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We study the relation between the Kochen-Specker theorem (the KS theorem) and quantum com-
puting. The KS theorem rules out a realistic theory of the KS type. We consider the realistic theory
of the KS type that the results of measurements are either +1 or −1. We discuss an inconsistency
between the realistic theory of the KS type and the controllability of quantum computing. We have
to give up the controllability if we accept the realistic theory of the KS type. We discuss an incon-
sistency between the realistic theory of the KS type and the observability of quantum computing.
We discuss the inconsistency by using the double-slit experiment as the most basic experiment in
quantum mechanics. This experiment can be an easy detector to a Pauli observable. We cannot
accept the realistic theory of the KS type to simulate the double-slit experiment in a significant
specific case. The realistic theory of the KS type can not depicture quantum detector. In short,
we have to give up both the observability and the controllability if we accept the realistic theory of
the KS type. Therefore the KS theorem is a precondition for quantum computing, i.e., the realistic
theory of the KS type should be ruled out.

PACS numbers: 03.67.Lx(Quantum computer), 03.65.Ud(Quantum nonlocality), 03.65.Ca(Formalism)

I. INTRODUCTION

Quantum mechanics (cf. [1—6]) gives approximate and
at times remarkably accurate numerical predictions.
Much experimental data approximately fits to the quan-
tum predictions for the past some 100 years. We do not
doubt the correctness of quantum mechanics. Quantum
mechanics also says new science with respect to informa-
tion theory. The science is called the quantum informa-
tion theory [6]. Therefore, quantum mechanics gives us
very useful another theory in order to create new infor-
mation science and to explain the handling of raw exper-
imental data in our physical world.

On the other hand, from the incompleteness argument
of Einstein, Podolsky, and Rosen (EPR) [7], a hidden-
variable interpretation of the quantum theory has been
an attractive topic of research [3, 4]. One is the Bell-EPR
theorem [8]. This theorem says that some quantum pre-
dictions violate the inequality following from the EPR-
locality condition. The condition tells that a result of
measurement pertaining to one system is independent of
any measurement performed simultaneously at a distance
on another system.

The other is the no-hidden-variables theorem of
Kochen and Specker (the KS theorem) [9]. The origi-
nal KS theorem says the non-existence of a real-valued
function which is multiplicative and linear on commuting
operators. The quantum theory does not accept the KS
type of hidden-variable theory. The proof of the origi-
nal KS theorem relies on intricate geometric argument.
Greenberger, Horne, and Zeilinger discover [10, 11] the
so-called GHZ theorem for four-partite GHZ state. And,
the Bell-KS theorem becomes very simple form (see also

Refs. [12—16]).

More recently, Leggett-type non-local variables theory
[17] is experimentally investigated [18—20]. The experi-
ments report that the quantum theory does not accept
Leggett-type non-local variables interpretation. However
there are debates for the conclusions of the experiments.
See Refs. [21—23].

As for the applications of the quantum theory, im-
plementation of a quantum algorithm to solve Deutsch’s
problem [24] on a nuclear magnetic resonance quantum
computer is reported firstly [25]. Implementation of the
Deutsch-Jozsa algorithm on an ion-trap quantum com-
puter is also reported [26]. There are several attempts to
use single-photon two-qubit states for quantum comput-
ing. Oliveira et al. implement Deutsch’s algorithm with
polarization and transverse spatial modes of the electro-
magnetic field as qubits [27]. Single-photon Bell states
are prepared and measured [28]. Also the decoherence-
free implementation of Deutsch’s algorithm is reported
by using such single-photon and by using two logical
qubits [29]. More recently, a one-way based experimental
implementation of Deutsch’s algorithm is reported [30].
In 1993, the Bernstein-Vazirani algorithm was reported
[31]. It can be considered as an extended Deutsch-Jozsa
algorithm. In 1994, Simon’s algorithm was reported
[32]. Implementation of a quantum algorithm to solve
the Bernstein-Vazirani parity problem without entangle-
ment on an ensemble quantum computer is reported [33].
Fiber-optics implementation of the Deutsch-Jozsa and
Bernstein-Vazirani quantum algorithms with three qubits
is discussed [34]. A quantum algorithm for approximat-
ing the influences of Boolean functions and its applica-
tions is recently reported [35].
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Given the fundamental studies and the application re-
ports, we consider why quantum computer is faster than
classical counterpart. Some measurement outcome ad-
mits a realistic theory of the Bell type [36]. No measure-
ment outcome admits a realistic theory of the Kochen-
Specker (KS) type [37]. The KS type is stronger than the
Bell type and the KS type is equivalent to the classical
theory [38]. In 2010, it was discussed that implementa-
tion of the Deutsch-Jozsa algorithm violates the realistic
theory of the KS type [39]. It is essential to study the
general relation between the KS theorem and quantum
computing to investigate the quantum computation prob-
lem more and more. So we address studying the relation
between the KS theorem and quantum computing here
again.

