the affine additive group manifold E  over 

the vector ẑ-̂ .• 

 Corollary 4.5.  

( ) ( ) ( ) ( ) xVxPxPxP x 



















==== −− 0̂ˆ,0̂ 1
0̂

1
0̂

 for each  x E∈ ,                           (4.19) 

whence 

( ) EIPPP






 ===− 0̂0̂
1

0̂
,                                                    (4.20) 

where I E  is the identity function from E  onto E .• 

 Proof: The corollary follows from (4.15)–(4.17) by (4.8).• 

 Definition 4.3. 1) For each ( ) EEyx 

 ×∈, : the ordered pair ( )yx ,  is called the position 

group-vector of the point y  relative to the point x . The point x  is called the base, or tail, of the 

position group-vector yx , , whereas the point y  is called the head, or terminal, of the position 

group-vector ( )yx , . 

 2) In contrast to a position group-vector, which belongs to the set EE  × , a group-vector, 

which belongs to the set Ê  is called a free group-vector.• 

 Comment 4.4. The term “position group-vector” (“of a point relative to a point”) as 

specified in Definition 4.3 should not be confused with the term ‘group-vector’ without the 
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qualifier ‘position’. By AAGMA1, to each ordered pair of points x  and y  in E , different or not, 

there corresponds a unique group-vector ( )yxVz ,ˆˆ =  in E . Since V  is a surjection, therefore any 

group-vector  z E∈  is a class of equivalence of ordered pairs ( ) EEyx 

 ×∈,  of points relative to 

the surjection V . In this case, this class is a regular one, i.e. a set, so that 

( )( ) ( ){ }zyxVEEyxyxz ˆ,ˆ and ,,ˆ =×∈= 





  for each  z E∈                         (4.21) 

and particularly 

( ) ( ){ } ExxVExxx ˆ0,ˆ and ,0 ∈=∈=










.                                        (4.22) 

These relations are of course tautologies, but they demonstrate that any attempt to treat the vector 

as an arrow that has certain end points, i.e. a certain tail (base) point and a certain head (terminal) 

point, is inconsistent. Therefore, the term “position group-vector” should not mislead the reader. 

Either of these terms is just a synonym of the term “ordered pair of points”. 

 2) Incidentally, if a vector group Â  is treated as an autonomous algebraic system in no 

connection with any affine group A  then a group-vector in Â  can be regarded as an insensible 

nonempty individual. A point of A  is also an insensible nonempty individual. If, however, Â  is 

treated as the adjoint vector group of a certain affine group A  then, a group-vector of Â  

including the null group-vector becomes, as explicated in the previous item, a set (regular class, 

small class) of equivalence of ordered pairs of points of A  and therefore it ceases to be a 

nonempty individual. At the same time, a separate ordered pair ( ) EEyx 

 ×∈, , i.e. a separate 

position group-vector, is a set, namely ( ) { }{ }yxxyx  ,,, = , and therefore it is not a nonempty 

individual either. 

 3) In the general case, a single point in E  is not a group-vector in E , except a certain 

special case to be explicated by Theorem 4.2 below in subsection 4.3.• 

 
5. A abstract general algebraic system 

 The instances of algebraic systems that have been discussed in the previous sections and 

also vector and affine spaces of various classes that have been introduced and used in Iosilevskii 

[2016b] (cf. Preliminary Remark 4.1) can be generalized as follows. 
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 Definition 5.1. 1) Most generally, an algebraic system S is a system (complex) of a certain 

number m≥1 of underlying sets of elements, S1, S2, …, Sm, and of a certain number n≥1 of 

intrinsic functions f1, f2, …, fn, that interrelate elements of those sets in accordance with certain 

defining axioms of S. Each intrinsic function of S is a set (regular class) of ordered pairs. 

Therefore, S can most generally be logographically defined as: 

















=

==






n

j
j

m

i
i

11

fSS .                                                     (2.1) 

 2) Except a semigroup, being a simplest algebraic system that has a single underlying set of 

elements and a single surjective binary composition function (operation), and also except a 

monoid, being a semigroup that is augmented with a choice function of an identity element (see, 

e.g., MacLane and Birkhoff [1967, pp. 61–64]), an algebraic system of any higher rank, starting 

from a group, has at least three intrinsic functions:  

i) a surjective binary composition function φ;  

ii) an injective choice, or selection, function e of a certain identity (distinguished) element 

e, a unity or a null;  

iii) a singulary additive or multiplicative inverse function α.  

Thus, except a semigroup, for which n=1, the number n of intrinsic functions of any higher 

algebraic system, including a monoid, satisfies the condition n≥2. 

 3) In the general case, a surjective binary composition function φ can be one of the 

following two subclasses. 

a) For some m,1ωκ ∈ , there exists κφ  such that κκκκφ SSS →×: : 

b) For some m,1ωκ ∈  and some m,1ωλ∈ , there exists λκφ ,  such that λκλκλκ φφφ ,,,







=  

subject to λκλλκλλκλκ φφ SSSSSS →×→× : and : ,,



. 

For instance, in the case of an abstract vector (linear) space ( )RÊ  over the field R of real 

numbers, there is a single function of the class b that has been denoted as  

‘ [ ] [ ] EREER ˆˆˆ:ˆ →××⋅  ’ in Definition 2.6 of Iosilevskii [2016b]. At the same time, given 

m,1ωm∈ , there can exist none one or at most two selection functions in mS : mmm
e 0:0 →S  and 

mmm
e 1:1 →S , i.e. ( ){ }mmm

e 0,0 S=  and ( ){ }mmm
e 1,1 S= . 
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 4) If m≥2 then all underlying sets of elements, S1, S2, …, Sm, of S are mutually disjoint, i.e. 

∅=ji SS   if i≠j.                                                        (5.2) 

At the same time, if n≥2 then, most typically, the intrinsic functions f1, f2, …, fn, of S are also 

mutually disjoined, i.e. ∅=∩ lk ff  if k≠l. However, in contrast to the similar former condition 

(5.2), the latter one is not the must. For instance, in the field of rational or real numbers, 

2+2=2⋅2=4, so that [⋅∩+]≠∅. Therefore, the formal definition (5.1) of S after the manner of 

Definition 1.1(2a) is valid without any exception. • 

 Comment 5.1. In contrast to the formal Definition 5.1, if m≥2 then a certain one of the 

underlying sets of elements, S1, S2, …, Sm, of S, say S1, is often mentally put forward as the 

principal, or major, underlying set, which is therefore equivocally and informally identified with 

S, i.e. S= S1 in analogy with Definition 1.1(2a), while the other underlying sets are mentally put 

backward as the minor underlying sets of S. Along with the intrinsic functions of S, elements of 

the minor sets are used in stating defining axioms of S, which are informally regarded as 

properties of elements of S1. These are kept in mind and are not mentioned explicitly,• 
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