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Abstract 
e-Learning has turned to be a necessity for everyone, as it enables continuous and life-long education. 
Learners are social by nature. They want to connect to othersand share the same interests. Online 
communities are important to help and encourage learners to continue education. Learners through social 
capabilities can share different experiences.Social networks are cornerstone for e-Learning. However, 
alternatives are many. Learners might get lost in the tremendous learning resources that are available. It is 
the role of recommender systems to help learners find their own way through e-Learning. We present a 
review of different recommender system algorithms that are utilized in social networks based e-Learning 
systems. Future research will include our proposed our e-Learning system that utilizes Recommender 
System and Social Network. 
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I. Introduction 
 
The Internet shows great potential for enhancing collaboration between people and the role of 
social software has become increasingly relevant in recent years. A vast array of systems exist 
which employ users’ stored profile data, identifying matches for collaboration. Social interaction 
within an online framework can help university students share experiences and collaborate on 
relevant topics. As such, social networks can act as a pedagogical agent, for example, with 
problem-based learning [1].Social networking websites are virtual communities which allow 
people to connect and interact with each other on a particular subject or to just ‘‘hang out” 
together online. Membership of online social networks has recently exploded at an exponential 
rate [2]. Recommender systems cover an important field within collaborative services that are 
developed in the Web 2.0 environment and enable user-generated opinions to be exploited in a 
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sophisticated and powerful way. Recommender Systems can be considered as social networking 
tools that provide dynamic and collaborative communication, interaction and knowledge [3]. 
 
Course management systems (CMSs) can offer a great variety of channels and workspaces to 
facilitate information sharing and communication among participants in a course. They let 
educators distribute information to students, produce content material, prepare assignments and 
tests, engage in discussions, manage distance classes and enable collaborative learning with 
forums, chats, file storage areas, news services, etc. Some examples of commercial systems are 
Blackboard, WebCT and Top Class while some examples of free systems are Moodle, Ilias and 
Claroline. Nowadays, one of the most commonly used is Moodle (modular object oriented 
developmental learning environment), a free learning management system enabling the creation 
of powerful, flexible and engaging online courses and experiences [4]. 
 
The new era of e-Learning services is mainly based on ubiquitous learning, mobile technologies, 
social networks (communities) and personalized knowledge management. “The convergence of 
e-Learning and knowledge management fosters a constructive, open, dynamic, interconnected, 
distributed, adaptive, user friendly, socially concerned, and accessible wealth of knowledge”. 
The knowledge management tools such as community, social software, peer-to-peer and 
personalized knowledge management and are now commonly are being used in ubiquitous 
learning. Learners use these tools to generate and share ideas, explore their thinking, and acquire 
knowledge from other learners. Learners search and navigate the learning objects in this 
knowledge filled environment. However, due to the failure of indexing methods to provide the 
anticipated, ubiquitous learning grid for them, learners often fail to reach their desired learning 
objects [5].  
 

II. Recommender Systems 
 
There is a need for Personal Recommender Systems in Learning Networks in order to provide 
learners with advice on the suitable learning activities to follow. Learning Networks target 
lifelong learners in any learning situation, at all educational levels and in all national contexts. 
They are community-driven because every member is able to contribute to the learning material. 
Existing Recommender Systems and recommendation techniques used for consumer products 
and other contexts are assessed on their suitability for providing navigational support in a 
Learner Networks. 

 
III. The EM algorithm 

 
Finite mixture distributions provide a flexible and mathematical-based approach to the modeling 
and clustering of data observed on random phenomena. We focus here on the use of normal 
mixture models, which can be used to cluster continuous data and to estimate the underlying 
density function. These mixture models can be fitted by maximum likelihood via the EM 
(Expectation–Maximization) algorithm. 
 
