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Abstract

Modifications of the Weyl-Heisenberg algebra [xi,pj ] = ih̄gij(p) are
proposed where the classical limit gij(p) corresponds to a metric in (curved)
momentum spaces. In the simplest scenario, the 2D de Sitter metric of
constant curvature in momentum space furnishes a hierarchy of modified
uncertainty relations leading to a minimum value for the position uncer-
tainty ∆x. The first uncertainty relation of this hierarchy has the same
functional form as the stringy modified uncertainty relation with a Planck
scale minimum value for ∆x = LP at ∆p = pPlanck. We proceed with
a discussion of the most general curved phase space scenario (cotangent
bundle of spacetime) and provide the noncommuting phase space coor-
dinates algebra in terms of the symmetric g(µν) and nonsymmetric g[µν]
metric components of a Hermitian complex metric gµν = g(µν) + ig[µν],
such gµν = (gνµ)∗. Yang’s noncommuting phase-space coordinates al-
gebra, combined with the Schrodinger-Robertson inequalities involving
angular momentum eigenstates, reveals how a quantized area operator
in units of L2

P emerges like it occurs in Loop Quantum Gravity (LQG).
Some final comments are made about Fedosov deformation quantization,
Noncommutative and Nonassociative gravity.

Keywords : Uncertainty Relations, Gravity, Finsler Geometry, Born Reci-
procity, Phase Space.

Recently, we studied the generalized gravitational field equations in curved
phase spaces (the cotangent bundle of spacetime) [1]. A nontrivial solution
generalizing the Hilbert-Schwarzschild black hole metric in spacetime was found.
The most relevant physical consequence is that the metric becomes momentum-
dependent (observer dependent) which is what one should aim for in trying to
quantize geometry (gravity) : the observer must play an important role in any
measurement (observation) process of the spacetime he/she lives in.
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Most of the work devoted to Quantum Gravity has been focused on the
geometry of spacetime rather than phase space per se. The first indication
that phase space should play a role in Quantum Gravity was raised by [3].
The principle of Born’s reciprocal relativity [3] was proposed long ago based on
the idea that coordinates and momenta should be unified on the same footing,
and consequently, if there is a limiting speed (temporal derivative of the position
coordinates) in Nature there should be a maximal force as well, since force is the
temporal derivative of the momentum. A maximal speed limit (speed of light)
must be accompanied with a maximal proper force (which is also compatible
with a maximal and minimal length duality).

It is better understood now that the Planck-scale modifications of the parti-
cle dispersion relations can be encoded in the nontrivial geometrical properties
of momentum space [9]. When both spacetime curvature and Planck-scale de-
formations of momentum space are present, it is expected that the nontrivial
geometry of momentum space and spacetime get intertwined. The interplay
between spacetime curvature and non-trivial momentum space effects was es-
sential in the notion of “relative locality” and in the deepening of the relativity
principle [9]. Recently the authors [10] described the Hamilton geometry of the
phase space of particles whose motion is characterized by general dispersion
relations. Explicit examples of two models for Planck-scale modified disper-
sion relations, inspired from the q-de Sitter and κ-Poincare quantum groups,
were considered. In the first case they found the expressions for the momentum
and position dependent curvature of spacetime and momentum space, while for
the second case the manifold is flat and only the momentum space possesses a
nonzero, momentum dependent curvature.

We shall focus in this work on two main points. Firstly, on solutions to the
field equations in momentum space with the inclusion of the momentum analog
of a cosmologically constant Λ̃

Rµν(p) − 1

2
gµν(p) R + Λ̃ gµν(p) = 0, µ, ν = 1, 2, . . . , D (1)

the solutions to the above field equations will be used in the modified uncertainty
relations. The momentum-space analog Λ̃ of the cosmological constant should
not be confused with the spacetime one.

