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Abstract

Shannon entropy, conditional entropy, joint entropy and mutual information, can esti-

mate the chaotic level of information. However, these methods could only handle cer-

tain situations. Based on Deng entropy, this paper introduces multiple new entropy to

estimate entropy under multiple interactive uncertain information: conditional Deng en-

tropy is used to calculate entropy under conditional basic belief assignment; joint Deng

entropy could calculate entropy by applying joint basic belief assignment distribution;

generalized mutual information is applied to estimate the uncertainty of information

under knowing another information. Numerical examples are used for illustrating the

function of new entropy in the end.

Keywords: Uncertainty measure, Dempster-Shafer evidence theory, Information entropy,

Deng entropy.

1. Introduction

How to process marvelous information is a big issue in big data era. Many papers,

based on their domain knowledge, proposed methods to process information. Evidence
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theory [1] is one of the effective ways to obtain accurate information through combining

uncertain information. After that, numerous methods to process uncertain information

was developed, such as Yager’s method [2], Murphy’s method [3], Deng’s method [4] [5],

fuzzy number [6] [7], D numbers [8], ect.

C.E.Shannon [9] proposed a useful way Shannon entropy, to describe the chaotic level

of information. Shannon entropy comes from the concept ”entropy” [10], proposed by

Papoulis in 1860s. Papoulis applied entropy in thermodynamics, and predetermined

that entropy equals the ratio of the variation of heat to absolute temperature. Then

C.E.Shannon extended entropy into information transmission. Based on Shannon en-

tropy, many papers specialized in the entropy of multiple interrelated elements. Con-

ditional entropy [10] [11] was proposed to estimate element’s average uncertainty after

knowing another element. Joint entropy [12] could use for estimating the uncertainty

of the simultaneous occurrence of over two elements. Mutual information [13] [14] is

the amount of information from a random variable, which includes other random vari-

ables. There are strong connections among conditional entropy, joint entropy and mutual

information and could also expressed by some formulas.

Traditional information entropy could only be used in processing certain and exhaus-

tive information(closed world assumption). To expand the application scope, Deng pro-

posed Deng entropy [15].Deng entropy could handle more uncertain information, such

as the information represented by basic belief assignment (BBA) under the framework

of Dempster-Shafer evidence theory (D-S evidence theory). This work follows Deng en-

tropy, combining the characteristics of multiple uncertain information and information

entropy, proposes conditional Deng entropy, joint Deng entropy and generalized mutual

information. These new information entropy inherit the characteristics of their corre-

sponding traditional entropy. Also, when uncertain information is expressed by prob-

ability distribution, new entropy would degenerate to traditional entropy, and get the

same results.
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This paper will be organized as follows: Section 2 introduces some concepts and equa-

tions in D-S evidence theory. In Section 3, some proposed entropy is briefly introduced.

Next, the conditional Deng entropy, joint Deng entropy and generalized mutual informa-

tion is represented. Then in Section 5, the effect of these entropy is shown by some simple

experiments. Finally, this paper is concluded.

2. D-S Evidence Theory

2.1. The frame of discernment

The frame of discernment (FD) is proposed to describe the whole circumstances in the

event.

Definition 1. Θ is used to describe a set of mutually exclusive and collectively exhaustive

elements Ei, which is indicated by

Θ = {E1, E2, · · · , Ei, · · · , EN} (1)

Set Θ is called FD. The power set of Θ is denoted by 2Θ, and

2Θ = {∅, {E1}, · · · , {EN}, {E1, E2}, · · · , {E1, E2, · · · , Ei}, · · · , Θ} (2)

where ∅ is an empty set. For every single set A in 2Θ, A is called an elementary

proposition.

2.2. The basic mass assignment

Definition 2. A mass function m is a mapping from 2Θ to a probability interval [0, 1],

formally defined by:

m : 2Θ → [0, 1] (3)

which satisfies the following conditions:

m(∅) = 0 ∑
A∈2Θ

m(A) = 1 0 ≤ m(A) ≤ 1 A ∈ 2Θ (4)
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If m(∅) = 0, it tells the frame of discernment is set in closed world assumption(CWA).

