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Given a set of observed batted balls and their outcomes, we develop a method for learning

the dependence of a batted ball’s intrinsic value on its measured s, v, and h parameters.

1 HITf/x Data

The HITf/x data used for this study was provided by SportVision and includes measure-

ments from every regular-season MLB game during 2014. We consider all balls in play with

a horizontal angle in fair territory (h ∈ [−45◦, 45◦]) that were tracked by the system where

bunts are excluded. This results in a set of 124364 batted balls and the distributions for

s, v, and h are shown in figures 1 and 2. We see that the peak of the speed distribution is

near 93 mph and that the peaks of the vertical and horizontal angle distributions are near

zero. Since HITf/x tracks batted balls over a portion of their trajectory that occurs after

the ball has slowed due to air drag and gravity, the estimated speeds are a few miles per

hour less than the speeds recorded by other systems. Since this effect is systematic, these

offsets will not have a significant impact on the batted ball statistics computed in this work.

2 Learning Algorithm

2.1 Bayesian Foundation

Using Bayes theorem, the probability of a batted ball outcome Rj given a measured vector

x = (s, v, h) is given by

P (Rj |x) =
p(x|Rj)P (Rj)

p(x)
(1)
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Figure 1: Distribution of initial speeds (mph) for batted balls in 2014
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Figure 2: Distribution of vertical and horizontal angles (degrees) for batted balls in 2014
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where p(x|Rj) is the conditional probability density function for x given outcome Rj, P (Rj)

is the prior probability of outcome Rj, and p(x) is the probability density function for x.

Linear combinations of the P (Rj|x) probabilities for different outcomes can be used to model

the expected value of statistics such as batting average, wOBA, and slugging percentage

as a function of the batted ball vector x. For a given batted ball, therefore, these statistics

provide a measure of value that is separate from the batted ball’s particular outcome.

2.2 Kernel Density Estimation

The goal of density estimation for this application is to recover the underlying probability

density functions p(x|Rj) and p(x) in equation (1) from the set of observed batted ball

vectors and their outcomes. Given the typical positioning of defenders on a baseball field

and the various ways that an outcome such as a single can occur, we expect a conditional

density p(x|Rj) to have a complicated multimodal structure. Thus, we use a nonparametric

technique for density estimation.

We first consider the task of estimating p(x). Let xi = (si, vi, hi) for i = 1, 2, . . . , n be the

set of n observed batted ball vectors. Kernel methods [6] which are also known as Parzen-

Rosenblatt [4] [5] window methods are widely used for nonparametric density estimation.

A kernel density estimate for p(x) is given by

p̂(x) =
1

n

n∑

i=1

K(x− xi) (2)

where K(·) is a kernel probability density function that is typically unimodal and centered

at zero. A standard kernel for approximating a d−dimensional density is the zero-mean

Gaussian

K(x) =
1

(2π)d/2|Σ|1/2
exp

[
−
1

2
xTΣ−1x

]
(3)

where Σ is the d×d covariance matrix. For this kernel, p̂(x) at any x is the average of a sum

of Gaussians centered at the sample points xi and the covariance matrix Σ determines the

amount and orientation of the smoothing. Σ is often chosen to be the product of a scalar

and an identity matrix which results in equal smoothing in every direction. However, we see
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from figures 1 and 2 that the distribution for v has detailed structure while the distributions

for s and h are significantly smoother. Thus, to recover an accurate approximation p̂(x)

the covariance matrix should allow different amounts of smoothing in different directions.

We enable this goal while also reducing the number of unknown parameters by adopting a

diagonal model for Σ with variance elements (σ2

s , σ
2

v , σ
2

h). For our three-dimensional data,

this allows K(x) to be written as a product of three one-dimensional Gaussians

K(x) =
1

(2π)3/2σsσvσh

exp

[
−
1

2

(
s2

σ2
s

+
v2

σ2
v

+
h2

σ2

h

)]
(4)

which depends on the three unknown bandwidth parameters σs, σv, and σh.

2.3 Cross-Validation for Bandwidth Selection

The accuracy of the kernel density estimate p̂(x) is highly dependent on the choice of the

bandwidth vector σ = (σs, σv, σh) [1]. The recovered p̂(x) will be spiky for small values

of the parameters and, in the limit, will tend to a sum of Dirac delta functions centered

at the xi data points as the bandwidths approach zero. Large bandwidths, on the other

hand, can induce excessive smoothing which causes the loss of important structure in the

estimate of p(x). A number of bandwidth selection techniques have been proposed and a

recent survey of methods and software is given in [3]. Many of these techniques are based on

maximum likelihood estimates for p(x) which select σ so that p̂(x) maximizes the likelihood

of the observed xi data samples. Applying these techniques to the full set of observed data,

however, yields a maximum at σ = (0, 0, 0) which corresponds to the sum of delta functions

result. To avoid this difficulty, maximum likelihood methods for bandwidth selection have

been developed that are based on leave-one-out cross-validation [6].