Secondly, on the rotationally invariant commutator of the form [11]

[xi, pj ] = ih̄
(
f(p2) δij + g(p2) pi pj

)
, p2 = pi p

i, i, j = 1, 2, . . . , D − 1
(2)

one can see that under rotations

xi → x′i = Mk
i xk, pj → p′j = M l

j pl, pi → p′i = Mk
i pk (3)

the left and right hand side of eq-(2) become

[x′i,p
′
j ] = ih̄

(
f(p′2) δij + g(p′2) p′i p

′
j

)
, p2 = pi p

i = p′2 = p′i p
′i (4)
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and the commutator relations remain invariant. Consequently, if one is to set
[xi,pj ] = ih̄gij(pk), a rotationally invariant commutator can be associated to a
classical momentum space metric of the form

(ds)2
(p) = − h(p2) (dE)2 +

(
f(p2) δij + g(p2) pi pj

)
dpi dpj (5)

A close inspection reveals that the 4D momentum-space metric analog of the
de Sitter metric in a 4D spacetime (written in static coordinates and using the
momentum-space analog of the cosmological constant Λ̃)

(ds)2
(p) = − ( 1− Λ̃

3
p2
r ) (dE)2 +

(dpr)
2

1− Λ̃
3 p2

r

+ p2
r (dΩ)2

(p) (6)

does not have the required form indicated by eq-(5). To verify this one simply
rewrites the de Sitter metric in Cartesian coordinates. One then finds that the
rotationally invariant commutation relations, leading to the metrics (5), are not
compatible with a spherically symmetric momentum space de Sitter metric (6).

One may insert the metric (5) into the field equations in momentum space in
order to determine whether or not there exist actual functions f(p2), g(p2), h(p2)
which solve the field equations (1). However, for our purposes it is not necessary
to do so, and it is much simpler just to write down the momentum space analog
of the de Sitter metric in 2D in natural units h̄ = c = 1

(ds)2
(p) = − ( 1 − L2 p2 ) (dE)2 + ( 1 − L2 p2)−1 (dp)2, h̄ = c = 1 (7)

which is trivially rotational invariant. Λ̃ = 0 in 2D. There is a cosmological
horizon in momentum space when L2p2

h = 1 ⇒ ph = 1
L . We shall choose

the length scale L = Lp to coincide with the Planck length LP so that the
momentum horizon ph = pPlanck is the Planck momentum.

Inspired by the 2D de Sitter momentum space metric (7), and by promoting
the classical momentum variable p to an operator p, such that g11(p2) →
g11(p2), the Schrodinger-Robertson inequality yields the modified uncertainty
relations after performing a series expansion (with h̄ = c = 1)

∆x ∆p ≥ 1

2
| < Ψ| [ x, p ] |Ψ > | =

1

2
| < Ψ| i g11(p2) |Ψ > | =

1

2
| < Ψ| 1

1 − L2 p2
|Ψ > | =

1

2
| < Ψ| 1 + L2 p2 + (L2 p2)2 + (L2 p2)3 + . . . |Ψ > | (8)

One may notice that since < Ψ|L2n p2n|Ψ > ≥ 0 for n ≥ 0, given a self-adjoint
(Hermitian) momentum operator p, one may drop the absolute value symbol
in last terms of eq-(8). The (geometric) series expansion in p2 converges as an
operator if
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L2 p2 < 1 ⇒ < Ψ|p2|Ψ > <
1

L2
= p2

h (9)

consistent with the cosmological momentum-horizon ph being an ultraviolet
cutoff value for the momentum. The unit operator is 1 and the states are
normalized to unity < Ψ||Ψ >= 1 so that < Ψ|1|Ψ >= 1.

