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Abstract In 2008, Tomasz Paterek et al published ingenious research, proving that
quantum randomness is the output of measurement experiments, whose input com-
mands a logically independent response. This is due to computability limitations in
the density matrix. Following up on that work, this paper develops a full mathemat-
ical theory of quantum indeterminacy. I explain how, the Paterek experiments lead
to the result that, the measurement of pure eigenstates, and the measurement of
mixed states, cannot both be isomorphically and faithfully represented by the same
single operator. Specifically, unitary representation of pure states is contradicted by
the Paterek experiments. Profoundly, this denies the axiomatic status of Quantum
Postulates, that state, symmetries are unitary, and observables Hermitian. Here,
I show how indeterminacy is the information of transition, from pure states to
mixed. I show that the machinery of that transition is unpreventable, logically cir-
cular, unitary-generating self-reference: all logically independent. Profoundly, this
indeterminate system becomes apparent, as a visible feature of the mathematics,
when unitarity — imposed by Postulate — is given up and abandoned.

Keywords foundations of quantum theory, quantum mechanics, quantum ran-
domness, quantum indeterminacy, quantum information, prepared state, measured
state, pure eigenstates, mixed states, unitary, redundant unitarity, orthogo-
nal, scalar product, inner product, mathematical logic, logical independence,
self-reference, logical circularity, mathematical undecidability.

1 Introduction

In classical physics, experiments of chance, such as coin-tossing and dice-throwing,
are deterministic, in the sense that, perfect knowledge of the initial conditions
would render outcomes perfectly predictable. This ‘classical randomness’ stems
from ignorance of physical information in the initial toss or throw.

In diametrical contrast, in the case of quantum physics, the theorems of Kocken
and Specker [10], the inequalities of John Bell [4], and experimental evidence of
Alain Aspect [1,2], all indicate that quantum randomness does not stem from any
such physical information.

As response, Tomasz Paterek et al provide an explanation in mathematical in-
formation. They demonstrate a link between quantum randomness and logical in-
dependence in a formal system of Boolean propositions [11,12,13].. Logical inde-
pendence refers to the null logical connectivity that exists between mathematical
propositions (in the same language) that neither prove nor disprove one another.
In experiments measuring photon polarisation, Paterek et al demonstrate statistics
correlating predictable outcomes with logically dependent mathematical proposi-
tions, and random outcomes with propositions that are logically independent.

Whilst, from the Paterek research, we may reliably infer that the machinery of
quantum randomness does entail logical independence, the fact that this logical in-
dependence is seen in a Boolean system, rather obscures any insight. To understand
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the workings of quantum randomness, theory must be written exhibiting logical in-
dependence in context of standard textbook quantum theory — specifically, in terms
of the Pauli algebra su(2).

Here, in this paper, I show what the Paterek Boolean information means for the
system of Pauli operators. The interesting surprise revealed, is that although every
measurement of polarisation is representable by the Pauli algebra su (2), only the
measurement of mixed states requires this algebra. Measurement of pure eigenstates
does not. For pure states, the unitary component of the Pauli algebra is not involved.

In predictable experiments, where measurement is on pure states, unitarity is
shown to be ‘redundant’ — possible but not necessary. And in experiments whose
outcomes are random, where measurement is on mixed states, unitarity is shown
unavoidably necessary. My conclusion is that there is a unitary switch-on in passing
from pure states to mixed and a unitary switch-off in passing from mixed to pure.

Logically, this regime can be viewed in two ways. It can be viewed as a system
that is always unitary, but where unitarity switches between possible and necessary:
such a possible / necessary system constitutes a modal logic. Or otherwise, it can
be seen as a complete switch between different symmetries, where unitarity is new,
logically independent, extra information required for the transition. To adequately
describe the transition between pure and mixed states, either modal logic is needed,
or logical independence. The classical logic of true and false is not an option.

The question of where the newly formed unitary information comes from is
solved. I show that it has origins in uncaused, unprevented, logically circular self-
reference. By uncaused and unprevented, I mean that no information already present
in the system implies nor denies the logically circular self-reference.

In experiments measuring mixed states, whose outcomes are random; in the usual
way, the system symmetry is isomorphically and faithfully represented, one-one, by
the (unitary) Pauli matrices:

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(1)

But for measurements on pure states, whose outcomes are predictable, the Paterek
findings prove the Pauli operators do not offer isomorphic, faithful representation.
Measurement on pure states, in the Paterek experiments, is faithfully represented
by this set of non-unitary matrices:

sx =
(

0 1
1 0

)
sy(η) =

(
ζ η−1

η −ζ

)
sz =

(
1 0
0 −1

)
(2)

where ζ and η are a scalars of any value. It can be seen that σy is particular value of
sy(η). The crucial distinction between (1) and (2) is that, whereas the three Pauli
matrices (1) there is 3-way orthogoonality – all are mutually orthogonal – in the
non-unitary matrices (2), there is orthogonality, only between sx and sz except in
the accidental coincidence of ζ = 0 and η = ±i.

In the case I make, my overall reasoning is to argue that the logical independence,
identified and cited by Paterek, is intrinsic content, necessary for the Pauli algebra
being unitary; and is exactly identical to circular logical connectivity, not required
by pure states, but inherent in mixed states.

Sections 2 – 5 explain the Paterek thesis and method. The Paterek approach
treats measurement experiments like computer hardware, whose input and output
is machine binary. The machine ‘zeros’ and ‘ones’ register involutory and orthog-
onal items of hardware information. This is related to separated involutory and
orthogonal information, extracted from the Pauli algebra, as opposed to the un-
separated Pauli algebra itself. Ingress of logical independence occurs as hardware
interacts with the photon density matrix.

Section 6 shows how the Pauli algebra consists of 6 logically independent items
of algebraic information – 3 involutory and 3 orthogonal.

Section 7 shows that all polarisation states need involutory information. And
that only mixed states need the 3 orthogonal items of algebraic information.

Section 8 takes the non-unitary, algebraic system (2), and makes a purely logical
alteration that assumes circular self-reference. The resultant is the unitary Pauli
system.
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2 Information and logic

In Mathematical Logic, a formal system is a system of mathematical formulae,
treated as propositions, where focus in on provability and non-provability.

A formal system comprises: a precise language, rules for writing formulae, and
further rules of deduction. Within such a formal system, any two propositions are
either logically dependent — in which case, one proves, or disproves the other —
or otherwise they are logically independent, in which case, neither proves, nor
disproves the other.

A helpful perspective on this is the viewpoint of Gregory Chaitin’s information-
theoretic formulation [5]. In that, logical independence is seen in terms of informa-
tion content. If a proposition contains information, not contained in some given set
of axioms, then those axioms can neither prove nor disprove the proposition. Axioms are propositions presupposed to be

‘true’ and adopted a priori.Edward Russell Stabler explains logical independence in the following terms. A
formal system is a postulate-theorem structure; the term postulate being synony-
mous with axiom. In this structure, there is discrimmination, separating assumed
from provable statements. Any statement labelled as a postulate which is capable
of being proved from other postulates should be relabelled as a theorem. And if
retained as a postulate, it is logically superfluous and redundant [15]. If incapable
of being proved or disproved from other postulates, it is logically independent.