The computational demands of leave-one-out cross-validation techniques are excessive

for our HITf/x data set. Therefore, we have adopted a cross-validation method which

requires less computation. From the full set of n observed xi vectors, we generate M

disjoint subsets Sj of fixed size nv to be used for validation. For each validation set Sj , we

construct the estimate p̂(x) using the n− nv vectors that are not in Sj as a function of the

bandwidth vector σ = (σs, σv, σh). The optimal bandwidth vector σ∗

j = (σ∗

sj , σ
∗

vj , σ
∗

hj) for Sj
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is the choice that maximizes the pseudolikelihood [2] [3] according to

σ∗

j = argmax
σ

∏

xi∈Sj

p̂(xi) (5)

where the product is over the nv vectors in the validation set Sj. The overall optimized

bandwidth vector σ∗ is obtained by averaging the M vectors σ∗

j .

For our data set, we used five validation sets S1, S2, S3, S4, and S5 to select the optimized

bandwidth vector σ∗ for the p(x) estimate. Set Si includes nv batted balls that were hit

on day 6i − 5 of a calendar month. Set S2, for example, includes only batted balls hit on

the 7th day of a month. The size nv = 3820 was taken to be the largest value so that each

set Si includes the same number of elements. The decision to use six days of separation for

the validation sets was made with the goal of maximizing the independence of the sets. A

regular-season series of consecutive games between the same pair of teams always lasts less

than six days. In addition, major league teams in 2014 tended to use a rotation of starting

pitchers that repeats every five days so that, if this tendency is followed, each starting

pitcher will occur once per calendar month in each of the five validation sets.

For each validation set Sj , a three-dimensional search was conducted with a step size of

0.1 in σs, σv, and σh to find the optimized σ∗

j in equation (5). For each Sj and σ vector under

consideration, we removed the twenty xi batted ball vectors with the smallest value of p̂(xi)

to prevent outliers from influencing the optimization. The vectors σ∗

j for each Sj are given

in Table 1 and after averaging yielded an optimized σ∗ = (σ∗

s , σ
∗

v , σ
∗

h) of (2.02, 1.50, 2.20).We

see that vertical angle has the smallest smoothing parameter (σ∗

v = 1.50) which is consistent

with the observation from figures 1 and 2 that vertical angle has more detailed structure in

its density than batted ball speed or horizontal angle.

Table 1: Optimal bandwidths σ∗

j for validation sets Sj

S1 S2 S3 S4 S5

(2.0,1.5,2.2) (1.9,1.5,2.3) (2.0,1.6,2.0) (2.0,1.6,2.3) (2.2,1.3,2.2)
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2.4 Constructing the Estimate for P (Rj|x)

An estimate for P (Rj|x) can be derived from estimates of the quantities on the right side of

equation (1). The density estimate p̂(x) for p(x) is obtained using the kernel method defined

by equations (2) and (4) with the optimized bandwidth vector σ∗ learned using the process

described in section 2.3. Each conditional probability density function p(x|Rj) is estimated

in the same way except that the training set is defined by the subset of the xi vectors with

outcome Rj. Since reduced sample sizes for specific outcomes Rj preclude the learning of

individual bandwidth vectors for each p(x|Rj), we use the σ
∗ derived for p(x) for each case.

This approach also has the desirable effect of providing the same smoothing to a batted ball

vector in the numerator and denominator of (1) which prevents a probability P (Rj|x) from

exceeding one. Each prior probability P (Rj) is estimated by the fraction of the n batted

balls in the full training set with outcome Rj. The estimate for P (Rj|x) is then constructed

by combining the estimates for p(x|Rj), P (Rj), and p(x) according to Bayes theorem.

2.5 Batter Handedness

We repeated the process described in the previous sections to obtain separate densities for

left-handed and right-handed batters. The n = 124364 batted balls were first partitioned

into the 54948 for left-handed batters and 69416 for right-handed batters. The method

described in section 2.3 was then used to build five validation sets for each case which resulted

in a validation set size nv of 1680 for left-handed batters and 2190 for right-handed batters.

The optimal bandwidth vectors σ∗

j for each validation set and batter handedness are given

in Table 2. After averaging, we arrive at an optimized σ∗ = (σ∗

s , σ
∗

v , σ
∗

h) of (2.18, 1.72, 2.50)

for left-handed batters and (2.16, 1.56, 2.30) for right-handed batters. We note that, as seen

in section 2.3, σ∗

v is the smallest for each case while σ∗

h is the largest. In addition, the

bandwidth increases for each variable to provide more smoothing as the number of samples

decreases.

6



Table 2: Optimal bandwidths σ∗

j for validation sets Sj by batter handedness

S1 S2 S3 S4 S5

L (2.0,1.5,3.1) (2.2,2.1,2.2) (2.3,1.6,2.1) (2.4,1.9,2.3) (2.0,1.5,2.8)
R (1.9,1.8,2.1) (2.1,1.7,2.2) (2.4,1.4,2.2) (2.2,1.5,2.6) (2.2,1.4,2.4)
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