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We present quantum key distribution based on Deutsch’s algorithm using an entangled state. The
security of the protocol is based on it of Ekert 91 protocol. That is, the existence of eavesdrop-
pers must destroy entanglement. Next, we study quantum communication based on two quantum
algorithms, such as the Bernstein-Vazirani algorithm and Simon’s algorithm. We discuss the fact
that quantum communication overcomes classical communication by a factor of N in the Bernstein-
Vazirani algorithm case. Also we discuss the fact that quantum communication overcomes classical
communication by a factor of O(

√
2N/N) in Simon’s algorithm case.

PACS numbers: 03.67.Dd(Quantum cryptography), 03.67.Lx(Quantum computer), 03.67.-a(Quantum infor-
mation theory)
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I. INTRODUCTION

The quantum theory (cf. [1—6]) gives approximate and at times remarkably accurate numerical predictions. Much
experimental data approximately fits to the quantum predictions for the past some 100 years. We do not doubt the
correctness of the quantum theory. The quantum theory also says new science with respect to information theory.
The science is called the quantum information theory [6]. Therefore, the quantum theory gives us very useful another
theory in order to create new information science and to explain the handling of raw experimental data in our physical
world.

As for the foundations of the quantum theory, Leggett-type non-local variables theory [7] is experimentally inves-
tigated [8—10]. The experiments report that the quantum theory does not accept Leggett-type non-local variables
interpretation. However there are debates for the conclusions of the experiments. See Refs. [11—13].

As for the applications of the quantum theory, implementation of a quantum algorithm to solve Deutsch’s problem
[14] on a nuclear magnetic resonance quantum computer is reported firstly [15]. Implementation of the Deutsch-Jozsa
algorithm on an ion-trap quantum computer is also reported [16]. There are several attempts to use single-photon two-
qubit states for quantum computing. Oliveira et al. implement Deutsch’s algorithm with polarization and transverse
spatial modes of the electromagnetic field as qubits [17]. Single-photon Bell states are prepared and measured [18].
Also the decoherence-free implementation of Deutsch’s algorithm is reported by using such single-photon and by
using two logical qubits [19]. More recently, a one-way based experimental implementation of Deutsch’s algorithm
is reported [20]. In 1993, the Bernstein-Vazirani algorithm was reported [21]. It can be considered as an extended
Deutsch-Jozsa algorithm. In 1994, Simon’s algorithm was reported [22]. Implementation of a quantum algorithm
to solve the Bernstein-Vazirani parity problem without entanglement on an ensemble quantum computer is reported
[23]. Fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits
is discussed [24]. A quantum algorithm for approximating the influences of Boolean functions and its applications is
recently reported [25]

Quantum communication is the art of transferring a quantum state from one place to another. Traditionally, the
sender is named Alice and the receiver Bob. The basic motivation is that quantum states code quantum information
- called qubits in the case of 2-dimensional Hilbert spaces and that quantum information allows one to perform tasks
that could only be achieved far less efficiently, if at all, using classical information.

On the other hand, the earliest quantum algorithm, the Deutsch-Jozsa algorithm, is representative to show that
quantum computation is faster than classical counterpart with a magnitude that grows exponentially with the number
of qubits. In 2015, it is discussed that the Deutsch-Jozsa algorithm can be used for quantum key distribution [26].

In this paper, we present secure quantum key distribution based on Deutsch’s algorithm. The security of the
protocol is based on it of Ekert 91 protocol [27]. And we investigate the relation between quantum communication
and quantum algorithms, such as the Bernstein-Vazirani algorithm and Simon’s algorithm.

II. DEUTSCH’S ALGORITHM

In this section, we review Deutsch’s algorithm along with Ref. [6].
Quantum parallelism is a fundamental feature of many quantum algorithms. It allows quantum computers to

evaluate the values of a function f(x) for many different values of x simultaneously. Suppose

f : {0, 1} → {0, 1} (1)

is a function with a one-bit domain and range. A convenient way of computing this function on a quantum computer
is to consider a two-qubit quantum computer which starts in the state

|x, y�. (2)

With an appropriate sequence of logic gates it is possible to transform this state into

|x, y ⊕ f(x)�, (3)

where ⊕ indicates addition modulo 2. We give the transformation defined by the map

|x, y� → |x, y ⊕ f(x)� (4)

a name, Uf .
Deutsch’s algorithm combines quantum parallelism with a property of quantum mechanics known as interference.