Central to the formal system used in the Paterek et al research are these Boolean
functions of a binary argument:

x ∈ {0, 1} 7→ f (x) ∈ {0, 1}

Typical propositions, stemming from those functions, are these:

f (0) = 0 f (1) = 0 f (0) = f (1)
f (0) = 1 f (1) = 1 f (0) 6= f (1) (3)

Each of these propositions is an item of information, taken as being openly true
or openly false. Our interest lies, not so much, in their truth or falsity, but in,
which statements prove which, which disprove which, and which do neither. In
other words, which are logically dependent and which are logically independent.

As illustration, if f (0) = 0 were considered to be true, the statement f (0) = 1
would be proved false. More simply, we could say: f (0) = 0 disproves f (0) = 1,
and accordingly, f (0) = 1 is logically dependent on f (0) = 0.

On the other hand, again, if f (0) = 0 were considered to be true, that would not
prove, or disprove f (1) = 0. We could say: f (0) = 0 neither proves, nor disprove
f (1) = 0, and accordingly, f (0) = 0 and f (1) = 0 are logically independent.

Over and above the propositions in (3), I make note of permanent axioms, that
Paterek et al take for granted, but do not state. They are:

f (0) = 0⇒ f (1) = 1 f (1) = 0⇒ f (0) = 1 (4)

These prohibit the combination f (0) = 0, f (1) = 0.

3 The Paterek et al experiments

The Paterek et al research involves polarised photons as information carriers through
measurement experiments. The experiment hardware consists of a sequence of three
segments, which I denote: State preparation, Black box and Measurement. These pre-
pare, then transform, then measure polarisation states. The orientational configu-
ration of the three segments is the experiment’s input data. This is read from an
X–Y–Z reference system fixed to the hardware. Outcome states of polarisation are
the experiment’s output data. Experiments were performed, very many times, and
statistics of outcomes gathered. The configuration input, is related to whether the
experiment’s output is random or predictable.

1. State preparation
Photons prepared, either as |z+〉, |x+〉 or |y+〉 eigenstates, by filtering, directly
after one of these Pauli transformations:
(a) σz, aligned with the Z axis.
(b) σx, aligned with the X axis.
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(c) σy, aligned with the Y axis.

2. Black box
The prepared eigenstates are altered through one of these Pauli transformations:
(a) σz, aligning states with the Z axis,
(b) σx aligning states with the X axis,
(c) σy aligning states with the Y axis.

3. Measurement
Measurement is performed, by detecting photon capture, directly after one of
these Pauli transformations:
(a) σz, aligned with the Z axis.
(b) σx, aligned with the X axis.
(c) σy, aligned with the Y axis.

Thus, there are 27 possible experiments. In practice, nine are necessary. Results are
sufficiently demonstrated by always keeping the State preparation orientation, set
at the same alignment as the Measurement orientation. The fact that Measurement
copies the State preparation orientation means the full hardware configuration can
be encoded, taking orientations of the Black box and Measurement segments, only.
These encodings come in the form of Boolean ‘4-sequences’ and ‘quad-products’
introduced below.

Within experiments, there exist two classes of orientational information. The more
obvious is segment alignment; this is the orientation of individual hardware seg-
ments with respect to the X–Y–Z reference system. Normally, in standard theory,
segment alignment would be represented as Pauli information, through the σx, σy,
σz operators. In the Paterek et al research, alignment information is fully conveyed
in two bits, through the Boolean pairs — (0, 1), (1, 0), (1, 1).

The less obvious class of information, I refer to as orthogonality index. This
is the degree of orthogonality between one hardware segment and the next —
either orthogonal, or not orthogonal. Orthogonality index is conveyed through the
experiment, as information propagated in the density matrix.

4 Boolean pairs and 4-sequences

The Boolean values, used by Paterek et al, are based in Pauli operators and prod-
ucts between them. In their treatment of the mathematics, Paterek et al represent
any given experiment configuration, using Boolean pairs. These comprise informa-
tion taken from σx and σz — just two of the Pauli operators. This is achieved by
specifying each of the three Pauli operators, using products of the form σixσ

j
z , where

i and j are interpreted as integers, modulo 2. Thus: Permanent axioms (4) deny the Boolean pair
(0, 0) and the ‘null’ formula 1 = σ0

xσ
0
z .σz = σ0

xσ
1
z σx = σ1

xσ
0
z −iσy = σ1

xσ
1
z (5)

By way of the indices on these operators, Paterek et al link the three Boolean pairs
(0, 1), (1, 0), (1, 1), with the three operators: σz, σx, σy.

Stringing together sequences of Pauli operators to form ‘quad-products’ invokes cor-
responding Boolean ‘4-sequences’ that represent orientational information linking
two consecutive segments of the experiment hardware. Examples are:

σzσz = σ0
xσ

1
zσ

0
xσ

1
z → (0, 1) (0, 1) (6)

σxσz = σ1
xσ

0
zσ

0
xσ

1
z → (1, 0) (0, 1) (7)

−iσyσz = σ1
xσ

1
zσ

0
xσ

1
z → (1, 1) (0, 1) (8)

These can be used to represent the action of the State preparation followed by the
action of the Black box; or, the action of the Black box followed by the action of
the Measurement.

Now consider a specific experiment where the action of the State preparation
is encoded thus: σmx σnz → (m,n); where the action of the Black box is encoded
thus: σf(0)

x σ
f(1)
z → (f (0) , f (1)); and the action of Measurement is encoded thus:

σpxσ
q
z → (p, q). In this experiment, the joint action for the State preparation and Variables p and q are not used by Paterek et al.

I introduce them for the sake of clarity.Black box is encoded in the quad-product and 4-sequence:

σf(0)
x σf(1)

z σmx σ
n
z → (f (0) , f (1)) (m,n)

Here, f (0) and f (1) are the Boolean functions that give us the propositions written
in (3). The Measurement, σpxσqz → (p, q), comes into play subsequently.
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5 Logical independence from the Boolean viewpoint

In Section 5 we see how Boolean pairs, representing X–Y–Z information from State
preparation and Black box, feed into the orthogonality index, and then how Mea-
surement attempts to read that Boolean information.

Propagation of information, encoding whether states are mixed or pure, is con-
veyed in the density matrix. The input density matrix, on entry into the Black box
is:

ρ = 1
2 [1 + λmni

mnσmx σ
n
z ]

with λ = ±1. Under the action of the Black box the state evolves to:

UρU† = 1
2

[
1 + λmn (−1)nf(0)+mf(1)

imnσmx σ
n
z

]
The index on the factor (−1)nf(0)+mf(1), I call the orthogonality index and give the
label NB:

NB = nf (0) +mf (1)

Derivation of the evolved index is written out in Appendix A. The suffix B stands
for ‘leaving the Black box’. Depending on whether the Black box imparts orthogonal
information, the value of NB is either 0 or 1. All sums are taken modulo 2.