On the contrary, the open world assumption(OWA), proposed by Smets [16], distributed

the belief to ∅ : m(∅) 6= 0.

2.3. Combining rule of evidence

Definition 3. If m(A) > 0, A is a focal element, and the set of some focal elements is

named a body of evidence (BOE). When multiplying BOEs is available, the Dempster’s

combination rule can be used to obtain the combined evidence:

m(A) =

∑
B
⋂

C=A
m1(B)m2(C)

1 − K
(5)

where K = ∑
B
⋂

C=∅

m1(B)m2(C) is a normalized constant, which is called conflict. The

combination rule establishes if and only if when m(∅) 6= 1.

3. Information Entropy

Entropy, which is firstly applied in thermodynamics by Clausius, is an effective tool

to describe the level of chaos. The bigger the entropy is, the greater the uncertainty and

randomness are. Lots of studies are developed to apply entropy to different fields later.

3.1. Shannon Entropy

Similar to entropy in thermodynamics, the miscellaneous degree of information could

be described by information entropy. In 1948, C.E.Shannon proposed Shannon entropy,

which firstly makes the information can be qualified.

Definition 4. The entropy of a discrete random variable xi is defined as:

H(xi) =
N

∑
i=1

P(xi) logb

1

P(xi)
= −

N

∑
i=1

P(xi) logb P(xi) (6)

Besides, we regulate 0 log 1
0 = 0. In Eq.6, b is the base of logarithms. We regulate the

base number equals 2, and then we get:

H(X) = −
N

∑
i=1

P(xi) log P(xi) (7)
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In Eq.6, if we set b equals to natural number e, then the unit of entropy is nat; in Eq.7, the

unit of entropy is bit.

1 nat ≈ 1.44 bit

3.2. Joint Entropy

Joint entropy is a natural extension of entropy by means of joint probability distribu-

tion.

For two discrete random variables X and Y, the probability of the intersection of the

events X=x and Y=y can be written as a function p(x, y) = P(X = x, Y = y) and the

corresponding probability (X, Y) is the joint probability distribution of X and Y.

Joint probability distributions satisfy:

p(x, y) ≥ 0, ∑
x

∑
y

p(x, y) = 1

where the sum is greater than any other possible values in the variables.

Definition 5. For every self information in the joint probability distribution, the entropy

could be calculated as:

H(x, y) = −P(x, y) log P(x, y) (8)

Combined with the mathematical expectation of the self information, joint entropy is

a measure of the uncertainty under the two variables XY.

H(X, Y) = −∑
X

∑
Y

P(X, Y) log P(X, Y) (9)

Here are some properties of joint entropy:

1. Nonnegativity:

H(X, Y) ≥ 0

2. The entropy of the joint entropy is not less than that of the subsystem:

H(X, Y) ≥ H(X); H(X, Y) ≥ H(Y)
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3. Subadditivity:

H(X, Y) ≤ H(X) + H(Y)

3.3. Conditional Entropy

Conditional entropy is an extension of entropy based on conditional probability dis-

tribution.

The probability of an event will be effected by other events. The conditional probabil-

ity of the event B, while A is known, is denoted by P(B|A). It is defined by:

P(B|A) =
P(A

⋂
B)

P(A)
i f P(A) > 0.

Definition 6. If we get the value of another random variable Y is y, then the posterior

distribution of X is equal to P(X|Y = y). Thus the conditional entropy of variable X

under this condition is:

H(X|Y = y) = −∑
X

P(X|Y = y) log P(X|Y = y) (10)

While entropy H(X) =is used for measuring the uncertainty of random variable X,

conditional entropy H(X|Y = y) measures the uncertainty after knowing Y=y. With the

change of y, H(X|Y = y) will change simultaneously.

