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Abstract – We find an exact solution for the system of Euler equations, following 

the Eulerian and Lagrangian descriptions, for spatial dimension n = 3.  As we had 

seen in other previous articles, there are infinite solutions for pressure and 

velocity, given only the condition of initial velocity. 
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§ 

 

 Essentially the Euler (and Navier-Stokes) equations relate to the velocity 𝑢 

and pressure 𝑝 suffered for a volume element 𝑑𝑉 at position (𝑥, 𝑦, 𝑧) and time 𝑡. In 

the formulation or description Eulerian the position (𝑥, 𝑦, 𝑧) is fixed in time, 

running different volume elements of fluid in this same position, while the time 

varies. In the Lagrangian formulation the position (𝑥, 𝑦, 𝑧) refers to the 

instantaneous position of a specific volume element 𝑑𝑉 = 𝑑𝑥 𝑑𝑦 𝑑𝑧 at time 𝑡, and 

this position varies with the movement of this same element 𝑑𝑉. 

 Basically, the deduction of the Euler equations is a classical mechanics 

problem, a problem of Newtonian mechanics, which use the 2nd law of Newton 

𝐹 = 𝑚𝑎, force is equal to mass multiplied by acceleration. We all know that the 

force described in Newton's law may have different expressions, varying only in 

time or also with the position, or with the distance to the source, varying with the 

body's velocity, etc. Each specific problem must to define how the forces involved 

in the system are applied and what they mean. I suggest consulting the classic 

Landau & Lifshitz[1] or Prandtl’s book[2] for a more detailed description of the 

deduction of these equations (including Navier-Stokes equations). 

 In spatial dimension 𝑛 = 3, the Euler equations can be put in the form of a 

system of three nonlinear partial differential equations, as follows: 

(1) 

{
 
 

 
 
𝜕𝑝

𝜕𝑥
+
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑢2

𝜕𝑢1

𝜕𝑦
+ 𝑢3

𝜕𝑢1

𝜕𝑧
= 𝑓1

𝜕𝑝

𝜕𝑦
+
𝜕𝑢2

𝜕𝑡
+ 𝑢1

𝜕𝑢2

𝜕𝑥
+ 𝑢2

𝜕𝑢2

𝜕𝑦
+ 𝑢3

𝜕𝑢2

𝜕𝑧
= 𝑓2

𝜕𝑝

𝜕𝑧
+

𝜕𝑢3

𝜕𝑡
+ 𝑢1

𝜕𝑢3

𝜕𝑥
+ 𝑢2

𝜕𝑢3

𝜕𝑦
+ 𝑢3

𝜕𝑢3

𝜕𝑧
= 𝑓3
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where 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = (𝑢1(𝑥, 𝑦, 𝑧, 𝑡), 𝑢2(𝑥, 𝑦, 𝑧, 𝑡), 𝑢3(𝑥, 𝑦, 𝑧, 𝑡)), 𝑢: ℝ
3 × [0,∞) → ℝ3, 

is the velocity of the fluid, of components 𝑢1, 𝑢2, 𝑢3, 𝑝 is the pressure, 𝑝:ℝ3 ×

[0,∞) → ℝ, and 𝑓(𝑥, 𝑦, 𝑧, 𝑡) = (𝑓1(𝑥, 𝑦, 𝑧, 𝑡), 𝑓2(𝑥, 𝑦, 𝑧, 𝑡), 𝑓3(𝑥, 𝑦, 𝑧, 𝑡)), 𝑓: ℝ
3 ×

[0,∞) → ℝ3, is the density of external force applied in the fluid in point (𝑥, 𝑦, 𝑧) 

and at the instant of time 𝑡, for example, gravity force per mass unity, with 

𝑥, 𝑦, 𝑧, 𝑡 ∈ ℝ, 𝑡 ≥ 0. ∇ ≡ (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
) is the nabla operator and ∇2 = ∇ ∙ ∇ =

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
≡ ∆ is the Laplacian operator. 

 The non-linear terms 𝑢1
𝜕𝑢𝑖

𝜕𝑥
+ 𝑢2

𝜕𝑢𝑖

𝜕𝑦
+ 𝑢3

𝜕𝑢𝑖

𝜕𝑧
, 1 ≤ 𝑖 ≤ 3, are a natural 

consequence of the Eulerian formulation of motion, and corresponds to part of the 

total derivative of velocity with respect to time of a volume element 𝑑𝑉 in the fluid, 

i.e., its acceleration. If 𝑢 = (𝑢1(𝑥, 𝑦, 𝑧, 𝑡), 𝑢2(𝑥, 𝑦, 𝑧, 𝑡), 𝑢3(𝑥, 𝑦, 𝑧, 𝑡)) and these 𝑥, 𝑦, 𝑧 

also vary in time, 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡), then, by the chain rule, 

(2)  
𝐷𝑢

𝐷𝑡
=

𝜕𝑢

𝜕𝑡
+
𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑡
+
𝜕𝑢

𝜕𝑧

𝑑𝑧

𝑑𝑡
. 