NB = nf (0) +mf (1) = 0 zero orthogonality imparted by the Black box
NB = nf (0) +mf (1) = 1 unit orthogonality imparted by the Black box

Downstream of the Black box and prior to Measurement, NB = nf (0) + mf (1) is
determined, logically dependent on values set (by the human operator) for (m,n)
and (f (0) , f (1)). That determination can be thought of as an information process
where (m,n) and (f (0) , f (1)) are copied from the State preparation and Black box,
then given as input to nf (0) +mf (1), to compute NB as output.

The value of NB, leaving the Black box, continues its propagation through the
experiment, to be read as input, by the Measurement hardware. Once the Measure-
ment hardware knows that value, for NB, given the Measurement orientation, set

Information sources

parallel alignment orthogonal alignment

State preparation
configuration input (m,n) (0, 1) (0, 1)

Black box
configuration input (f (0) , f (1)) (0, 1) (1, 0)

After Black box
compute NB NB = nf (0) + mf (1) NB = 1 × 0 + 0 × 1 = 0 NB = 1 × 1 + 0 × 0 = 1

Measurement
configuration input (m,n) (0, 1) (0, 1)

compute f (0) & f (1) NB = nf (0) + mf (1) 0 = 1 × f (0) + 0 × f (1) 1 = 1 × f (0) + 0 × f (1)

f (0) = 0

logically dependent logically independent

Flow of orthogonality information through experiment 

f (1)f (0)

f (0) = 0Overall
input

implies
output input

implies
output

f (1) = 0 f (1) = 0 or 1

Table 1 The Paterek research involves polarised photons as information carriers through
measurement experiments. Orthogonality index NB = nf (0) +mf (1) is a Boolean quantity,
conveyed through experiments by the density matrix. For the cases of ‘straight through’
and orthogonal measurement experiments, the diagram shows how NB does, and does not
convey enough information for a measurement to determine the whole of the information
imparted by the Black box. The test performed is whether the propositions (3) for respective
experiments are conveyed in-tact.
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by σpxσqz → (p, q), the Measurement hardware attempts computation of f (0) and
f (1), from NB = qf (0) + pf (1). However, unless NB is zero, f (0) and f (1) are
not both determinable from NB and (p, q), because, one or the other of f (0) and
f (1), will be logically independent.

To demonstrate this, it is sufficient to set the Measurement configuration (p, q)
to the same basis (m,n), set for the State preparation. See Table 1.

6 Information content of the Pauli algebra

It is instructive to review the information content of the Pauli algebra, or more
significantly, the information implied in the formula: −iσy = σ1

xσ
1
z ; or rather more

strictly, asserted in this abstract formulae:

−ib = ac (9)

That review means going through the process of constructing (9), from scratch,
and noting all information needed. The procedure I give is an adaption of a proof
given by W E Baylis, J Huschilt and Jiansu Wei [3]. Needs checking: This proof possibly originates

from a paper by David Hestenes [9].
The Pauli algebra is a Lie algebra; and hence, is a linear vector space. Therefore, I
begin with information inherited from the vector space axioms, and then add other
information peculiar to the Pauli Lie algebra, su(2).
Closure: For any two vectors u and v, there exists a vector w such that

w = u + v

Identities: There exist additive and multiplicative identities, 0 and 1. For any
arbitrary vector v:

v1 = 1v = v (10)
v + 0 = 0 + v = v (11)

v0 = 0v = 0 (12)

Additive inverse: For any arbitrary vector v, there exists an additive inverse −v
such that

(−v) + v = 0 (13)

Scaling: For any arbitrary vector v, and any scalar a, there exists a vector u such
that

u = av (14)
Products: A feature of Lie algebras is that, between any two arbitrary vectors, u
and v, there exist products uv and vu. Commutators of these products (Lie brackets)
are members of the vector space.
Dimension: Assume a 3 dimensional vector space, with independent basis a, b, c.

The six items of information

Involutory information: Assume all three basis vectors are involutory. Thus:

aa = 1 a involutory (15)
bb = 1 b involutory (16)
cc = 1 c involutory (17)

Orthogonal information: Assume products between basis vectors are orthogonal.
Thus:

ab + ba = 0 ab orthogonal (18)
bc + cb = 0 bc orthogonal (19)
ca + ac = 0 ca orthogonal (20)

Bringing items of information together, the Pauli algebra is constructed thus:

bc + cb = 0 by (19) , bc orthogonal
b + cbc = 0 by (17) , c involutory

ba + cbca = 0 by (12) (21)
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And similarly:

ca + ac = 0 by (20) , ca orthogonal
cac + a = 0 by (17) , c involutory

cacb + ab = 0 by (12) (22)

Adding (22) and (21) gives:

cacb + ab + ba + cbca = 0

cacb + cbca = 0 by (18) , ab orthogonal
acb + bca = 0 by (17) , c involutory
acba + bc = 0 by (15) , a involutory
acbac + b = 0 by (17) , c involutory

acbacb + 1 = 0 by (16) , b involutory
(acb)2 = − 1 by (13)
(acb)2 = (−1) 1

acb = ± i1
ac = ± ib by (16) , b involutory (23)

And a couple of extra steps gives the Pauli algebra:

ca = ∓ ib by (23) , a, b, c involutory (24)
ac− ca = ± 2ib by (23) & (24) (25)

The six formulae (15) – (20) constitute six items of logically independent infor-
mation. They are logically independent because none can be proved nor disproved
from the others. All six are needed in proving ac = ±ib.

The ‘3-way orthogonality’ resulting from (18), (19) and (20) implies complex
unitarity.

7 Logical independence from the viewpoint of symmetry

Quantitatively, standard Pauli theory is superbly successful. But, in terms of rep-
resenting the logic of experiments, it would seem the Paterek Boolean system is an
improvement. Accepting that as fact, the Boolean system must be traced through
for information that standard theory misses.

The Paterek research shows that mathematics encoding the measurement of mixed
states has logically independent structure; and that the measurement of pure states
does not. And therefore, any mathematical structure faithfully representing the Faithful representation is one-one, isomorphic

representation.
Note that

(
0 η−1

η 0

)
and

(
0 −i
i 0

)
cannot be iso-

morphic because only one of them is a member
of the unitary group.

measurement of mixed states cannot faithfully represent pure eigenstates, also.
For the faithful representation of pure, and of mixed states, two structures are
needed which are not mutually isomorphic: meaning that no one, single mathemat-
ical structure can be isomorphic with every polarisation measurement experiment.
This contradicts standard theory, where the Pauli algebra is understood to repre-
sent every measurement configuration.

Consequently, the Paterek paper establishes, that measurement of arbitrarily
prepared polarised photons, cannot, in general, be isomorphically represented by
any single, exclusive, mathematical structure. Specifically, the Pauli algebra cannot
be relied upon as a general theory, isomorphically representing every configuration
of measurement experiment. Instead, measurement aligned parallel to the prepared
state – and – measurement aligned orthogonal against it, are separately represented
by distinct mathematical structures, not isomorphic with one another.

