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Dynamical systems with metarules

I Suppose we have a simple dynamical system, eg a Morse
function on a torus.

I But suppose that it is not so simple. Suppose the shape of
the system depends on the location in the system that we
are currently at.

I So if the current state of the system is at the top of the
torus, and we were to draw a trajectory from this point, we
would expect suddenly the shape of the torus to change.
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Dynamical systems with metarules

Why is this a useful way of modelling a real dynamical system?

I Because in reality the way a system changes depends on
the direction a system is pushed from one state to another.
The system is not static, but depends on the trajectories
that are traced through it.

I In practice, this means that if we were to consider a system
holistically, and consider a unique choice of initial tangent
vector from each point - a vector field - in parameter space
(ignoring situations where such is forbidden, since I am
assuming Lorentzian geometry), then we would like to
measure how a system would evolve / change in structure
in a natural way, given that initial choice, or "push" in
parameter space.
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Natural evolution and meta-Markov models

I More primitively, consider the idea of a markov process.
One has a set of states, with transition probabilities
between them. One can characterise this with a transition
matrix.

I But suppose now that we wish to consider a set of
transition matrices, and transition probabilities between
these, which depend on the last state and the current
state. In other words, a "meta-Markov" process. Then this
is closer to the general idea I am trying to aim at.

I We are now ready to ask the central question.
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Central Question

Given a meta-dynamical system as loosely defined above, how
can one describe the geometry of the associated object?

I If we can describe the geometry, we can compute
geodesics (avoidance of tipping points).

I If we can describe the geometry, it suggests ways that the
system can be understood.

I If we can describe the geometry, it suggests ways that the
system can be controlled.
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The first jet bundle

I The tangent bundle to M is given by tuples (p, v), where v
is an element of TpM.

I The tangent space to the tangent space gives T(2)M, given
by tuples (p, v ,w).

I Iterating this process a countably infinite number of times,
we obtain the first jet bundle JM, given by tuples (p,V ),
where V is an infinite matrix.

I In practice, however, V is of rank dim(M).
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Elements of the jet bundle associated to trajectories

Suppose now we have two points, p and q in our parameter
space M.

I Consider the set of index preserving diffeomorphisms
Aut(M) on M. This will have a basis given by {fij : xi 7→ xj}.

I Consider a trajectory γ joining p and q in M.
I Then relative to any point γ(t) we have a vector pointing in

the direction of the perturbation of the point relative to the
ij th element of Aut(M) at γ(t).

I This gives us a matrix of tangents (relative to these
perturbations of γ), or an element of the first jet bundle,
associated to each point of the path γ.
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Meta-markov processes again

I claim that to specify the structure associated to the first jet
bundle, we need a 6-tensor κ.

I Consider again meta rules for a markov process. Note that
GL(n) as a matrix group has tangent group GL(n).

I Then if Tij is a unit transition probability, and Ukl , Vmn are
unit tangent probabilities sitting in the tangent group GL(n),
we have that κijklmn determines the result of acting on Tij
with Ukl "on the left" and Vmn "on the right". It is the
"meta-rule transition to transition probability".

I The analogy for left and right action is that a left action
occurs subsequent to the state - it is where the trajectory is
moving to, and a right action occurs prior - it is where the
trajectory is moving from.
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The structural coefficients

I As in Riemannian geometry, we have structural coefficients
given by

Γpq
ijklmn = 〈∂pEij ,Ekl , ∂qEmn〉κ

where {Eij} forms a basis for the (first) jet bundle of the
space.

I These can be computed as

Γpq
ijklmn = κabc

ijk (Σg∈C8⊗C7{g · ∂p∂qκabclmn})

where summation is over the group product C8 ⊗ C7 acting
on the indices of ∂p∂qκabclmn.
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Geodesics

I γ is geodesic with respect to κ if

∇(Xij ,κ)Xkl = 0

where Xij : [0,1]→ JM is the one parameter jet field
associated to γ.

I ∇(X ,κ) is the affine connection with respect to κ, uniquely
determined by

∂ij〈 ¯̄X , ¯̄Y , ¯̄Z 〉κ = 〈∂ij
¯̄X , ¯̄Y , ¯̄Z 〉+ 〈 ¯̄X , ∂ij

¯̄Y , ¯̄Z 〉+ 〈 ¯̄X , ¯̄Y , ∂ij
¯̄Z 〉
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The cybernetic information functional

We wish to know what choice of κ is most natural, ie how a
"physical" system will place constraints on allowable behaviour
for κ.
Define Cyb(M) := {(JM)3 → JM} as the space of left and
right actions on the first jet bundle of M.

I We have an information functional given by

I :=
∫

M

∫
Cybm(M) f (∂ij∂k logf )3dmdV

where f = f (m,V ) = δ(κ(m)− V ), with m ∈ M a point in
parameter space and V ∈ Cybm(M) is a point in the space
of meta-rules at m.

I ∂ij is the derivative on function space. ∂k is the derivative
on normal space.
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The key result

I I conjecture that, after some considerable work, it can be
demonstrated that this simplifies to∫

M Inv(κ)dm

where Inv(κ) in a geometric invariant defined by

Inv(κ) := κijklmnΓijabcdef ΓklghpabcΓmndefghp

I This allows us to understand the geometric behaviour of a
meta-dynamical system as Inv(κ) = 0, as a physical
system will minimise the information associated to its
relevant information functional.
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Final comments

I In this talk I have indicated how one might go about
modelling dynamical systems using meta-rule type
considerations.

I This talk has been intended only as the starting point for a
conversation on said matters.

I Naturally a great deal of work remains to be done.
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