Since knowing the probability distribution of Y, the expected value of the entropy of

X after observing Y could be measured as:

H(X|Y) =
N

∑
j=1

P(Y = yj)H(X|Y = yj)

= −
N

∑
j=1

P(Y = yj)∑
X

P(X|Y = yj) log P(X|Y = yj)

= −∑
X

∑
Y

P(Y)P(X|Y) log P(X|Y)

= −∑
X

∑
Y

P(X, Y) log P(X|Y)

(11)
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Conditional entropy also follows similar rules for joint entropy. Besides, in Eq.12,

which is called ”Chain rule of entropy”, shows the relationship among Shannon entropy,

conditional entropy and joint entropy:

H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) (12)

3.4. Mutual Information

The mutual information of two random variables is a measure of the mutual depen-

dence between the two variables. It expressed by the amount of information, represented

by one random variable through the proportion of the other random variable.

Before observing Y, the uncertainty of X is H(X). After knowing Y, the uncertainty of

X will decrease to H(X|Y).

Definition 7. The difference between H(X) and H(X|Y) is regarded as mutual informa-

tion, and is defined as:

I(X; Y) = H(X)− H(X|Y) (13)

Which means a measure of the amount of X contained in Y. Mutual information also

follow several rules:

I(X; Y) = ∑
X,Y

P(X, Y) log
P(X, Y)

P(X)P(Y)

I(X; Y) = I(Y; X)

I(X; Y) + H(X, Y) = H(X) + H(Y)

(14)

Fig.1 shows the relationship among these entropy.

3.5. Deng Entropy

Deng entropy is the generalization of Shannon entropy, which was first proposed by

Deng [15]. It proposed an efficient way to measure uncertain information, which can

not only under the situation when the uncertainty is represented by a probability dis-

tribution, but also the situation when the uncertainty is represented by BBA. Therefore,

7



Figure 1: Relationship among multiple entropy

Deng entropy could be widely applied in D-S evidence theory. When the uncertainty is

expressed as probability distribution, Deng entropy definitely degenerates to Shannon

entropy. The related concepts are given below.

Definition 8. Let Ai be a proposition of BBA m; the cardinality of the set Ai is denoted

by |Ai|. Deng entropy Ed of set Ai is defined as:

H(X) = −
n

∑
i=1

m (xi) log
m (xi)

2|xi | − 1
(15)

When the belief value is only assigned to a single element, Deng entropy can definitely

degenerate to Shannon entropy, namely:

H(X) = −
n

∑
i=1

m (xi) log
m (xi)

2|xi | − 1
= −

n

∑
i=1

m(xi) log m(xi) (16)

4. Information Entropy under Open World

Traditional entropy can measure the amount of information under non-reliable and

certain sources. However, the issue that it can not measure the amount of information

under open world limits the development in this field.
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4.1. Two-dimensional Deng Entropy

When the sum of joint BBA distribution of A equals to 1:

∑
X

m(X, Y) = m(X)

Then the two-dimensional Deng entropy degenerates into Deng entropy. However, it is

impossible to enumerate frame of discernment. Therefore, ∑
X

m(X, Y) 6= m(X). Thus, we

regulate:

H(θ) = − ∑
x∈θ

m(x, Y) log
m(x)

2|x| − 1
= 0 (17)

Where θ is the complement of the known set.

When the discrete random variable changes from one to two, Deng entropy’s formula

has changed simultaneously:

H(X) = −∑
X

m(X, Y) log
m(X)

2|X| − 1
(18)

4.2. Conditional Deng Entropy

Combining conditional probability and Deng entropy, we deduce conditional Deng-

self entropy under conditional BBA distribution:

H(Y|X = x) = −∑
Y

m(Y|X = x) log
m(Y|X = x)

2|Y| − 1
(19)

It should be noted that the denominator of real number in logarithm is 2|Y|− 1 because

we need for the entropy of Y in the case of knowing X.