Having said all the above, quantitatively, the Pauli theory does work. Resolution
to this quantitative versus logical dichotomy, as will be seen, is in the fact that one
of those distinct mathematical structures agrees with the other, but the other does
not agree with the one.

The above is helpful news. Of course, we take for granted the fact that individual
experiments are independent of one another. But extra and further to that, the
above tells us, experiments are independent, to the extent, that algebra for one
experiment does not extrapolate to all others. All Pauli experiments do not share
one same algebraic environment.
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In practice, this means the formula (8) does not confer existence of σy upon
the formulae (6). Nor does (8) confer its value of σz upon (6). Et cetera. We must
regard all such formulae, entailing the Pauli quad-products, as individual constructs
of information, in isolation from one another, without passing information between
them.

The Paterek findings rely on a logical isomorphism, linking the Boolean system with
Pauli experiments. That isomorphism is a one – one correspondence that connects
the logic of experiments with the logic of the Boolean system. The Paterek paper
remarks on this logical isomorphism in its conclusion.

In contrast, the Pauli system lacks that one – one logical correspondence with
experiment. The position is that the Pauli system faithfully represents experiments
quantitatively whilst the Boolean system faithfully represents experiments logically.
In order that the Pauli system should be logical also, it must connect logically,
one – one, with Pauli experiments. That means Pauli experiments must connect
logically, one – one, with the Boolean system (as they do); and then in turn, the
Boolean system must connect logically, one – one, with the Pauli system. Thus:

Pauli system � Boolean system � Pauli experiments

To approach this, we must examine the exact nature of the link relating the Pauli
and Boolean systems to see where logical correspondence between them currently
fails.

Readers of the Paterek paper might infer that there is one – one correspondence
linking the Pauli products with Boolean pairs. The actual picture is one –way.
Implication is only directed from the Pauli products, to the Boolean pairs, in the
sense of the arrows shown here:

σz = σ0
xσ

1
z −→ (0, 1) σx = σ1

xσ
0
z −→ (1, 0) −iσy = σ1

xσ
1
z −→ (1, 1) (26)

If the Pauli system were to connect logically, one – one, with the Boolean system, we
would witness a backwards implication, also, in the sense of these reverse arrows:

σz = σ0
xσ

1
z ←− (0, 1) σx = σ1

xσ
0
z ←− (1, 0) −iσy = σ1

xσ
1
z ←− (1, 1) (27)

But, as they stand, the formulae in (27) are invalid. Generally, the Boolean pairs
do not imply the Pauli operators. They invoke operators that are not necessarily
Paulian; they invoke operators belonging to some wider system. They do not form
a Lie algebra. The Pauli operators are merely the special case that happens to be
unitary. And so, we must either abandon the backwards implication — but this
is implicit in the Paterek findings — or accept the replacement of Pauli operators
with operators that maintain backwards validity.

The situation is made clearer when all Pauli notation is dropped and replaced by
abstract symbols c, a, b. Formulae can then be seen for the information they assert,
rather than content we presume, that stems from meaning we place on the symbols
they contain.

Restating (27) abstractly: For (29), a is satisfied by any matrix of this
form:

a =
(
a b
c −a

)
a2 + bc = 1

Cases of interest are:

a =
(
a −b
b −a

)
a2 − b2 = 1

a =
(
a b−1

b −a

)
a2 + 1 = 1

c = a0c1 ←− (0, 1) a = a1c0 ←− (1, 0) −ib = a1c1 ←− (1, 1) (28)

The first two of these formulae imply involutory information only; whereas the last
formula, corresponding to (1, 1), implies information that is both involutory and
unitary.

Now consider these Boolean 4-sequences:

cc = a0c1a0c1 ←− (0, 1) (0, 1) (29)
ac = a1c0a0c1 ←− (1, 0) (0, 1) (30)

−ibc = a1c1a0c1 ←− (1, 1) (0, 1) (31)

These express information representing three independent experiments. For the
‘straight-through’ experiment (29), the equality holds true for values of a 6= σx. This
experiment invokes directly, the formulae c = a0c1 and indirectly, the formaula
a = a1c0 from (28). The 4-sequence (0, 1) (0, 1) implies only that a and c be any
involutory operator, nothing more; and not that it should be a Pauli operator
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Measurement Logio – symmetry properties Algebraic Information Algebra implied by Boolean 4-sequences

Random
outcomes

state Unitarity Circularly
Self-referent

Involutory
aa = 1

bb = 1

cc = 1

Orthogonal
ab+ba = 0

bc+cb = 0

ca + ac = 0

Implied
algebra

Implied
quad

product

Boolean
4-sequence

no pure redundant no yes no a2 = 1 ← a0c1 a0c1 ← (0, 1)(0, 1)
yes mixed necessary yes yes yes ac = −ib ← a1c0 a0c1 ← (1, 0)(0, 1)
yes mixed necessary yes yes yes bc = +ia ← a1c1 a0c1 ← (1, 1)(0, 1)

no pure redundant no yes no c2 = 1 ← a1c0 a1c0 ← (1, 0)(1, 0)
yes mixed necessary yes yes yes ba = −ic ← a1c1 a1c0 ← (1, 1)(1, 0)
yes mixed necessary yes yes yes ca = +ib ← a0c1 a1c0 ← (0, 1)(1, 0)

no pure redundant no yes no (ac)2 = −1 ← a1c1 a1c1 ← (1, 1)(1, 1)
yes mixed necessary yes yes yes cb = −ia ← a0c1 a1c1 ← (0, 1)(1, 1)
yes mixed necessary yes yes yes ab = +ic ← a1c0 a1c1 ← (1, 0)(1, 1)

Table 2 Comparison of randomness in experiment outcomes, and logical independence in
symmetry information, implied by the Paterek Boolean system.

belonging to the Pauli algebra. No unitary information is implied and any unitarity
attributed is redundant.

Considering (30). The right hand side of the equality directly invokes both
c = a0c1 and a = a1c0 from (28), implying involutory c and a. The left hand
side invokes unitarity, indirectly, through −ib = a1c1. As for (31); this implies
unitarity, directly through the formula −ib = a1c1. See Table 2 for the other
4-sequences.

The fact these different experiments invoke different sets of information taken
from (28) shows the variables a, b and c should not be regarded as fixed across all
experiments. For some experiments they are unitary, others, not.

8 Logical independence from the viewpoint of self-reference

An orthogonal vector space can be thought of as a composite of information – The same theoretical ideas should apply to or-
thogonal tensor spaces.consisting of – information that comprises a general, arbitrary vector space, plus

additional information that renders that space orthogonal. More formally we might
think of axioms imposing rules for vector spaces with additional axioms impos-
ing orthogonality. However, the information of orthogonality need not originate in
axioms or definitions; it can originate through self-reference or logical circularity
[14].

