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Abstract

The concept of ”potentia” as proposed by Heisenberg to understand the
structure of quantum mechanics, has just remained a fanciful speculation as
of now. In this paper we provide a physically consistent and a mathematically
justified ontology of this model based on a fundamental role played by the
discrete subgroups of the relevant Lie groups. We show that as such, the space
of ”potentia” arises as a coexisting dual space to the real three dimensional
space, while these two sit piggyback on each other, such that the collapse of
wave function can be understood in a natural manner. Quantum nonlocality
and quantum jumps arise as a natural consequence of this model.
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Quantum nonlocality, quantum jumps, wave-function collapse; essentially
all puzzling aspects of quantum mechanics, are believed to occur in the hy-
pothetical ”potentia” as proposed by Heisenberg [1]. However as of now it
has just remained a fanciful conjecture. In this paper we develop a consis-
tent physical model with appropriate mathematical structure to map this
”potentia” faithfully. We find that the disrete subgroups of the relevant Lie
groups, play a basic role to provide a realistic interpretation of the concept
of potentia.

The two electron wave function is [2] ( ↑≡ χ
1/2
1/2 and ↓≡ χ

−1/2
1/2 ),

ψ =
1√
2

[↑ (1) ↓ (2)− ↓ (1) ↑ (2)] (1)

This is antisymmetric under the exchange of state labels ↑↔↓ while the
number labels are fixed in the sequence (12). Should we associate these
numbers with particle numbers 1 and 2 for the two particles ? However
the whole wave function of this two electron system has been built with the
explicit aim of ensuring that the particle number has no physical significance
[2, Ch. XIV]. So what do we these numbers represent?

Let us take the space in which the two electrons reside as,

SU(2)S ⊗ SO(3)l (2)

Here SO(3)l specifies the three-dimensional x-, y- and z-space. Now for a
single electron the particle position in the SO(3)l space, as the expectation
value < x >, is a well defined quantity. But no such values < x1 > and
< x2 > for the position occurs for this composite system of two electrons. So
what does it mean that the exact numbers 1 and 2 sit in the function (eqn.
1) with no manifestation of any uncertainty whatsoever.

Here we propose that this sequential number (12) in the above eqn. (1)
does not exist in the ordianry SO(3)l space. It actually exists in the space of
”potentia” as proposed by Heisenberg [1]. But wherefrom does this potentia
pop up?

Note that the particles are sitting in group space as given in eqn. (2).
Here the group structure SU(2) has a centre of Z2 ( addition modulo 2 with
elements [0,1] ). Then the factor group,

SU(2)S
Z2

∼= SO(3)p (3)
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Here given the group structure in eqn. (2), there is no justification in
associating the above orthogonal group with the group SO(3)l. We should
treat it as another independent SO(3) group and is thus labelled with another
subscript ”p”. Now we identify it with the word ”potentia” assuming that
this space is defining the space of potentia.

Note that Z2 is a discrete subgroup which is internal to the group SU(2)S.
Hence we label the fundamental representation of SU(2) group with its Z2

centre elements [0,1] as, (
↑ (0)
↓ (1)

)
(4)

The justification for the above is as follows.
We know that in the symmetric group for three particles S3 we have an

antisymmmteric state as given by the Young diagram,

(5)

But this is zero for electrons as these are representations of the group
SU(2)S. This is normally stated as a manifestation of the fact for the group
SU(2) totally antisummetric function occurs for a Young diangram with two
boxes in a column. Thus the above Young digram is zero for SU(2) repre-
sentation states. Thus an extra physical constraint is invoked to ensure the
vanishing of the represetation in eqn. (5).

Here we invoke an internal mathematical condition from eqn. (4) to
ensure the vanishing of the above state. The above is consistently explained
by putting the Z2 labels in the Young diagram for the SU(2) fundamental
representation for two SU(2) particles as,

0
1 (6)

And thus for three particles the relevant non-zero Young diagram is,

0 0
1 (7)

Note that the labels [0, 1] ∼= [1, 2] and thus in eqn. (1) the sequential
labels (12) correspond to the center Z2 lables. Next how is the subscipt
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”p” on the orbital group is justified ? It is justified as the centre being a
discrete group, the exchange over this space is a jump between 1 and 2 with
infinite speed This is instantaneous exchange in this space with c→∞, that
is infinte velocity. So this exchange occurs over this potentia given by the
orbital space SO(3)p. Now due to the instantaneous exchange it is justified
to use it to map ’potentia’ of Heisenberg.

Clearly the particles which are represented by ( ↑ , ↓ ) exist simultane-
ously at corrresponding locations in the ordinary orbital space SO(3)l and
which should be dual to the potentia space SO(3)p. The points at which the
particles are defined in both the spaces is what makes these two spaces to sit
piggyback on each other. When measuremt is preformed in our SO(3)l space
then the wave function collapse (or better reduction) occurs and nonlocality
( as per the state given in eqn.(1) ) is manifested in our SO(3)l space.

It turns out that we have been able to identify the potentia for a two
electron system quite easily. How about a single particle state as defined by
Schroedinger equation? Now the spherical harmonics Y l

m(θ, φ) are rotation
group basis states in our SO(3)l space [3]. Note that the SO(3)l transforma-
tions are defined by three parameters. So why are the spherical harmonics
defined only by two parameters (θ, φ) ? Classically to describe a rigid body
three parameters are needed. In quantum mechanics one has only point par-
ticles and no rigid bodies. Only two parameters are needed to give their
angular coordinates. The third coordinate though hidden, still should mani-
fest itself [3, p. 327]. This shows up as the phase of the quantum mechanical
wave function eiφ ψ . This gives the group U(1) for the phase part of the
state. Now given the additive group of the real number lineR and the infinite
set of integers Z then the factor group,

R
Z
∼= U(1) ∼ SO(2)p (8)

Now SO(2)l is a subgroup of the orbital space SO(3)l. However we iden-
tify the above SO(2)p as an independent and different orbital space which is
labelled by the set Z. We have taken the cue from the above set Z2 for the
two particle system. Hence we suggest that this potentia space of SO(2)p
which labels the particle in that space by the discrete set Z. Let us pro-
pose that the spaces SO(2)l and SO(2)p are simultaneous and dual to each
other and sitting piggyback on each other. Thus particle travels in this po-
tentia by jumping over the numbers 1,2,3.. instantaneously while it travels
continuously and with velocity v ≤ c in our orbital space.
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When observation is made in the space SO(2)l then the wave function
collapses in such a manner that in the potentia space with jumps in Z from
1 → 2 → 3 → 4 → · · · occur. Clearly for a bound state these jumps
would correspond to instantaeous quantum jumps in the potentia space. So
quantum jumps do not occur in real SO(2)l space but in the SO(2)p potentia
space with infinite velocity.

We see that there is indeed an absolute space with c → ∞ coexisting
with the real space with a finite velocity c. But in quantum mechnanics it
manifest itself in the above unique fashion as a potentia for a single particle
quantum mechanics and for a two fermion system. This provides a physically
consistent and mathematically justified ontology to Heisenberg’s potentia to
understand how quantum mechanics functions.
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