 Defining  
𝑑𝑥

𝑑𝑡
= 𝑢1,

𝑑𝑦

𝑑𝑡
= 𝑢2,

𝑑𝑧

𝑑𝑡
= 𝑢3, comes 

(3)  
𝐷𝑢

𝐷𝑡
=

𝜕𝑢

𝜕𝑡
+
𝜕𝑢

𝜕𝑥
𝑢1 +

𝜕𝑢

𝜕𝑦
𝑢2 +

𝜕𝑢

𝜕𝑧
𝑢3,  

and therefore 

(4)  
𝐷𝑢𝑖

𝐷𝑡
=

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢1

𝜕𝑢𝑖

𝜕𝑥
+ 𝑢2

𝜕𝑢𝑖

𝜕𝑦
+ 𝑢3

𝜕𝑢𝑖

𝜕𝑧
, 1 ≤ 𝑖 ≤ 3, 

which contain the non-linear terms that appear in (1). 

 Numerically, searching a computational result, i.e., in practical terms, there 

can be no difference between the Eulerian and Lagrangian formulations for the 

evaluation of 
𝐷𝑢

𝐷𝑡
 (or 

𝑑𝑢

𝑑𝑡
, it is the same physical and mathematical entity). Only 

conceptually and formally there is difference in the two approaches. I agree, 

however, that you first consider (𝑥, 𝑦, 𝑧) variable in time (Lagrangian formulation) 

and then consider (𝑥, 𝑦, 𝑧) fixed (Eulerian formulation), seems to be subject to 

criticism. In our present deduction, starting from Euler equations in Eulerian 

description, implicitly with a solution (𝑢, 𝑝), next the pressure, and its 

corresponding gradient, they travel with the volume element 𝑑𝑉 = 𝑑𝑥 𝑑𝑦 𝑑𝑧, i.e., 

obeys to the Lagrangian description of motion, as well as the external force 𝑓, in 

order to avoid contradictions. The velocity 𝑢 also will obey to the Lagrangian 

description, and it is representing the velocity of a generic volume element 𝑑𝑉 over 

time, initially at position (𝑥0, 𝑦0, 𝑧0) and with initial velocity 𝑢0 = 𝑢(0) = 𝑐𝑜𝑛𝑠𝑡., 
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𝑢 = 𝑢(𝑡). Done the solution in Lagrangian description, the solution for pressure in 

Eulerian description will be given explicitly.  

 Following this definition, the system (1) above is transformed into 

(5)  

{
 
 

 
 
𝜕𝑝

𝜕𝑥
+
𝐷𝑢1

𝐷𝑡
= 𝑓1

𝜕𝑝

𝜕𝑦
+
𝐷𝑢2

𝐷𝑡
= 𝑓2

𝜕𝑝

𝜕𝑧
+

𝐷𝑢3

𝐷𝑡
= 𝑓3

 

thus (1) and (5) are equivalent systems, according (4) validity.  

 The system (5) always has a solution if the difference between the external 

force 𝑓 and the acceleration 
𝐷𝑢

𝐷𝑡
 is a gradient function[3], for example, dependent 

only on the time variable, and the components of velocity are 𝐶1 class in the 

domain of 𝑢. 

 Given 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) ∈ 𝐶1(ℝ3 × [0,∞)) obeying the initial conditions and a   

vector function 𝑓 (both when in Eulerian description) such that the difference  

𝑓 −
𝐷𝑢

𝐷𝑡
 is gradient, the system’s solution (5) for 𝑝, using the condensed notation 

given by (4), is 

(6)  𝑝 = ∫ (𝑓 −
𝐷𝑢

𝐷𝑡
) ∙ 𝑑𝑙

𝐿
+ 𝜃(𝑡),  

where 𝐿 is any continuous path linking a point (𝑥0, 𝑦0, 𝑧0) to (𝑥, 𝑦, 𝑧) and 𝜃(𝑡) is a 

generic time function, physically and mathematically reasonable, for example with 

𝜃(0) = 0. 

 In Eulerian description and in special case when 𝑓 −
𝐷𝑢

𝐷𝑡
 is a constant vector   

or a dependent function only on the time variable, we come to 

(7)  𝑝 = 𝑝0 + 𝑆1(𝑡) (𝑥 − 𝑥0) + 𝑆2(𝑡) (𝑦 − 𝑦0) + 𝑆3(𝑡) (𝑧 − 𝑧0), 

  𝑆𝑖(𝑡) = 𝑓𝑖 −
𝐷𝑢𝑖

𝐷𝑡
, 

where 𝑝0 = 𝑝0(𝑡) is the pressure in the point (𝑥0, 𝑦0, 𝑧0) at time 𝑡.  