This has profound implications for the logical standing of vector spaces used
in the representation of quantum states: in particular – the logical standing of
pure states, in relation to, the logical standing of mixed states. For, it is this self-
reference, that takes place at the interface between pure and mixed states, that is
the root of logical independence in quantum systems — and is the propagator of
information deficiency that manifests as quantum randomness. The self-reference
sets up valid and viable computational machinery, which is unpreventable, but lacks
definite quantitative information as input.

This can be compared to a computer program, running in a loop, which needed
no bootstrap and cannot be escaped or halted, and which outputs data, when the
only input available was ambiguous.

In the case of Pauli systems, before this self-reference may proceed, a triplet of In momentum-position wave mechanics, a
dual-pair of spaces forms into a closed system.
The reason this is dual rather than a triplet is
that the system algebra:

[p, x] = −i1

has 1 as its third operator. So the third vector
space is trivial.

non-orthogonal vector spaces (Banach spaces) forms into a closed system. The self-
reference consists of the passing of information, from each vector space to the next,
in complete cycles. But the process is capable of sustaining only orthogonal spaces
and acts as a unitary filter. Unitarity is implied in 3-way orthogonality[8].

The whole process is possible because its component subprocesses are logically
independent of axioms; so no information in the system opposes it. Specifically,
neither the axioms of Linear Algebra nor Elementary Algebra contradicts it. The
incursion of logical independence is marked by the explicit need for the imaginary
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unit [8]. This number’s logical independence is well-known to Mathematical Logic
[6]. The self-referential process can be regarded as inheriting its logical indepen-
dence.

Within Elementary Algebra, self-reference can express definitive information from
Linear Algebra. This places Linear Algebra into the arena of Elementary Algebra,
meaning that, Hilbert space mathematics of a quantum theory is expressible as a
single algebraic system, rather than a composite amalgamation of Elementary Al-
gebra plus Linear Algebra. And so, instead of information, normally expressed as
definitions from Linear Algebra, equivalent information is expressed as self-reference
in Elementary Algebra. Instead of the usual definitional demarkation that separates
the two algebras, there is now logic that interfaces them: wholly within Elementary
Algebra. Thus, the whole information of the Hilbert space is expressed as a single
integrated algebraic system — with logical structure within, that replaces defini-
tions that were from outside. Formulae which comprise the self-reference might
be thought of as true statements, predicted by Gödel’s Incompleteness Theorem,
unproveable from within Elementary Algebra.

It is crucial to note that the derivations that follow, the formulae assert existence,
not equality. And what’s more, along the way, some formulae may assert informa-
tion that is not true. Indeed, the proceedure relies on the assertion of assumptions,
that may or may not be true, followed up by examination to discover conditionality,
permitting those assumptions being true.

In the derivations that follow, the overall strategy of logic is to begin with formu-
lae that true according to axioms, then add additional information in the forma
of assumptions, and after that, to deduce conditionality of the assumptions that
eliminates any contradiction.

It is important to understand we are deducing the fact that these self-referential
processes are a sound possibility – in context of the algebraic arena at play, and
that they are capable of furnishing quantum mathematics with logical independence
that agrees with logical independence of the Paterek experiments.

The emergence of the imaginary unit is unavoidable. This confirms the fact
that logically independent information has entered the algebra. This number’s logi-
cal independence in Elementary Algebra is well-known to Mathematical Logicians.
Logical independence of the imaginary unit is discussed at length in a related paper.

In the derivations that follow, the overall plan is to begin with information content
of straight-through experiments – pure state measurements, indicated by Paterek,
and perform self-reference that furnishes information content of mixed states.

This will entail matrices representing the straight through information, agreeing
with the Paterek straight through information, and self-reference resulting in the
Pauli – su(2) albebra.

The algebraic information of the pure state, straight-through experiments, is:

Note: these imply (ac)2 = −1.

replace all 1 by 12

a2 = 1 c2 = 1 ac + ca = 0 (32)

This leaves these, not implied:

b2 = 1 ab + ba = 0 bc + cb = 0 (33)

The following matrix representation agrees with that regime of implication: This is confirmed in Appendix ??

a =
(

0 1
1 0

)
b (η) =

(
ζ η−1

η −ζ

)
c =

(
1 0
0 −1

)
(34)

Self reference acting on the non-unitary matrices (34), results in these unitary
matrices:

a =
(

0 1
1 0

)
b =

(
0 −i
i 0

)
c =

(
1 0
0 −1

)
(35)
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I now derive (35) from (34), paying particular attention to all assumptions made.
Starting with the three matrices of (34), I begin by writing the most general arbi-
trary transformation of which each of these matrices is capable.

∀α1∀α2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)[
α1
α2

]
(36)

∀ζ ∀η ∀β1∀β2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)[
β1
β2

]
(37)

∀γ1∀γ2∃χ1∃χ2

∣∣∣∣ [
χ1
χ2

]
=
(

1 0
0 −1

)[
γ1
γ2

]
(38)

Note that these formulae do not assert equality, they assert existence. I now explore
the possibility of (36), (37) and (38) accepting information, circularly, from one
another, through a ‘forward’ cyclic mechanism where:[

α1
α2

]
feeds off

[
φ1
φ2

] [
β1
β2

]
feeds off

[
χ1
χ2

] [
γ1
γ2

]
feeds off

[
ψ1
ψ2

]
, (39)

and a ‘backward’ mechanism where:[
α1
α2

]
feeds off

[
χ1
χ2

] [
β1
β2

]
feeds off

[
ψ1
ψ2

]
,

[
γ1
γ2

]
feeds off

[
φ1
φ2

]
, (40)

These form closed, self-referential flows of information. There is no cause implying
this self-reference; the idea is that no information, occupying the system, prevents
it.

To proceed with the derivation, the strategy followed will be to make a formal
assumption, by positing the hypothesis that such self-reference does occur; then
investigate for conditionality implied. To properly document this assumption, the
hypothesis is formally declared, thus:

Part One
Hypothesised forward coincidences:

∀A∀φ1∀φ2∃α1∃α2

∣∣∣∣ [
α1
α2

]
= A

[
φ1
φ2

]
(41)

∀B∀χ1∀χ2∃β1∃β2

∣∣∣∣ [
β1
β2

]
= B

[
χ1
χ2

]
(42)

∀C∀ψ1∀ψ2∃γ1∃γc
∣∣∣∣ [

γ1
γ2

]
= C

[
ψ1
ψ2

]
(43)

Note: there is no guarantee that any such coincidence should exist. We proceed to
investigate. Substitution involving quantifiers

∀β∀γ∃α | α = β + γ

∀λ∃γ | γ = 2λ
⇒ ∀λ∀β∃α | α = β + 2λ

An existential quantifier of one proposition
is matched with a universal quantifier of the
other. Those matched are underlined.

For the sake of readability, Define X = BCA.