Let us use the Hadamard gate to prepare the first qubit

|0� (5)
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as the superposition

(|0�+ |1�)/
√

2, (6)

but let us prepare the second qubit as the superposition

(|0� − |1�)/
√

2, (7)

using the Hadamard gate applied to the state

|1�. (8)

The Hadamard gate is as

H =
1√
2
(|0�	1|+ |1�	0|+ |0�	0| − |1�	1|). (9)

Let us follow the states along to see what happens in this circuit. The input state

|ψ0� = |01� (10)

is sent through two Hadamard gates to give

|ψ1� =
� |0�+ |1�√

2

� � |0� − |1�√
2

�
. (11)

A little thought shows that if we apply Uf to the state

|x�(|0� − |1�)/
√

2 (12)

then we obtain the state

(−1)f(x)|x�(|0� − |1�)/
√

2. (13)

Applying Uf to |ψ1� therefore leaves us with one of the two possibilities:

|ψ2� =






±
� |0�+ |1�√

2

� � |0� − |1�√
2

�
if f(0) = f(1)

±
� |0� − |1�√

2

� � |0� − |1�√
2

�
if f(0) �= f(1).

(14)

The final Hadamard gate on the qubits thus gives us

|ψ3� =






±|0�|1� if f(0) = f(1)

±|1�|1� if f(0) �= f(1).
(15)

so by measuring the first qubit we may determine f(0) ⊕ f(1). This is very interesting indeed: the quantum circuit
gives us the ability to determine a global property of f(x), namely f(0) ⊕ f(1), using only one evaluation of f(x)!
This is faster than is possible with a classical apparatus, which would require at least two evaluations.

III. FAILING DEUTSCH’S ALGORITHM

In this section, we study Deutsch’s algorithm by using another input state. In this case, we cannot perform Deutsch’s
algorithm as shown below.

The input state

|ψ0� = |10� (16)

is sent through two Hadamard gates to give

|ψ1� =
� |0� − |1�√

2

� � |0�+ |1�√
2

�
. (17)



4

We apply Uf to the following state

|0� − |1�√
2

|x�. (18)

If x = 1

|0�|1� − |1�|1�√
2

(19)

we have

|0�|f(0)� − |1�|f(1)�√
2

(20)

and if x = 0

|0�|0� − |1�|0�√
2

(21)

we have

|0�|f(0)� − |1�|f(1)�√
2

. (22)

Thus,

|0�(|f(0)�+ |f(0)�)− |1�(|f(1)�+ |f(1)�)√
2

(23)

Applying Uf to |ψ1� therefore leaves us with one of the two possibilities:

|ψ2� =






±
� |0� − |1�√

2

� � |0�+ |1�√
2

�
if f(0) = f(1)

±
� |0� − |1�√

2

� � |0�+ |1�√
2

�
if f(0) �= f(1).

(24)

The final Hadamard gate on the qubits thus gives us

|ψ3� =






±|1�|0� if f(0) = f(1)

±|1�|0� if f(0) �= f(1).
(25)

In this case we fail to perform Deutsch’s algorithm.

IV. DEUTSCH’S ALGORITHM USING THE BELL STATE

In this section, we study Deutsch’s algorithm by using the Bell state.
The input state

|ψ0� =
|10�+ |01�√

2
(26)

is sent through two Hadamard gates to give

|ψ1� =
1√
2

�� |0� − |1�√
2

� � |0�+ |1�√
2

�
+

� |0�+ |1�√
2

� � |0� − |1�√
2

��
.

(27)

Applying Uf to |ψ1� therefore leaves us with one of the two possibilities:

|ψ2� =






± 1√
2

�� |0� − |1�√
2

� � |0�+ |1�√
2

�
±
� |0�+ |1�√

2

� � |0� − |1�√
2

��
if f(0) = f(1)

± 1√
2

�� |0� − |1�√
2

� � |0�+ |1�√
2

�
±
� |0� − |1�√

2

� � |0� − |1�√
2

��
if f(0) �= f(1).