 
 

A. Introduction 
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Finite mixture models are being increasingly used to model the distributions of a wide 
variety of random phenomena and to cluster data sets [21]. Here we consider their 
application in the context of cluster analysis. 
     We let the p-dimensional vector ( y = ( pyy ,...,1 )T) contain the values of p variables 
measured on each of n (independent) entities to be clustered, and we let yjdenote the 
value of y corresponding to the j th entity ( j = 1, . . . , n).With the mixture approach to 
clustering, y1, . . . , ynare assumed to be an observed random sample from mixture of a 
finite number, say g, of groups in some unknown proportions π1, . . . , πg. 
      The mixture density of yjis expressed as 
 

( ) ( ) ( ),n , . . . 1, = j    ;;
1

∑
=

=Ψ
g

i
ijiii yfyf θπ                                           (3) 

 
where the mixing proportions π1, . . . , πgsum to one and the group-conditional density 

( )iji yf θ; is specified up to a vector iθ of unknown parameters (i = 1, . . . , g). The vector 
of all the unknown parameters is given by 
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where the superscript “T” denotes vector transpose. Using an estimate of ψ , this 
approach gives a probabilistic clustering of the data into g clusters in terms of estimates 
of the posterior probabilities of component membership, 
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whereτi(yj) is the posterior probability that y j (really the entity with observation y j ) 
belongs to the ith component of the mixture (i = 1, . . . , g; j = 1, . . . , n). 
      The parameter vector Ψ can be estimated by maximum likelihood. The maximum 
likelihood estimate (MLE) of ΨΨ ˆ, , is given by an appropriate root of the likelihood 
equation, 
 

( ) 0/log =Ψ∂Ψ∂ L                                                           (5)   
where 

( ) ( )∑
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Ψ=Ψ
n

j
jyfL

1
;loglog                                                         (6) 

 
is the log likelihood function for _. Solutions of (6) corresponding to local maximizers 
can be obtained via the expectation–maximization (EM) algorithm [22]. 
       For the modeling of continuous data, the component-conditional densities are usually 
taken to belong to the same parametric family, for example, the normal. In this case, 
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( ) ( )iijiji yyf ∑= ;;; µφθ                                                           (7) 
where ( )∑,;µφ jy denotes the p-dimensional multivariate normal distribution with mean 
vector µ and covariance matrix ∑ . 
        One attractive feature of adopting mixture models with elliptically symmetric 
components such as the normal or t densities, is that the implied clustering is invariant 
under affine transformations of the data (that is, under operations relating to changes in 
location, scale, and rotation of the data). Thus the clustering process does not depend on 
irrelevant factors such as the units of measurement or the orientation of the clusters in 
space. 
 

B. Maximum likelihood estimation of normal mixtures 
McLachlan and Peel [21, Chap. 3] described the E- and M-steps of the EM algorithm for 
the maximum likelihood (ML) estimation of multivariate normal components; see also 
[23]. In the EM framework for this problem, the unobservable component labels j iz are 
treated as being the “missing” data, where j iz is defined to be one or zero according as yj 

belongs or does not belong to the ith component of the mixture (i = 1, . . . , g; , j = 1, . . . , 
n). 
On the (k +1)th iteration of the EM algorithm, the E-step requires taking the expectation 
of the complete-data log likelihood ( )ΨcLlog , given the current estimate kΨ for Ψ . As 
is linear in the unobservable j iz , this E-step is effected by replacing the j iz by their 

conditional expectation given the observed data yj, using kΨ . That is, j iz is replaced by 
( )k
j iτ , which is the posterior probability that yj belongs to the ith component of the 

mixture, using the current fit kΨ for Ψ (i= 1, . . . , g; j = 1, . . . , n). It can be expressed as 
 

( )
( ) ( ) ( )( )

( )( ) .
;

,;k
j k

j

k
i

k
ij

k
i

i yf
y

Ψ
∑

=
µφπ

τ                                                (8) 

 
On the M-step, the updated estimates of the mixing proportion jπ , the mean vector iµ , 
and the covariance matrix i∑ for the ith component are given by 
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     It can be seen that the M-step exists in closed form. 
     These E- and M-steps are alternated until the changes in the estimated parameters or 
the 
log likelihood are less than some specified threshold. 
   