We study the relation between the KS theorem and
quantum computing. The possible values of the pre-
determined result of measurements are ±1 (in �/2 unit).
The assumption was used in the “original” realistic the-
ory of the KS type.

The reference frames are necessary to control a quan-
tum state. We need the controllability of quantum com-
puting. Let us consider the controllability of quantum
computing. We derive some quantum proposition con-
cerning a quantum expected value under an assumption
about the existence of the orientation of reference frames
in N spin-1/2 systems. However, the realistic theory of
the KS type violates the proposition with a magnitude
that grows exponentially with the number of particles.
To derive the inconsistency, we rely on the maximum
value of the square of the KS realistic theoretical ex-
pected value. Therefore, we have to give up either the
existence of the reference frames or the realistic theory
of the KS type. The realistic theory of the KS type does
not depicture physical phenomena using reference frames
with a violation factor that grows exponentially with the
number of particles.

We assume an implementation of the double-slit exper-
iment [40]. There is a detector just after each slit. Thus
interference figure does not appear, and we do not con-
sider such a pattern. The possible values of the result of
measurements are ±1 (in �/2 unit). If a particle passes
one side slit, then the value of the result of measurement
is +1. If a particle passes through another slit, then the
value of the result of measurement is −1. This is an easy
detector model to a Pauli observable.

We consider whether the realistic theory of KS type
meets the easy detector model to the Pauli observable.
We assume that a source of spin-carrying particles emits
them in a state, which can be described as an eigenvector
of the Pauli observable σz. We consider a single expected
value of the Pauli observable σx in the double-slit exper-
iment. A wave function analysis says that the quantum
expected value of it is zero. However, the realistic theory
of KS type can predict different value to the expected
value of �σx� = 0. To derive the inconsistency, we use
the maximum value of the square of an expected value.
Hence, the realistic theory of KS type does not meet the

easy detector model as the whole.
Our paper is organized as follows.
In Sec. II, we discuss the fact that the realistic the-

ory of the KS type does not meet the reference frames.
The realistic theory of the KS type does not meet the
controllability of quantum computing.
In Sec. III, we discuss the relation between the double-

slit experiment and the realistic theory of the KS type.
The realistic theory of the KS type does not meet the
observability of quantum computing.
Section IV concludes this paper.

II. THE REALISTIC THEORY OF THE KS

TYPE DOES NOT MEET THE

CONTROLLABILITY

Assume that we have a set of N spins 1
2 . Each of them

is a spin-1/2 pure state lying in the x-y plane. Let us
assume that one source of N uncorrelated spin-carrying
particles emits them in a state, which can be described
as a multi spin-1/2 pure uncorrelated state. Let us pa-
rameterize the settings of the jth observer with a unit
vector �nj (its direction along which the spin component
is measured) with j = 1, . . . ,N . One can introduce the
‘realistic’ correlation function, which is the average of the
product of the hidden results of measurement