(28)
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The final Hadamard gate on the qubits thus gives us

|ψ3� =






±|1�|0� ± |0�|1�√
2

if f(0) = f(1) entanglement

±|1�|0� ± |1�|1�√
2

if f(0) �= f(1) separable.

(29)

so by measuring the qubits (by means of the Bell measurement) we may determine f(0)⊕f(1). The Bell measurement
is explained as follows: Alice and Bob prepare the Bell basis

|Ψ+� =
|1�|0�+ |0�|1�√

2

|Ψ−� =
|1�|0� − |0�|1�√

2

|Φ+� =
|1�|1�+ |0�|0�√

2

|Φ−� =
|1�|1� − |0�|0�√

2
(30)

If the state |ψ3� is an entangled state, we have

|	ψ3|Ψ+�|2 = 1 or |	ψ3|Ψ−�|2 = 1 or |	ψ3|Φ+�|2 = 1 or |	ψ3|Φ−�|2 = 1. (31)

Therefore the measurement outcome should be 1 if the function is constant. If the state |ψ3� is a separable state, we
have

|	ψ3|Ψ+�|2 = 1/2 or |	ψ3|Ψ−�|2 = 1/2 or |	ψ3|Φ+�|2 = 1/2 or |	ψ3|Φ−�|2 = 1/2. (32)

Therefore the measurement outcome should be not 1 if the function is balanced.

V. QUANTUM KEY DISTRIBUTION BASED ON DEUTSCH’S ALGORITHM

We discuss the fact that Deutsch’s algorithm can be used for quantum key distribution by using an entangled state.
Alice and Bob have promised to use a function f which is of one of two kinds; either the value of f is constant

or balanced. To Eve, it is secret. Alice’s and Bob’s goal is to determine with certainty whether they have chosen a
constant or a balanced function without information of the function to Eve. If the function is constant the output
qubits are entangled, otherwise separable. Alice and Bob perform the Bell measurement. Alice and Bob share one
secret bit if they determine the function f by getting a suitable measurement outcome. The existence of Eve destroys
entanglement. The security of our protocol is based on it of Ekert 91 protocol [27].

• First Alice prepares the entangled qubits, applies the Hadamard transformation to the state, and sends the
output state described in the Bell state to Bob.

• Next, Bob randomly picks a function “f” that is either balanced or constant and Bob applies Uf . He then sends
the one qubit to Alice.

• Finally, Alice and Bob perform the Bell measurement. She learns whether f was balanced or constant. If the
final qubits are entangled, then the function is constant. If the final qubits are not entangled, then the function
is balanced - Alice and Bob now share a secret bit of information (the “type” of f(x)).

• The result of the Bell measurement is 1 if the function is constant.

• Alice and Bob compare a subset of all the results of the Bell measurements when the function is constant; all
of them should be 1.

• The existence of Eve must destroy entanglement (Ekert 91).

• Eve is detected in the following case; The result of the Bell measurement is not 1 and the function is constant.

In conclusion, we have shown that Deutsch’s algorithm can be used for secure quantum key distribution. The
security is based on it of Ekert 91 protocol.
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VI. THE BERNSTEIN-VAZIRANI ALGORITHM

In this section, we review the Bernstein-Vazirani algorithm. Suppose

f : {0, 1}N → {0, 1} (33)

is a function with a N -bit domain and a 1-bit range. We assume the following case

f(x)= a · x =

N	

i=1

aixi(mod2)

= a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN ,
a ∈ {0, 1}N (34)

Let us follow the quantum states through the Bernstein-Vazirani algorithm. The input state is

|ψ0� = |0�⊗N |1�. (35)

After the Hadamard transformation on the state we have

|ψ1� =
	

x∈{0,1}N

|x�√
2N

� |0� − |1�√
2

�
. (36)

Next, the function f is evaluated (by Bob) using

Uf : |x, y� → |x, y ⊕ f(x)�, (37)

giving

|ψ2� = ±
	

x

(−1)f(x)|x�√
2N

� |0� − |1�√
2

�
. (38)