Inserting the inequality of the equation below

(∆p)2 ≡ < Ψ| p2 |Ψ > − < Ψ| p |Ψ >2 ⇒ < Ψ| p2 |Ψ > ≥ (∆p)2 (10)

into eq-(8), yields to leading order in L2, a modified uncertainty relation

∆x ∆p >
1

2
< Ψ| ( 1 + L2 p2) |Ψ > ≥ 1

2
( 1 + (L2 ∆p)2 ) ⇒

∆x >
1

2

(
1

∆p
+ L2 ∆p

)
, h̄ = c = 1 (11)

which has the same functional form as the stringy modified uncertainty re-
lations [2], with the main difference being that now one has the cosmological
momentum-horizon ph = 1

L as an ultraviolet cutoff for ∆p, and there is an strict
inequality in eq-(11).

The minimum value for the position uncertainty is (∆x)min = L at ∆p =
1
L = ph and which coincides with the location of the cosmological momentum
horizon. If one equates the minimum value of the position uncertainty to the
Planck scale length it gives (∆x)min = L = LP , and which is consistent with
the fact that we chose the length scale L to coincide with the Planck length LP .

To sum up, to leading order in L, the de Sitter momentum space metric in
2D furnishes : (i) a cosmological momentum-horizon ph = 1

Lp
= pPlanck as an

ultraviolet cutoff; (ii) a Planck scale minimal length uncertainty for the position
coordinate (∆x)min = LP at ∆p = pPlanck.

The next-to-leading order term can be obtained after using the inequality

< Ψ| p4 |Ψ > ≥ (∆p)4 (12a)

that simply follows from

(∆A)2 ≡ < Ψ| (A− Ā)2 |Ψ > ≥ 0, Ā ≡ < Ψ|A|Ψ > (12b)

after replacing A → p2 and recurring to < Ψ|p2|Ψ > ≥ (∆p)2. Upon doing
so one obtains another modified uncertainty relation given by

∆x ∆p >
1

2

(
1 + L2

P (∆p)2 + L4
P (∆p)4

)
(12c)

The minimum position uncertainty now turns out to be (∆x)min > LP at

(∆p)∗ =

(
−1 +

√
13

6

) 1
2

pPlanck < pPlanck (12d)

4



The value of (∆p)∗ lies between ( 1√
3
, 1√

2
) pPlanck. Repeating the procedure

based on eqs-(12a, 12b), by a process of successive squaring, a hierarchy of
modified uncertainty relations of the form are derived

∆x∆p >
1

2

(
1 + L2

P (∆p)2 + L4
P (∆p)4 + . . . + L2k

P (∆p)2k
)
, k = 1, 2, · · ·

(12d)
The most salient feature of the modified uncertainty relations (11,12c,12d) is

that there is a minimum value for the position uncertainty ∆x. The Scale Rela-
tivity Theory [8] is based on the postulate that the Planck scale is the minimum
length resolution. Generalized uncertainty relations in spacetime were derived
from the Extended Relativity Theory in Clifford spaces (C-spaces) in [13]. Such
Clifford space Extended Relativity Theory has two universal parameters : the
speed of light and the Planck length.

In general one can postulate the following modification of the Weyl-Heisenberg
algebra

[xi, pj ] = ih̄ gij(p) (13)

combined with the additional commutation relations

[xi,xj ] 6= 0, [pi,pj ] = 0 (14)

with the provision that the above commutators obey the Jacobi identities [11] .
A nonvanishing [xi,xj ] 6= 0 is compatible with a curved momentum space. The
de Sitter momentum space metric yields a constant scalar curvature 2/p2

Planck =
2L2

P in momentum space. The vanishing [pi,pj ] = 0 commutator is consistent
with a flat spacetime. A nontrivial problem is to find the most general solutions
to the field equations in momentum space (with and without the Λ̃) for the
metric which has the form of eq-(5), in order to yield rotationally symmetric
commutators [xi, pj ], after promoting the classical momentum variables pi, pj to
self-adjoint operators pi,pj . When the momentum space is still commutative,
one can find a Hilbert space representation in the spectral representation of
the momentum operator [11]. The states |Ψ(p) > were analyzed in detail by
[11]. Upon performing the expectation values < Ψ(p)|gij(p)|Ψ(p) >= gij(p) one
recovers the classical metric in momentum space. These momentum eigenstates
have for momentum uncertainty ∆p = 0 so that ∆x =∞, as expected.