∀ζ ∀η ∀β1∀β2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)[
β1
β2

]
∀B∀ζ ∀η ∀χ1∀χ2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)
B

[
χ1
χ2

]
∀B∀ζ ∀η ∀γ1∀γ2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)
B

(
1 0
0 −1

)[
γ1
γ2

]
∀C∀B∀ζ ∀η ∀ψ1∀ψ2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)
B

(
1 0
0 −1

)
C

[
ψ1
ψ2

]
∀C∀B∀ζ ∀η ∀α1∀α2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)
B

(
1 0
0 −1

)
C

(
0 1
1 0

)[
α1
α2

]
∀A∀C∀B∀ζ ∀η ∀φ1∀φ2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)
B

(
1 0
0 −1

)
C

(
0 1
1 0

)
A

[
φ1
φ2

]

∀A∀C∀B∀ζ ∀η ∀φ1∀φ2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
= BCA

(
ζ η−1

η −ζ

)(
1 0
0 −1

)(
0 1
1 0

)[
φ1
φ2

]

=⇒ ∀X∀ζ ∀η | X

(
ζ η−1

η −ζ

)(
1 0
0 −1

)(
0 1
1 0

)
= 1

=⇒ ∀X∀ζ ∀η | X

(
−η−1 ζ
ζ η

)
= 1 (44)
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Part two
Hypothesised backward coincidences:

For the sake of readability, Define Y = ĀC̄B̄.

∀Ā∀χ1∀χ2∃α1∃α2

∣∣∣∣ [
α1
α2

]
= Ā

[
χ1
χ2

]
(45)

∀B̄∀ψ1∀ψ2∃β1∃β2

∣∣∣∣ [
β1
β2

]
= B̄

[
ψ1
ψ2

]
(46)

∀C̄∀φ1∀φ2∃γ1∃γc
∣∣∣∣ [

γ1
γ2

]
= C̄

[
φ1
φ2

]
(47)

∀α1∀α2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)[
α1
α2

]
∀Ā∀χ1∀χ2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)
Ā

[
χ1
χ2

]
∀Ā∀γ1∀γ2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)
Ā

(
1 0
0 −1

)[
γ1
γ2

]
∀C̄∀Ā∀φ1∀φ2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)
Ā

(
1 0
0 −1

)
C̄

[
φ1
φ2

]
∀C̄∀Ā∀ζ ∀η ∀β1∀β2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)
Ā

(
1 0
0 −1

)
C̄

(
ζ η−1

η −ζ

)[
β1
β2

]
∀B̄∀C̄∀Ā∀ζ ∀η ∀ψ1∀ψ2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)
Ā

(
1 0
0 −1

)
C̄

(
ζ η−1

η −ζ

)
B̄

[
ψ1
ψ2

]

∀B̄∀C̄∀Ā∀ζ ∀η ∀ψ1∀ψ2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
= ĀC̄B̄

(
0 1
1 0

)(
1 0
0 −1

)(
ζ η−1

η −ζ

)[
ψ1
ψ2

]

=⇒ ∀Y ∀ζ ∀η
∣∣∣∣ [

ψ1
ψ2

]
| Y

(
0 1
1 0

)(
1 0
0 −1

)(
ζ η−1

η −ζ

)
= 1 (48)

=⇒ ∀Y ∀ζ ∀η | Y

(
−η ζ
ζ η−1

)
= 1 (49)

Part three
Noting the forward and backward self-references both result in the identity, they

can be equated:

=⇒ ∀X∀Y ∀ζ ∀η | X

(
−η−1 ζ
ζ η

)
= Y

(
−η ζ
ζ η−1

)
=⇒ ∀X∀Y ∀ζ ∀η | X

(
−η−1 ζ
ζ η

)
− Y

(
−η ζ
ζ η−1

)
= 0

Reading the quantifiers, this holds true for all products X = BCA and all products
Y = ĀC̄B̄. Hence, for every product Y there exists a negative X:

∀Y ∃X | X = −Y

=⇒ ∀ζ ∀η∃X | X

(
−η−1 ζ
ζ η

)
+X

(
−η ζ
ζ η−1

)
= 0

=⇒ ∀ζ ∀η∃X |
(
−η−1 ζ
ζ η

)
+
(
−η ζ
ζ η−1

)
= 0

=⇒ ∀ζ ∀η∃X |
(
−
(
η−1 + η

)
2ζ

2ζ η−1 + η

)
=
(

0 0
0 0

)
(50)

But (50) is contradictory because ζ and η cannot be zero, ∀ζ ∀η. Nevertheless, re-
placement of the universal quantifiers ∀ζ ∀η by existential quantifiers ∃ζ ∃η removes
the contradiction, thus:

∃X∃ζ ∃η |
(
−
(
η−1 + η

)
2ζ

2ζ η−1 + η

)
=
(

0 0
0 0

)
(51)
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At the outset, the universal quantifiers were valid – they derived from the axiom of
closure for vector spaces. The implication of the resolved contradiction is that infor-
mation asserted by the assumptions restricts ζ and η to existential quantification.
Indeed, conditionality on the assumptions is as follows:

X = −Y ζ = 0 η2 = −1 (52)

Part four
More conditionality is extractable from the forward and backward self-references,

(44) and49), by multiplying them. They give:

∀X∀Y ∀ζ ∀η | X

(
−η−1 ζ
ζ η

)
Y

(
−η ζ
ζ η−1

)
= 1

∀X∀Y ∀ζ ∀η | XY

(
−η−1 ζ
ζ η

)(
−η ζ
ζ η−1

)
= 1

∀X∀Y ∀ζ | XY

(
ζ2 + 1 0

0 ζ2 + 1

)
=
(

1 0
0 1

)
(53)

But (53) is contradictory because ζ and η cannot be zero, ∀ζ ∀η. And the product
XY cannot be equal to one, ∀X∀Y . Nevertheless, replacement of all universal
quantifiers for existential quantifiers removes the contradiction, thus:

∃X∃Y ∃ζ | XY

(
ζ2 + 1 0

0 ζ2 + 1

)
=
(

1 0
0 1

)
(54)

This formula (54) is validated resolved by the further conditionality:

X = Y −1 ζ = 0 (55)

Gathering together conditionality from (52) and (55)

X = Y 2 = Y −1 ζ = 0 η2 = −1 (56)

Hence as a result of self-reference:

b (η) =
(
ζ η−1

η −ζ

)
7−→ b =

(
0 −i
i 0

)
The conditions are restrictions applied by the forward and backward self-reference.

They are asserted at the moment the hypothesised information was taken up by
the quantum system.

9 Discussion – Redundant unitarity in free particle pure states

Another quantum system – that of the free particle – mirrors this same unitary
logic, between pure and mixed states.

It is instructive to understand the difference between syntactical information
versus a semantical information. Syntax concerns rules used for constructing and
transforming formulae – the rules of Elementary Algebra, say. Semantics, on the
other hand, concerns interpretation. Here, interpretation does not refer to physical
meaning, but to mathematical meaning: whether symbols might be understood to
mean: complex scalars, real scalars, or rational. Such interpretation has null logical
connectivity with the rules of algebra — the syntax. Indeed, typically, the interpre-
tation may be only in the theorist’s mind and not asserted by the mathematics, at
all.