Here

y ⊕ f(x) (39)

is the bitwise XOR (exclusive OR) of y and f(x). To determine the result of the Hadamard transformation it helps
to first calculate the effect of the Hadamard transformation on a state

|x�. (40)

By checking the cases x = 0 and x = 1 separately we see that for a single qubit

H|x� =
	

z

(−1)xz|z�/
√

2. (41)

Thus

H⊗N |x1, . . . , xN �

=



z1,... ,zN

(−1)x1z1+···+xNzN |z1, . . . , zN �√
2N

. (42)

This can be summarized more succinctly in the very useful equation

H⊗N |x� =



z(−1)x·z|z�√
2N

, (43)

where

x · z (44)

is the bitwise inner product of x and z, modulo 2. Using this equation and (38) we can now evaluate |ψ3�,

|ψ3� = ±
	

z

	

x

(−1)x·z+f(x)|z�
2N

� |0� − |1�√
2

�
. (45)
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Thus,

|ψ3� = ±
	

z

	

x

(−1)x·z+a·x|z�
2N

� |0� − |1�√
2

�
. (46)

We notice
	

x

(−1)x·z+a·x = 2Nδa,z. (47)

Thus,

|ψ3� = ±
	

z

	

x

(−1)x·z+a·x|z�
2N

� |0� − |1�√
2

�

= ±
	

z

2Nδa,z |z�
2N

� |0� − |1�√
2

�

= ±|a�
� |0� − |1�√

2

�

= ±|a1a2a3 · · · aN�
� |0� − |1�√

2

�
. (48)

Alice now observes

|a1a2a3 · · ·aN �. (49)

Summarizing, if Alice measures |a1a2a3 · · · aN � the function is

f(x1, x2, ..., xN ) = a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN . (50)

VII. QUANTUM COMMUNICATION BASED ON THE BERNSTEIN-VAZIRANI ALGORITHM

We study quantum communication based on the Bernstein-Vazirani algorithm.
Alice and Bob have promised to select a function f(x1, x2, ..., xN ) = a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN . Alice does

not know a1, a2, ..., aN . Bob knows a1, a2, ..., aN . Alice’s goal is to determine with certainty what a1, a2, ..., aN Bob
has chosen. In the classical theory, Alice has to ask Bob N questions. In the quantum theory, Alice has to ask Bob
“one” question! Alice prepares suitable N + 1 partite uncorrelated state, performs the Hadamard transformation to
the state, and sends to the output state to Bob. And Bob performs the Bernstein-Vazirani algorithm and inputs the
information of the a into the finall state. Alice asks him what state is. Alice measures the finall state and she knows
the a. If the a is learned by Alice, Alice and Bob share N bits of information, by one communication with each
other. The speed to share N bits improves by a factor of N by comparing the classical case. This shows quantum
communication overcomes classical communication by a factor of N .

• First Alice prepares the qubits in (36) and sends the N + 1 qubits to Bob.

• Next, Bob picks N bits “a” and Bob applies Uf Eq. (37) evolving the N + 1 qubits to Eq. (38). He then sends
the N qubit to Alice.

• Finally, Alice applies the Hadamard transformation to each of the qubits and measures. She learns f(x) =

a · x =

N

i=1 aixi(mod2) = a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN - Alice and Bob now share N bits of information
(the “type” of f(x)).

• In the classical case (without this quantum computing), Alice needs at least N -communication with Bob to
share N bits of information.

In conclusion, we have shown quantum communication overcomes classical communication by a factor of N in the
Bernstein-Vazirani algorithm case.



8

VIII. SIMON’S ALGORITHM

In this section, we review Simon’s algorithm. Suppose

f : {0, 1}N → {0, 1}N (51)

is a function with a N -bit domain and a N -bit range. We assume the following case

f(x) = f(x⊕ s), ∀x.
x⊕ s = (x1 ⊕ s1, x2 ⊕ s2, ..., xN ⊕ sN ). (52)

Simon’s algorithm combines quantum parallelism with a property of quantum mechanics known as interference.
Let us follow the quantum states through Simon’s algorithm. The input state is

|ψ0� = |0�⊗N |0�. (53)

After the Hadamard transformation on the first N -bit state we have

|ψ1� =
	

x∈{0,1}N

|x�√
2N
|0�. (54)