According to Eq.11, conditional Deng entropy is:

H(Y|X) =
N

∑
i=1

m(X = xi)H(Y|X = xi) = − ∑
X,Y

m(X, Y) log
m(Y|X)

2|Y| − 1
(20)
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Entropy

Information Entropy

Shannon entropy

Certain, Exhaustive Information Uncertain, Infinite Information

Joint Entropy

Mutual Information Other Entropy

Conditional Entropy Deng Entropy Joint Deng Entropy

Generalized Mutual Information Other Entropy

Conditional Deng Entropy

Figure 2: Information Entropy Classification

4.3. Joint Deng Entropy

Also, by means of the joint probability distribution of entropy, the joint entropy under

two discrete random variables can be expressed as:

H(X, Y) = − ∑
X,Y

m(X, Y) log
m(X, Y)

(2|X| − 1)(2|Y| − 1)
(21)

4.4. Generalized Mutual Information

The generalized mutual information under the evidence theory:

I(X; Y) = I(Y; X) = H(X)− H(X|Y) = H(Y)− H(Y|X)

= ∑
X,Y

P(X, Y) log
P(X|Y)

P(X)
= ∑ X, YP(X, Y) log

P(Y|X)

P(Y)

= ∑
X,Y

P(X, Y) log
P(X, Y)

P(X)P(Y)

(22)

Similar to Deng entropy, if the basic belief assignment does not contain uncertain ele-

ment, conditional Deng entropy, joint Deng entropy and generalized mutual information

can degenerate to conditional entropy, joint entropy and mutual information. Besides,

some properties suitable for traditional entropy are also applied in multiple new entropy.
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Table 1: Mass Function of Y

y1 y2 y3 y1, y2 y1, y3 total

10% 15% 20% 25% 20% 90%

Table 2: Entropy

y1 y2 y3 y1, y2 y1, y3 total

0.050 0.075 0.100 0.125 0.100 0.450

Until now, we can carry out the classification of the information entropy, as is shown

in Fig.2

5. Numerical Examples

5.1. Abstract Instance

Example 5.1. Given two frames of discernment X = (x1, x2, x3), Y = (y1, y2, y3).

Suppose m(x1) = 25%. Mass function of Y are shown in Tab.1. According to Eq.17, the

entropy of H(X,Y) is shown in Tab.2.

However, if we apply Eq.16, we found that H(x1) = − ∑i m (x1) log
m(x1)

2|x1|−1
=0.500. This

is because the frame of discernment of Y is not exhaustive. For the unknown sets, we can

not measure the entropy of them exactly. Thus, according to Eq.17, the entropy H(x1)

equals 0.450.

Example 5.2. Suppose two frames of discernment X = (x1, x2, x3), Y = (y1, y2, y3). Mass

function of X,Y is shown in Tab.3.

Then the two-dimensional Deng entropy is shown in Tab.4: Since H(x1) = 0.450, H(x2) =

0.474. The total Deng entropy of X is H(X) = X(x1) + X(x2) = 0.924.
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Table 3: Mass Function of X,Y

BBA y1 y2 y3 y1, y2 y1, y3 total

x1 25% 10% 15% 20% 25% 20% 90%

x2 55% 10% 15% 20% 25% 30% 100%

Table 4: Two-dimensional Deng entropy

y1 y2 y3 y1, y2 y1, y3 total

x1 0.050 0.075% 0.100 0.125 0.100 0.450

x2 0.047 0.071% 0.095 0.119 0.142 0.474

5.2. Application

Power transformer is an important equipment of the power system, which is impor-

tant to establish an effective diagnosis system to ensure the safe and reliable operation of

the transformer. However, in the transformer fault diagnosis, the information people get

is often incomplete and uncertain, even some redundant information. Therefore, how to

remove the redundant information became the focus of one of the research hotpot.