EHV(�n1, �n2, . . . , �nN ) = �r(�n1, �n2, . . . , �nN )�avg, (1)

where r is the hidden result. We assume the value of r
is ±1 (in (�/2)N unit), which is obtained if the measure-
ment directions are set at �n1, �n2, . . . , �nN .
Also one can introduce a quantum correlation function

with the system in such a pure uncorrelated state

EQM(�n1, �n2, . . . , �nN ) = tr[ρ�n1 · �σ ⊗ �n2 · �σ ⊗ · · · ⊗ �nN · �σ]
(2)

where ⊗ denotes the tensor product, · the scalar product
in R2, �σ = (σx, σy) is a vector of two Pauli operators,
and ρ is the pure uncorrelated state,

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN (3)

with ρj = |Ψj��Ψj | and |Ψj� is a spin-1/2 pure state lying
in the x-y plane.
One can write the observable (unit) vector �nj in a plane

coordinate system as follows:

�nj(θ
kj
j ) = cos θ

kj
j �x

(1)
j + sin θ

kj
j �x

(2)
j , (4)

where �x
(1)
j = �x and �x

(2)
j = �y are the Cartesian axes.

Here, the angle θ
kj
j takes two values (two-setting model):

θ1j = 0, θ2j =
π

2
. (5)

We derive a necessary condition to be satisfied by the
quantum correlation function with the system in a pure
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uncorrelated state given in (2). In more detail, we de-
rive the maximum value of the product of the quantum
correlation function, EQM given in (2), i.e., �EQM�

2
max.

We use the decomposition (4). We introduce simplified
notations as

Ti1i2...iN = tr[ρ�x
(i1)
1 · �σ ⊗ �x

(i2)
2 · �σ ⊗ · · · ⊗ �x

(iN )
N · �σ] (6)

and

�cj = (c1j , c
2
j) = (cos θ

kj
j , sin θ

kj
j ). (7)

Then, we have

�EQM�
2

=

2�

k1=1

· · ·

2�

kN=1




2�

i1,... ,iN=1

Ti1...iN c
i1
1 · · · c

iN
N
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=

2�

i1,... ,iN=1

T 2i1...iN ≤ 1, (8)

where we use the orthogonality relation
�2

kj=1
cαj c

β
j =

δα,β . The value of
�2

i1,... ,iN=1
T 2i1...iN is bounded as

�2
i1,... ,iN=1

T 2i1...iN ≤ 1. We have

N�

j=1

2�

ij=1

(tr[ρj�x
(ij)
j · �σ])2 ≤ 1. (9)

From the convex argument, all quantum separable states
must satisfy the inequality (8). Therefore, it is a sepa-
rability inequality. It is important that the separability
inequality (8) is saturated iff ρ is a multi spin-1/2 pure
uncorrelated state such that, for every j, |Ψj� is a spin-
1/2 pure state lying in the x-y plane. The reason of the
inequality (8) is due to the following quantum inequality

2�

ij=1

(tr[ρj�x
(ij)
j · �σ])2 ≤ 1. (10)

The inequality (10) is saturated iff ρj = |Ψj��Ψj | and
|Ψj� is a spin-1/2 pure state lying in the x-y plane. The
inequality (8) is saturated iff the inequality (10) is satu-
rated for every j. Thus we have the maximum possible
value of the scalar product as a quantum proposition con-
cerning the reference frames

�EQM�
2
max = 1 (11)

when the system is in such a multi spin-1/2 pure uncor-
related state.
On the other hand, a correlation function satisfies the

realistic theory of the KS type if it can be written as

EHV(�n1, �n2, . . . , �nN ) = lim
m→∞

�m

l=1 r(�n1, �n2, . . . , �nN , l)

m
(12)

where l denotes some hidden variable and r is the hid-
den result of measurement of the dichotomic observables
parameterized by the directions of �n1, �n2, . . . , �nN .

Assume the quantum correlation function with the sys-
tem in a pure uncorrelated state given in (2) admits the
realistic theory of the KS type. One has the following
proposition concerning the realistic theory of the KS type

EQM(�n1, �n2, . . . , �nN ) = lim
m→∞

�m

l=1 r(�n1, �n2, . . . , �nN , l)

m
.