Next, the function f is evaluated (by Bob) using

Uf : |x, y� → |x, y ⊕ f(x)�, (55)

giving

|ψ2� =
	

x

|x�√
2N
|f(x)�. (56)

We have

|ψ3� =
	

x

|x⊕ s�√
2N

|f(x)� (57)

by using f(x) = f(x⊕ s). Thus,

|ψ4� =
1√
2
(|ψ2�+ |ψ3�)

=
	

x

|x�+ |x⊕ s�√
2N+1

|f(x)�. (58)

In what follows, we derive the result of the Hadamard transformation of |x�+ |x⊕s�. We have the very useful equation

H⊗N |x� =



z(−1)x·z|z�√
2N

. (59)

And we have

H⊗N |x⊕ s� =



z(−1)z·(x⊕s)|z�√
2N

, (60)

Thus,

H⊗N (|x�+ |x⊕ s�)

=



z(−1)x·z+z·(x⊕s)|z�√

2N

=



z [(−1)x·z(1 + (−1)z·s)]|z�√

2N
, (61)

Therefore, if Alice measures |z� then

z · s = 0. (62)

And thus, if Alice measures |z1�,|z2�,...,|zN � we get the s.
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IX. QUANTUM COMMUNICATION BASED ON SIMON’S ALGORITHM

We study quantum communication based on Simon’s algorithm.
First, Alice and Bob have promised to use a function f such as f(x) = f(x ⊕ s) for all x. Alice does not know

s. Bob knows s. Alice’s goal is to determine with certainty what s Bob has chosen. Alice prepares suitable N + 1
partite uncorrelated state, performs the Hadamard transformation to the state, and sends the output state to Bob.
And Bob performs Simon’s algorithm and inputs the information of the s into the finall state. Alice asks him what
state is it O(N) times. Alice measures the finall state and she knows the s. If the s is learned by Alice, Alice and
Bob share N bits of information, by O(N)-communication with each other. In the classical case, Alice needs at least

O(
√

2N )-communication with Bob to get the s.

• First Alice prepares the qubits in (54) and sends the N + 1 qubits to Bob.

• Next, Bob picks N bits “s” and Bob applies Uf Eq. (55) evolving the N + 1 qubits to Eq. (56). He then sends
the N qubit to Alice.

• Finally, Alice applies the Hadamard transformation to each of the first N qubits and measures it O(N) times.
She learns s - Alice and Bob now share N bits of information.

• In the classical case (without this quantum computing), Alice needs at least O(
√

2N )-communication with Bob
to get the s.

In conclusion, we have shown quantum communication overcomes classical communication by a factor of O(
√

2N/N)
in Simon’s algorithm case.

X. CONCLUSIONS

In conclusion, we have presented quantum key distribution based on Deutsch’s algorithm by using an entangled state.
The idea of the security of the protocol has been based on it of Ekert 91 protocol. The existence of eavesdroppers must
has destroyed entanglement. We have discussed quantum communication based on the Bernstein-Vazirani algorithm.
Alice and Bob have promised to select a function f(x) = a ·x. Alice does not have known a. Bob has known a. Alice’s
goal has been to determine with certainty what a Bob has chosen. In the classical theory, Alice has to have asked
Bob N questions. In the quantum theory, Alice has to have asked Bob one question. If the a have been learned by
Alice, Alice and Bob share N bits of information, by one communication with each other. The speed to share N bits
has improved by a factor of N by comparing the classical case. This has shown quantum communication overcomes
classical communication by a factor of N in the Bernstein-Vazirani algorithm case. Finally, we have discussed quantum
communication based on Simon’s algorithm. Alice and Bob have promised to use a function f such as f(x) = f(x⊕s)
for all x. Alice does not have known s. Bob has known s. Alice’s goal has been to determine with certainty what
s Bob has chosen. If the s has been learned by Alice, Alice and Bob have shared N bits of information, by O(N)-

communication with each other. In the classical case, Alice has needed at least O(
√

2N )-communication with Bob to

get the s. This has shown quantum communication overcomes classical communication by a factor of O(
√

2N/N) in
Simon’s algorithm case.
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