 When the variables 𝑥, 𝑦, 𝑧 in (6) as well as 𝑓 and 𝑢 are in Lagrangian 

description, representing a motion over time of a hypothetical volume element 𝑑𝑉 

or particle of fluid, we need eliminate the dependence of the position using in (6) 

(8)  𝑑𝑙 = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) = (𝑢1𝑑𝑡, 𝑢2𝑑𝑡,  𝑢3𝑑𝑡)    

and integrating over time. The result is 
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(9)  𝑝(𝑡) = 𝑝0 + ∫ ∑ 𝑆𝑖(𝑡) 𝑢𝑖(𝑡) 𝑑𝑡
3
𝑖=1

𝑡

0
, 

𝑝0 = 𝑝(0) = 𝑐𝑜𝑛𝑠𝑡. 

 This expression can be more facilitated making 𝑢𝑖
𝐷𝑢𝑖

𝐷𝑡
𝑑𝑡 = 𝑢𝑖𝑑𝑢𝑖  and 

∫ 𝑢𝑖
𝐷𝑢𝑖

𝐷𝑡
𝑑𝑡

𝑡

0
= ∫ 𝑢𝑖𝑑𝑢𝑖

𝑢𝑖
𝑢𝑖
0 =

1

2
(𝑢𝑖

2 − 𝑢𝑖
0 2), so (9) is equal to 

(10)  𝑝(𝑡) = 𝑝0 −
1

2
∑ (𝑢𝑖

2 − 𝑢𝑖
0 2)3

𝑖=1 + ∫ ∑ 𝑓𝑖(𝑡) 𝑢𝑖(𝑡) 𝑑𝑡
3
𝑖=1

𝑡

0
, 

i.e., 

(11)  𝑝(𝑡) = 𝑝0 −
1

2
(𝑢2 − 𝑢0 2) + ∫ 𝑓 ∙ 𝑢

𝑡

0
𝑑𝑡, 

𝑝, 𝑝0 ∈ ℝ, 𝑢, 𝑢0, 𝑓 ∈ ℝ3, 𝑢 = (𝑢1, 𝑢2, 𝑢3)(𝑡),  𝑢
0 = (𝑢1

0, 𝑢2
0, 𝑢3

0) = 𝑢(0), 

𝑓 = (𝑓1, 𝑓2, 𝑓3)(𝑡), in Lagrangian description. 𝑢2 = 𝑢 ∙ 𝑢 and 𝑢0 2 = 𝑢0 ∙ 𝑢0 are 

the square modules of the respective vectors 𝑢 and 𝑢0.  

 When 𝑓 = 0 the solution (11) is simply 

(12)  𝑝 = 𝑝0 −
1

2
(𝑢2 − 𝑢0 2), 

which then can be considered an exact solution for Euler equations in Lagrangian  

description, and similarly to Bernoulli’s law without external force (gravity, in 

special). 

 Unfortunately, in Eulerian description, neither 

(13)  𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0(𝑥, 𝑦, 𝑧) −
1

2
(𝑢2 − 𝑢0 2) + ∫ 𝑓 ∙ 𝑑𝑙

𝐿
, 

𝑝0(𝑥, 𝑦, 𝑧) = 𝑝(𝑥, 𝑦, 𝑧, 0),  𝑢0 = 𝑢0(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦, 𝑧, 0), nor  

(14)  𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0(𝑡) −
1

2
(𝑢2 − 𝑢0 2) + ∫ 𝑓 ∙ 𝑑𝑙

𝐿
, 

 𝑝0(𝑡) = 𝑝(𝑥0, 𝑦0, 𝑧0, 𝑡),  𝑢
0 = 𝑢0(𝑡) = 𝑢(𝑥0, 𝑦0, 𝑧0, 𝑡), solve (1) for all cases 

of velocities, both formulations supposing 𝑓 a gradient vector function 

(∇ × 𝑓 = 0, 𝑓 = ∇𝜙, 𝜙 potential function of 𝑓) when in Eulerian description. 

 For example, for 𝑓 = 0 the solution (14) is valid only when 

(15)  
𝜕𝑝

𝜕𝑥𝑖
= −∑ 𝑢𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
= −(

𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 )3

𝑗=1 , 

i.e., 
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(16)  
𝜕𝑢𝑖

𝜕𝑡
= ∑ 𝑢𝑗 (

𝜕𝑢𝑗

𝜕𝑥𝑖
−

𝜕𝑢𝑖

𝜕𝑥𝑗
)3

𝑗=1 . 