(13)

In what follows, we show that we cannot assign the
truth value “1” for the proposition (13) concerning the
realistic theory of the KS type. We rely on the maximum
value of the square of an expected value. Assume the
proposition (13) is true. By changing the hidden variable
l into l′, we have the same quantum expected value as
follows

EQM(�n1, �n2, . . . , �nN ) = lim
m→∞

�m

l′=1 r(�n1, �n2, . . . , �nN , l
′)

m
.

(14)

An important note here is that the value of the right-
hand-side of (13) is equal to the value of the right-hand-
side of (14) because we only change the hidden variable.
We abbreviate r(�n1, �n2, . . . , �nN , l) to r(l) and

r(�n1, �n2, . . . , �nN , l
′) to r(l′).

We introduce an assumption that Sum rule and Prod-
uct rule commute with each other [41]. We do not pursue
the details of the assumption. To pursue the details is
an interesting point. It is suitable to the next step of
researches. Then we have

�EQM�
2

=

2�

k1=1

· · ·

2�

kN=1�
lim
m→∞

�m

l=1 r(l)

m
× lim
m→∞

�m

l′=1 r(l
′)

m

	

≤

2�

k1=1

· · ·

2�

kN=1�
lim
m→∞

�m

l=1

m
× lim
m→∞

�m

l′=1

m
|r(l)r(l′)|

	

=

2�

k1=1

· · ·

2�

kN=1�
lim
m→∞

�m

l=1

m
× lim
m→∞

�m

l′=1

m

	
= 2N . (15)

Here we use the fact

|r(l)r(l′)| = 1 (16)

since the possible values of r(l) are ±1. The above in-
equality can be saturated because we have

�{l|r(l) = 1}� = �{l′|r(l′) = 1}�

�{l|r(l) = −1}� = �{l′|r(l′) = −1}�. (17)
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Hence we derive the following proposition if we assign the
truth value “1” for the realistic theory of the KS type

�EQM�
2
max = 2N . (18)

Clearly, we cannot assign the truth value “1” for two
propositions (11) (concerning the reference frames) and
(18) (concerning the realistic theory of the KS type), si-
multaneously, when the system is in a multiparticle pure
uncorrelated state. Of course, each of them is a spin-
1/2 pure state lying in the x-y plane. Therefore, we are
in the KS contradiction when the system is in such a
multiparticle pure uncorrelated state. Thus, we cannot
accept the validity of the proposition (13) (concerning
the realistic theory of the KS type) if we assign the truth
value “1” for the proposition (11) (concerning the ref-
erence frames). In other words, the realistic theory of
the KS type does not reveal physical phenomena using
reference frames. The reference frames are necessary to
control a quantum state. Thus, the realistic theory of the
KS type does not reveal physical phenomena controlling
a quantum state.

III. THE REALISTIC THEORY OF THE KS

TYPE DOES NOT MEET THE OBSERVABILITY

We consider the relation between the double-slit exper-
iment and the realistic theory of the KS type. We assume
an implementation of the double-slit experiment. There
is a detector just after each slit. Thus interference figure
does not appear, and we do not consider such a pattern.
The possible values of the result of measurements are ±1
(in �/2 unit). If a particle passes one side slit, then the
value of the result of measurement is +1. If a particle
passes through another slit, then the value of the result
of measurement is −1.

A. A wave function analysis

Let (σz, σx) be a Pauli vector. We assume that a source
of spin-carrying particles emits them in a state |ψ�, which
can be described as an eigenvector of the Pauli observable
σz . We consider a quantum expected value �σx� as

�σx� = �ψ|σx|ψ� = 0. (19)

The above quantum expected value is zero if we consider
only a wave function analysis.
We derive a necessary condition for the quantum ex-

pected value for the system in the pure spin-1/2 state |ψ�
given in (19). We derive the possible value of the product
�σx�× �σx� = �σx�

2. �σx� is the quantum expected value
given in (19). We have

�σx�
2 = 0. (20)