The more general commutator than the one in eq-(13)

[xi, pj ] = ih̄ gij(x,p) (15)

may be chosen such that the classical limit gij(x,p) → gij(x, p) (involving c
variables) furnishes a classical phase space metric obeying the full-fledged grav-
itational field equations in curved phase spaces (cotangent bundle of spacetime).
This poses more difficulties due to the ordering ambiguities of the x,p operators
inside gij(x,p). One can solve this ordering ambiguity by performing a Weyl
ordering procedure, like xp→ 1

2 (xp + px) to ensure that the latter ordering is
Hermitian, since the product xp is not.
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An important remark is in order. By Hermitian metric one usually means
gij = g∗ji. This should not be confused with performing the Hermitian (adjoint)
operation to each one of the entries inside the metric matrix gij(x,p). If the
entries of the metric matrix are given by polynomials in the operators x,p,
the Weyl ordering procedure will ensure that each one of the entries of the
metric matrix will remain Hermitian. For example if gij(x,p) = gij(xp), a
Weyl ordering yields gij(

1
2 (xp + px)) ensuring that the argument of the metric

matrix is Hermitian. Similarly, by anti-Hermitian metric one usually means
gij = −g∗ji.

Since the commutator of two Hermitian operators in anti-Hermitian, one
may postulate the following commutators below (in a fully relativistic phase
space) given in terms of of a real metric which has both symmetric g(µν) and
anti-symmetric components g[µν] as follows (h̄ = c = 1)

[xµ, pν ] = i
(
A g(µν)(x,p) +B g[µν](x,p)

)
1 (16)

A,B are real numerical coefficients.

[xµ, xν ] = i L2
P g[µν](x,p) 1 (17)

[pµ, pν ] = i (RH)−2 g[µν](x,p) 1 (18)

the right hand sides are anti-Hermitian due to (i 1)† = −i 1. A Taylor expansion
of the metric components in powers of x,p must be followed by a Weyl ordering
of all the x,p variables to ensure Hermiticity of the arguments of the metric. An
UV (ultraviolet) cutoff is given by the Planck scale LP ; an IR (infrared) cutoff
is given by RH (Hubble radius). The Jacobi identities will impose very strong
constraints on the functional form of g(µν) and g[µν]. A complex Hermitian
metric can be introduced by writing gµν = g(µν) + i g[µν] such that gµν = g∗νµ.
This raises the possibility that complex Hermitian metrics might be relevant in
Quantum Gravity.

It is at this point where the following Schrodinger-Robertson inequalities
for 2n observables A1, A2, · · · , A2n will play an important role. They are given
by the inequality of the determinants below involving the covariance Σ and
commutator C matrices [17]

det Σ ≥ det C, Σkl = cov(Ak, Al), Ckl = − i

2
< Ψ| [Ak, Al] |Ψ > (19)

the covariance is defined as

cov(Ak, Al) =
1

2
(< Ψ|Ak Al|Ψ > + < Ψ|Al Ak|Ψ >)− < Ψ|Ak|Ψ > < Ψ|Al|Ψ >

(20)
uncorrelated variables have zero covariance. The uncertainty squared is (∆A)2 =
cov(A,A).
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For the 2n phase space coordinates, the Σ and C matrices are respectively
given by

Σ =

(
cov(xµ,xν) cov(xµ,pν)
cov(pµ,xν) cov(pµ,pν)

)
(21)

C = − i

2

(
< Ψ|[xµ, xν ]|Ψ > < Ψ|[xµ, pν ]|Ψ >
< Ψ|[pµ, xν ]|Ψ > < Ψ|[pµ, pν ]|Ψ >

)
(22)

Due to the nontrivial commutation relations (16-18), the Schrodinger-Robertson
inequalities det Σ ≥ det C will lead to very complicated uncertainty relations.
Furthermore, because the phase space coordinates are noncommutative [12],
one must deal now with Noncommutative Quantum Mechanics; i.e. Quantum
Mechanics on Noncommutative spacetimes which is the realm of Hopf algebras
and Quantum Groups.