A most relevant illustration is the comparison of syntax versus semantics in
the mathematics representing pure eigenstates, set against mixed states, in the
quantum free particle system. Consider the eigenformulae pair:

d

dx
[Φ (k) exp (+ikx)] = +ik [Φ (k) exp (+ikx)] (57)

d

dk
[Ψ (x) exp (−ikx)] = −ix [Ψ (x) exp (−ikx)] (58)
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This pair of formulae is true, irrespective of any interpretation placed on the variable
i. But in contrast, the superposition pair:

Ψ (x) =
∫

[Φ (k) exp (+ikx)] dk (59)

Φ (k) =
∫

[Ψ (x) exp (−ikx)] dx (60)

is true, only if we interpret i as pure imaginary. (And if k is restricted to real or
rational k; and if x is restricted to real or rational x.) In the case of the eigenvalue
pair (57)& (58) the imaginary interpretation is purely in the mind of the theorist,
but for the superposition pair (59)& (60), the imaginary interpretation is implied
by the mathematics. Whilst for the superposition pair (59)& (60), specific inter-
pretation is necessary, for the eigenvalue pair (57)& (58), interpretation is possible,
but not necessary.

In Mathematical Logic, ‘necessary information versus possible information’ is
recognised as constituting what is known as a ‘modal logic’. However, in textbook
quantum theory, the distinction separating possible from necessary is not notice-
able, nor is it recognised; and this logical distinction between pure states and mixed
states is lost. The crucial difference in expressing pure states is that their informa-
tion derives from pure syntax. The transition in forming mixed states from pure
states demands the creation of new information1. That creation goes unopposed.

The important point is that the logical status of pure states and mixed is
distinct, not only in experiments, but in current Theory too, even though, currently,
the fact is not recognised.

The fact is that quantum theory for pure states need not be unitary (or self-adjoint);
whereas, for mixed states, unitarity is necessary. The jump between pure states and
mixed states represents a logical jump between possible unitarity and necessary
unitarity.

Historically, this distinction between necessary and possible unitarity has not
drawn attention, as any point of significance. No doubt, standard quantum theory
ignores the fact, for reasons of consistency. But, rewriting (57) – (60) as formulae
in first order logic overcomes any inconsistency; it conveys the whole information
of the mathematics; and it preserves the intrinsic logic, in a single theory. Thus,
for pure states: The specific choice of scalars η+1 and η−1, over

the more instinctive choice of +η and −η, is
strongly suggested by theory for the Pauli sys-
tem, shown above. Also, this choice forces the
exact value η = i on the Fourier transforms,
rather than the restriction merely to imagi-
nary values. It has to be said though, choice
of η+1 and η−1 might conflict with the algebra
that derives from the homogeneity symmetry
[7].

∀η | d

dx

[
Φ (k) exp

(
η+1kx

)]
= η+1k

[
Φ (k) exp

(
η+1kx

)]
(61)

∀η | d

dk

[
Ψ (x) exp

(
η−1xk

)]
= η−1x

[
Ψ (x) exp

(
η−1xk

)]
(62)

And for mixed:

∃η | Ψ (x) =
∫ [

Φ (k) exp
(
η+1kx

)]
dk (63)

∃η | Φ (k) =
∫ [

Ψ (x) exp
(
η−1xk

)]
dx (64)

But having rewritten formulae as (61) – (64), these new formulae are inconsis-
tent with the Postulates of Quantum Mechanics. Specifically, (61)& (62) disagree
with unitarity (or self-adjointness) – imposed by Postulate.Whilst (61) – (64) repre-
sent a mathematical system that is logically self-consistent, that conveys the whole
information of unitarity; that conveyance of whole information is gained at the ex-
pense of textbook quantum theory’s most treasured fact — the self-adjointness of
operators.

Not to worry. The Postulated unitarity (or self-adjointness) is not needed. Uni-
tarity is implied where it is needed – in the mathematics of the mixed states.
Elsewhere, unitarity (or self-adjointness) is redundant.

10 Discussion – Self-reference in free particle mixed states

As in the Pauli system, the transition (61) – (64) from pure to mixed states, again
involves logical self-reference. I begin by writing the most general arbitrary

transformation of which each of these matrices
is capable.

Consider the following pair of formulae, asserting existence of general sums over
all eigenvectors.

I use the notation
∫

k f (k) =
∫ +∞
−∞ f (k) dk.1 In some way, yet to be understood, this information is lost again during measurement.
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∀η∀x∃a∃Ψ | Ψ (x) =
∫

k

[
exp

(
η+1xk

)
a (k)

]
(65)

∀η∀k∃b∃Φ | Φ (k) =
∫

x

[
exp

(
η−1kx

)
b (x)

]
(66)

In writing these, the san-serif notated k and x are the dummy (bound) variables
over the integrals. The italicised variables η, k, x, a, b are all bound variables over
the existential quantifier ∃ and universal quantifier ∀. The ordering of variables is
laid out to mirror the convention of repeated dummy indices used in summations
of discrete quantities, so as to emphasise the fact that these are transformations.

Note that these formulae do not assert equality, they assert existence. Note also;
the integrals exist, and the pair of propositions is true, when amplitudes a and b
are restricted to the (bounded functions) Banach space L1. Banach space L1consists of bounded functions,

ensuring convergence of these integrals.
I now explore the possibility of (65) and (66) accepting information, circularly,
from one another, through a mechanism where a (k) feeds off Φ (k) and b (x) feeds
off Ψ (x). There is no cause implying this self-reference; the idea is that nothing pre-
vents it. Indeed, the self-referential process is logically independent of all algebraic
rules in operation.

To proceed, the strategy followed will be to make a formal assumption, by
positing the hypothesis that such self-reference does occur; then investigate for
conditionality implied. To properly document this assumption, the hypothesis is
formally declared, thus:
Hypothesised coincidence: Simultaneous propositions !!!!!!!!!

the repeated ∀η must be lost, with instances
of η from each formulae, being particularised
before substitution. Their joint solution then:

aη + b = cη + d

where η (bold) is the particular value variable.

∀Φ∃a | a = Φ; (67)
∀Ψ∃b | b = Ψ. (68)

When these assumptions are substituted into (65) and (66), circular dependency is
enabled, via Φ and Ψ , through this pair of formulae:

∀η∀x∃Φ∃Ψ | Ψ (x) =
∫

k

[
exp

(
η+1xk

)
Φ (k)

]
(69)

∀η∀k∃Ψ∃Φ | Φ (k) =
∫

x

[
exp

(
η−1kx

)
Ψ (x)

]
(70)

In these, if both Φ and Ψ are in the Banach space L1, then both integrals exist,
and both propositions are valid. But otherwise, any invalidity would imply that the
hypothesised coincidence (67) & (68) is in contradiction with (65) & (66).

Indeed, cross-substitution of Φ and Ψ does prove the contradiction. Proceding,
we get: invoking a simultaneous pair of propositions,

which together, will force particular values on
η. Before the pair can be considered as simul-
taneous, in order to preserve validity, the re-
peated ∀η quantifier must be lost, leaving the
particularised (bold) η.