Thus,

�σx�
2 ≤ 0. (21)

We derive the following proposition

(�σx�
2)max = 0. (22)

B. The realistic theory of the KS type

On the other hand, a mean value E admits the realistic
theory of the KS type if it can be written as

E =

�m

l=1 rl(σx)

m
(23)

where l denotes some hidden variable and r is the hidden
result of measurement of the Pauli observable σx. We
assume the value of r is ±1 (in �/2 unit).
Assume the quantum mean value with the system in

an eigenvector (|ψ�) of the Pauli observable σz given in
(19) admits the realistic theory of the KS type. One has
the following proposition concerning the realistic theory
of the KS type

�σx�(m) =

�m

l=1 rl(σx)

m
. (24)

We can assume as follows by Strong Law of Large Num-
bers,

�σx�(+∞) = �σx� = �ψ|σx|ψ�. (25)

In what follows, we show that we cannot assign the truth
value “1” for the proposition (24) concerning the realistic
theory of the KS type. We rely on the maximum value
of the square of a mean value.
Assume the proposition (24) is true. By changing the

hidden variable l into l′, we have the same quantum mean
value as follows

�σx�(m) =

�m

l′=1 rl′(σx)

m
. (26)

An important note here is that the value of the right-
hand-side of (24) is equal to the value of the right-hand-
side of (26) because we only change the hidden variable.
We have

�σx�(m)× �σx�(m)

=

�m

l=1 rl(σx)

m
×

�m

l′=1 rl′(σx)

m

≤

�m

l=1

m
×

�m

l′=1

m
|rl(σx)rl′(σx)|

=

�m

l=1

m
×

�m

l′=1

m
= 1. (27)

Here we use the fact

|rl(σx)rl′(σx)| = 1 (28)

since the possible values of rl(σx) are ±1. The above
inequality can be saturated because we have

�{l|rl(σx) = 1}� = �{l′|rl′(σx) = 1}�

�{l|rl(σx) = −1}� = �{l
′|rl′(σx) = −1}�. (29)
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Hence we derive the following proposition if we assign the
truth value “1” for the realistic theory of the KS type

(�σx�(m)× �σx�(m))max = 1. (30)

From Strong Law of Large Numbers, we have

(�σx� × �σx�)max = 1. (31)

Hence we derive the following proposition concerning the
realistic theory of the KS type

(�σx�
2)max = 1. (32)

We do not assign the truth value “1” for two proposi-
tions (22) (concerning a wave function analysis) and (32)
(concerning the realistic theory of the KS type), simul-
taneously. We are in the KS contradiction.
We cannot accept the validity of the proposition (24)

(concerning the realistic theory of the KS type) if we
assign the truth value “1” for the proposition (22) (con-
cerning a wave function analysis). In other words, we
cannot accept the realistic theory of the KS type to sim-
ulate the detector model for the spin observable σx.

IV. CONCLUSIONS

In conclusion, we have studied the relation between
the KS theorem and quantum computation. The possible

values of the pre-determined result of measurements have
been ±1 (in �/2 unit).
The reference frames have been necessary to control a

quantum state. We have derived some proposition con-
cerning a quantum expected value under an assumption
about the existence of the orientation of reference frames
in N spin-1/2 systems. However, the realistic theory of
the KS type has violated the proposition with a magni-
tude that grows exponentially with the number of par-
ticles. Therefore, we have had to give up either the ex-
istence of the reference frames or the realistic theory of
the KS type. The realistic theory of the KS type does
not have depictured physical phenomena using reference
frames with a violation factor that grows exponentially
with the number of particles.
Also we have discussed the fact that the realistic theory

of the KS type do not meet an easy detector model to
a single Pauli observable. The realistic theory of the KS
type can not have depictured quantum detector.
In short, we have had to give up both the observability

and the controllability if we accept the realistic theory
of the KS type. Therefore the KS theorem has been a
precondition for quantum computing, i.e., the realistic
theory of the KS type should be ruled out.
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