Closely related to the nontrivial commutation relations (16-18) is Yang’s
algebra in an 8D Noncommutative phase space [14]

[xµ, pν ] = − i
LP
RH

ηµν J56, J56 = − J65 (23)

[xµ, xν ] = − i L2
P η55 Jµν , Jµν = − Jνµ (24)

[pµ, pν ] = − i (RH)−2 η66 Jµν (25)

[Jµν , xρ] = i (ηνρ xµ − ηµρ xν) (26)

[Jµν , pρ] = i (ηνρ pµ − ηµρ pν) (27)

[J56, xµ] = − i LP RH η55 pµ, [J56, pµ] = − i (LP RH)−1 η66 xµ (28)

[Jµν , J56] = 0, [Jµν , Jρσ] = i ηνρ Jµσ ± . . . (29)

Yang’s algebra can be obtained simply by replacing

xµ → LP Jµ5; pµ → (RH)−1 Jµ6, µ, ν = 1, 2, 3, 4 (30)

and recurring to the angular momentum algebra in 6D. The Jacobi identities
are satisfied because the angular momentum algebra in 6D obeys them. The
noncommuting coordinates and momenta are just rotations/boosts involving the
extra directions. η55, η66 may be chosen to be ±1, depending on the signature of
the extra two dimensions. J56 is an exchange operator which exchanges x↔ p
in eq-(28). When LP → 0 and/or RH → ∞, [xµ, pν ] → 0. Thus the classical
commuting 8D phase space is recovered when LP → 0 and RH →∞.
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One may notice that Yang’s algebra and the algebra of eqs-(16-18) bears
a certain resemblance if one were to set the numerical coefficient B to zero;
A g(µν)1 ↔ (LP /RH) ηµν J56, and g[µν]1 ↔ Jµν . The Schrodinger-Robertson
inequalities det Σ ≥ det C could be applied directly to the Yang’s algebra
commutators by taking the expectation values with respect to angular momen-
tum eigenstates. If one interprets i [xµ,xν ] ∼ Jµν as a bivector xµν Hermitian
operator, and which in turn can be seen as a geometric area operator Aµν , then
the norm of the spatial area operator would be

(< J |Aij A
ij |J >)

1
2 = L2

P (< J |Jij Jij |J >)
1
2 = L2

P

√
J(J + 1) (31)

which bears a similarity to the results associated to the area operator obtained in
Loop Quantum Gravity (LQG) and based on spin networks. The Planck area is
the quantum of minimal area [16]. This deserves further investigation. Modified
uncertainty relations also apply to the energy and time variables ∆E,∆t as well.
The granularity of spacetime has been interpreted from the principle of Born
reciprocity by [17].

Symplectic geometry is the realm of phase spaces [7] where the symplectic
form ωµν plays an essential role . Fedosov deformation quantization [5] and the
generalized star products in curved phase spaces are tailor made for these gen-
eralized gravitational theories in curved phase spaces (cotangent bundle). The
geometry of the cotangent bundle T ∗M of spacetime has been rigorously studied
by [4], among others. In particular, deformation quantization in Fedosov-Finsler
spaces has been analyzed extensively by [6].

To conclude, we may add that non-geometric fluxes in string theory give rise
to noncommutative/nonassociative structures. More recently, the differential
geometry on the simplest nonassociative (phase) space arising for a constant
non-geometric R-flux has been analyzed in [15]. This nonassociativity for a
constant R-flux background in closed strings is captured by the commutation
relations [xµ, xν ] = Rµνρpρ, [xµ, pν ] = ih̄δµν . These studies paves the road
towards a Noncommutative and Nonassociative gravity which might be a key
feature in the final theory of Quantum Gravity.
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