 How to return to the Eulerian formulation if only was obtained a complete 

solution in the Lagrangian formulation? As well as we can choose any convenient 

velocity 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)) to calculate the pressure (11) that complies 

with the initial conditions (Lagrangian formulation), we also can choose 

appropriates 𝑢(𝑥, 𝑦, 𝑧, 𝑡) (Eulerian formulation) and 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) to the 

velocities and positions of the system and taking the corresponding inverse 

functions in the obtained solution. This choose is not completely free because will 

be necessary to calculate a system of ordinary differential equations to obtain the 

correct set of  𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), such that   

(17)  

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑢1(𝑥, 𝑦, 𝑧, 𝑡)

𝑑𝑦

𝑑𝑡
= 𝑢2(𝑥, 𝑦, 𝑧, 𝑡)

𝑑𝑧

𝑑𝑡
= 𝑢3(𝑥, 𝑦, 𝑧, 𝑡)

 

Nevertheless, this yet can save lots calculation time.    

 It will be necessary find solutions of (17) such that it is always possible to 

make any point (𝑥, 𝑦, 𝑧) of the velocity domain can be achieved for each time 𝑡, 

introducing for this initial positions (𝑥0, 𝑦0, 𝑧0) conveniently calculated according 

to (17). Thus we will have velocities and pressures that, in principle, can be 

calculated for any position and time, independently of one another, not only for a 

single position for each time. For different values of (𝑥, 𝑦, 𝑧) and 𝑡 we will, in the 

general case, obtain the velocity and pressure of different volume elements 𝑑𝑉, 

starting from different initial positions (𝑥0,  𝑦0, 𝑧0). 

 We can escape the need to solve (17), but admitting its validity and the 

corresponding existence of solution, previously choosing differentiable functions 

𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡) and then calculating directly the solution for velocity in 

the Lagrangian formulation, 

(18)  

{
 
 

 
 𝑢1(𝑡) =

𝑑𝑥

𝑑𝑡

𝑢2(𝑡) =
𝑑𝑦

𝑑𝑡

𝑢3(𝑡) =
𝑑𝑧

𝑑𝑡

 

 Concluding, answering the question, in the result of pressure in Lagrangian 

formulation given by (9) or (11), conveniently transforming the initial position 

(𝑥0,  𝑦0, 𝑧0) as function of a generic position (𝑥, 𝑦, 𝑧) and time 𝑡, we will have a 

correct value of the pressure in Eulerian formulation, since that keeping the same 

essential original significance. The same is valid for the velocity in Lagrangian 
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formulation, if the correspondent Eulerian formulation was not previously 

obtained.  

 Without passing through the Lagrangian formulation, given a differentiable 

velocity 𝑢(𝑥, 𝑦, 𝑧, 𝑡) and an integrable external force 𝑓(𝑥, 𝑦, 𝑧, 𝑡), perhaps a better 

expression for the solution of the equation (1) is, in fact, 

(19)  𝑝 = ∑ ∫ [−(
𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 ) + 𝑓𝑖] 𝑑𝑥𝑖

𝑥𝑖
𝑥𝑖
0

3
𝑖=1 + 𝜃(𝑡), 

supposing possible the integrations and that the vector 𝑆 = −[
𝜕𝑢

𝜕𝑡
+ (𝑢 ∙ ∇)𝑢] + 𝑓 is 

a gradient function. This is the development of the solution (6) for the specific path 

𝐿 going parallel to axes 𝑋, 𝑌 and 𝑍 from (𝑥1
0, 𝑥2

0, 𝑥3
0) ≡ (𝑥0, 𝑦0, 𝑧0) to (𝑥1, 𝑥2, 𝑥3) ≡

(𝑥, 𝑦, 𝑧), since that the solution (6) is valid for any 𝐿. 𝜃(𝑡) is a generic time function, 

physically and mathematically reasonable, for example with 𝜃(0) = 0 or adjustable 

for any given condition. Again we have seen that the system of Euler equations has 

no unique solution, only given initial conditions. We can choose different velocities 

that have the same initial velocity and also result, in general, in different pressures. 

 I think that this is better than nothing… It is no longer true that the Euler 

equations do not have a general solution. 

 Apply these methods to the Navier-Stokes equations and to the famous 6th   

Millennium Problem[4] on existence and smoothness of the Navier-Stokes 

equations apparently is not so difficult at the same time also it is not absolutely 

trivial. It takes some time. I hope to do it soon. On the other hand, apply these 

methods to the case 𝑛 = 2 is almost immediate.  

 

                                                      To Leonard Euler, in memorian, 

the greatest mathematician of all time. 

He was brilliant, great intuitive genius. 

 

Euler, forgive me for my mistakes… 

This subject is very difficult! 
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