Suppose in one of the power transformers, the collection of fault type is expressed as

M. In set M, known possible errors are:

{m1=Multi points grounding or short circuit; m2=Insulation aging; m3=Insulation

damage of turn; m4=Suspended discharge}

Fault number is regarded as D={ d1, d2, d3, d4}.

Example 5.3. Suppose now we know the mass function of fault number D and the conditional

BBA distribution, as is shown below:
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d1 d2 d3 d4 d1, d2 d1, d3 d1, d2, d4 Θ total

m1 34.52% 0.00% 7.23% 0.00% 0.00% 15.02% 0.00% 10.09% 66.86%

m2 0.00% 26.54% 0.00% 0.00% 10.25% 0.00% 1.57% 9.46% 47.82%

m3 17.85% 0.00% 15.43% 5.56% 10.43% 20.56% 0.00% 0.00% 69.83%

m4 15.60% 0.00% 16.79% 0.00% 26.53% 0.00% 20.96% 15.98% 95.86%

m1, m3 8.76% 0.00% 16.79% 0.00% 26.53% 0.00% 20.96% 15.98% 52.02%

m1, m4 0.00% 2.85% 4.66 0.00% 0.00% 35.79% 0.00% 5.64% 48.94%

m2, m4 11.20% 15.84% 0.00% 0.00% 30.42% 3.44% 13.59% 0.00% 74.49%

Θ 12.07% 0.00% 0.00% 20.64% 14.65% 0.00% 0.00% 4.68% 52.04%

BBA 22.71% 5.28% 6.58% 10.25% 18.76% 10.25% 12.18% 13.99% 100.00%

Then we get the Joint BBA distribution:

d1 d2 d3 d4 d1, d2 d1, d3 d1, d2, d4 Θ total

m1 7.84% 0.00% 0.48% 0.00% 0.00% 1.54% 0.00% 1.41% 11.27%

m2 0.00% 1.40% 0.00% 0.00% 1.92% 0.00% 0.19% 1.32% 4.84%

m3 4.05% 0.00% 1.02% 0.57% 1.96% 2.11% 0.00% 0.00% 9.70%

m4 3.54% 0.00% 1.10% 0.00% 4.98% 0.00% 2.55% 2.24% 14.41%

m1, m3 1.99% 0.00% 0.00% 0.59% 0.00% 1.55% 1.52% 1.39% 7.04%

m1, m4 0.00% 0.15% 0.31% 0.00% 0.00% 3.67% 0.00% 0.79% 4.91%

m2, m4 2.54% 0.84% 0.00% 0.00% 5.71% 0.35% 1.66% 0.00% 11.09%

Θ 2.74% 0.00% 0.00% 2.12% 2.75% 0.00% 0.00% 0.65% 8.26%

total 22.71% 2.39% 2.90% 3.27% 17.31% 9.22% 5.92% 7.81% 71.53%

Applying Eq.11, we attain the conditional Deng entropy of each fault number and rank them

in ascending order:
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m2 m1, m4 m1 m3 m4 m1, m3 m2, m4 Θ

0.146 0.186 0.227 0.264 0.335 0.340 0.441 0.469

In order to reduce information to facilitate decision making, we could choose set, whose entropy

is small, to do subsequent calculation.

6. Conclusion

Information entropy is one of the effective ways to measure the amount of informa-

tion and thus it is used for a wide range of areas, such as power system fault analysis

[17], environmental risk assessment [18], financial decision-making processes [19], etc.

However, how to describe the amount of information under uncertain information has

been a big issue for a long time. Deng entropy proposed an effective method to measure

the amount of information under uncertain and limitless. Thus, this paper inherits Deng

entropy, combining conditional Deng entropy, joint Deng entropy and generalized mu-

tual information. These new methods could measure the information content obtained

from more than one discrete random variables. Though this work, we can measure the

amount of information in different associative conditions. These methods are helpful to

BBA’s calculation of different situations in the network.
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