∀η∀x∃Ψ | Ψ (x) =
∫

k

[
exp

(
η+1xk

) ∫
x

[
exp

(
η−1kx

)
Ψ (x)

]]
(71)

∀η∀k∃Φ | Φ (k) =
∫

x

[
exp

(
η−1kx

) ∫
k

[
exp

(
η+1xk

)
Φ (k)

]]
(72)

Taking the integral signs outside and reversing their order, these tidy up to become:

∀η∀x∃Ψ | Ψ (x) =
∫

x

∫
k exp

[(
η+1x+ η−1x

)
k
]
Ψ (x) (73)

∀η∀k∃Φ | Φ (k) =
∫

k

∫
x exp

[(
η−1k + η+1k

)
x
]
Φ (k) (74)

In the first of these two formulae (73), Ψ (x) serves to bound, only the
∫

x sum, to
finite values. The sum in

∫
k is generally unbounded, unless η = i. And so overall,

for arbitrary values of η, the double integral fails. The predicament is precisely
similar for the second formulae (74). Hence, (73) and (74) are untrue statements,
and hence the hypothesised coincidence (67) & (68) contradicts (65) & (66).

The contradiction is resolved by replacing ∀η by ∃η in (69) & (70). Thus: It should be noted that quantifiers ∀ and ∃ do
not commute. The common use in this paper
would be ∀a∃b; where, for each a there exist
distinct assignments of a. The other use is seen
in (75) & (76); in these, ∃η∀x means there ex-
ists a unique η for any and every assignment
of x.

∃η∀x∃Φ∃Ψ | Ψ (x) =
∫

k

[
exp

(
η+1xk

)
Φ (k)

]
(75)

∃η∀k∃Ψ∃Φ | Φ (k) =
∫

x

[
exp

(
η−1kx

)
Ψ (x)

]
(76)

resulting in

∃η∀x∃Ψ | Ψ (x) =
∫

x

∫
k exp

[(
η+1x+ η−1x

)
k
]
Ψ (x) (77)

∃η∀k∃Φ | Φ (k) =
∫

k

∫
x exp

[(
η−1k + η+1k

)
x
]
Φ (k) (78)

ing the inside integrals first; unless the exponents are pure imaginary, they pro-
duce non-existent sums. This fact renders both these propositions false. Principally,
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the ∀η quantifier contradicts the ∃Ψ quantifier in the first and ∃Φ in the second.
Furthermore, the ∀x and the ∀k quantifiers cannot stand.

The significant point is that, whilst as individual propositions, (65) and (66),
are valid, the hypothese (67) and (68) introduce information that contradicts their
∀η quantifiers.

∃Ψ | Ψ (x′) =
∫

x

∫
k exp

[(
η+1x′ + η−1x

)
k
]
Ψ (x) (79)

∃Φ | Φ (k′) =
∫

k

∫
x exp

[(
η−1k′ + η+1k

)
x
]
Φ (k) (80)

These integrals, over the exponentials, exist only when η = ± i. And therefore this
pair of propositions is true — with the Hypothesised coincidence guaranteed
— only for η = ± i.

Up to this point, no imaginary information exists in the system. In order to validate
the pair of integrals, new information must be introduced. This information must
be assumed. To properly document this assumption, the hypothesis is formally
declared, thus:
Hypothesised existence:

∃η | η2 = −1

Setting the particular number i =
√
− 1 and also η = i:

∀x∃Ψ | Ψ (x) =
∫

x

∫
k exp [+i (x− x) k]Ψ (x) (81)

∀k∃Φ | Φ (k) =
∫

k

∫
x exp [−i (k − k) x]Φ (k) (82)

and in conclusion, claim that this pair of formulae are true, providing they are
allowed self-referential information.

As a final point, it is rather noticeable that these logical phenomena in quantum
theory, surround the presence of the imaginary unit. And so it is important to say
that, within Elementary Algebra, this number’s existence is very well-known, by
Mathematical Logicians, to be logically independent [6].

11 Conclusions

Quantum indeterminacy is strictly a phenomenon of mixed states. Measurement
outcomes from pure eigenstates are never random. That is well-known. In alignment
with that, the new research of Tomasz Paterek et al shows that logical independence,
also, is a strict feature of mixed states – pure states being logically dependent [12,
13].

That logical dependence and in-dependence is mathematical information. The Here I have written independence with a hy-
phen, as in-dependence. This is for nothing
more than clarity.

transition from pure states to mixed is reflected in corresponding mathematical
transition stepping from dependence to in-dependence. The information comprising
that mathematical transition represents the information of quantum indeterminacy.
This paper examines that transition.

Textbook quantum theory demands: Hilbert space, self-adjoint operators and uni-
tary symmetries, as features. From the viewpoint of the transition, none of these
are required by pure eigenstates; they are required only by mixed states. A truly
faithful, isomorphic theory would need to be non-unitary on the pure state side of
the transition, and unitary on the mixed state side.

Whilst the mathematician might feel free to simply declare a theory unitary,
by declaring that observable operators should be Hermitian, say — although such
declaration might seem to impose purely quantitative restriction on variables, that
eigenvalues be real, for instance — such declaration includes hidden logical struc-
ture, not noticed. This is logic that sits at the interface between Elementary Algebra
(school algebra) and orthogonal Linear Algebra. The juxtaposition of these two al-
gebras, in a single environment, is inherent in quantum mathematics, placing that
logical structure squarely and unavoidably in the domain of quantum theory.
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The logical structure is logically circular self-reference, going on within a sym-
metry. Unlike energy or momentum, that self-reference is perfectly free and not
subject to any conservation law. There is no resistance to its onset. Self-reference
is a spontaneous logical option, neither caused nor prevented (implied nor denied)
by any information in the mathematical environment — it is logically independent
of all information in that mathematical environment.

The effect of the self-reference is to create the consequent existence of a uni-
tary symmetry, along with structures that follow from it: self-adjoint operators
and Hilbert space, et cetera – all logically independent within the mathematics
as a whole. The impact of all this is that unitarity or self-adjointness, imposed
– by Postulate – is redundant.

The conclusion of this research is that a quantum theory that adheres strictly to
the faithful representation of (non-unitary) pure states – that switches to – the
strict and faithful representation of (unitary) mixed states, automatically invokes
representation of quantum indeterminacy. Those faithful representations require
isomorphisms under two distinct symmetries: a non-unitary symmetry represent-
ing pure states, and a unitary symmetry representing mixed. Transition between
these is logically self-referential. To allow this logical mechanism to operate, uni-
tarity (and self-adjointness) must be free to switch on and off. But in standard
theory, unitarity (or self-adjointness) is imposed – by Postulate – and this freedom
is blocked.

The most profound conclusion, therefore, is that unitarity and self-adjointness,
imposed – by Postulate – must be given up; the benefit being a quantum theory
that expresses theory and logic of quantum indeterminacy.
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Appendicies

A Derivation of the orthogonality index
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