C. Number of clusters 
We can make a choice as to an appropriate value of g by consideration of the likelihood 
function. In the absence of any prior information as to the number of clusters present in 
the data, we monitor the increase in the log likelihood function as the value of g 
increases. 
At any stage, the choice of g = g0 versus g = g1, for instance g1= g0+ 1, can be made by 
either performing the likelihood ratio test or by using some information-based criterion, 
such as BIC (Bayesian information criterion). Unfortunately, regularity conditions do not 
hold for the likelihood ratio test statistic λ to have its usual null distribution of chi-
squared with degrees of freedom equal to the difference d in the number of parameters for 
g = g1and g = g0 components in the mixture models. One way to proceed is to use a re 
sampling approach as in [24]. Alternatively, one can apply BIC, which leads to the 
selection of g = g1over g = g0 if −2 logλ is greater than d log(n). 

 
IV. PageRank 
 
Finite mixture distributions provide a flexible and mathematical-based approach to the modeling 
and clustering of data observed on random phenomena. We focus here on the use of normal 
mixture models, which can be used to cluster continuous data and to estimate the underlying 
density function. These mixture models can be fitted by maximum likelihood via the EM 
(Expectation–Maximization) algorithm. 
 

A. Overview 
PageRank [25] was presented and published by Sergey Brin and Larry Page at the 
Seventh International World Wide Web Conference (WWW7) in April 1998. It is a 
search ranking algorithm using hyperlinks on theWeb. Based on the algorithm, they built 
the search engine 
Google, which has been a huge success. Now, every search engine has its own hyperlink 
based ranking method. 
     PageRank produces a static ranking of Web pages in the sense that a PageRank value 
is computed for each page off-line and it does not depend on search queries. The 
algorithm relies on the democratic nature of the Web by using its vast link structure as an 
indicator of an individual page’s quality. In essence, PageRank interprets a hyperlink 
from page x to page y as a vote, by page x, for page y. However, PageRank looks at more 
than just the sheer number of votes, or links that a page receives. It also analyzes the page 
that casts the vote. Votes casted by pages that are themselves “important” weigh more 
heavily and help to make other pages more “important”. This is exactly the idea of rank 
prestige in social networks 
[26]. 
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B. The algorithm 
We now introduce the PageRank formula. Let us first state some main concepts in the 
Web context. 
    In-links of page i : These are the hyperlinks that point to page i from other pages. 
Usually, 
hyperlinks from the same site are not considered. 
    Out-links of page i : These are the hyperlinks that point out to other pages from page i . 
Usually, links to pages of the same site are not considered. 
     The following ideas based on rank prestige [26] are used to derive the PageRank 
algorithm: 
 

1. A hyperlink from a page pointing to another page is an implicit conveyance of authority 
to the target page. Thus, the more in-links that a page i receives, the more prestige the 
page i has. 
 

2. Pages that point to page i also have their own prestige scores. A page with a higher 
prestige score pointing to i is more important than a page with a lower prestige score 
pointing to i . In other words, a page is important if it is pointed to by other important 
pages. 
 
    According to rank prestige in social networks, the importance of page i (i’s PageRank 
score) is determined by summing up the PageRank scores of all pages that point to i. 
Since a page may point to many other pages, its prestige score should be shared among 
all the pages that it points to. 
     To formulate the above ideas, we treat the Web as a directed graph G = (V, E), where 
V is the set of vertices or nodes, i.e., the set of all pages, and E is the set of directed edges 
in the graph, i.e., hyperlinks. Let the total number of pages on the Web be n (i.e., n = |V|). 
The PageRank score of the page i (denoted by P(i )) is defined by 
 

( ) ( )
( )
∑

∈

=
Eij jo

jPiP
  ,                                         (12) 

 
where Ojis the number of out-links of page j . Mathematically, we have a system of n 
linear equations (12) with n unknowns. We can use a matrix to represent all the 
equations. Let P be a n-dimensional column vector of PageRank values, i.e., 
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We can write the system of n equations with 
 

PP TA =                                                            (14) 
 
   This is the characteristic equation of the eigensystem, where the solution to P is an 
eigenvector with the corresponding eigenvalue of 1. Since this is a circular definition, an 
iterative algorithm is used to solve it. It turns out that if some conditions are satisfied, 1 is 
 
 
PageRank-Iterate(G) 

e/n 0 ←P
 

1 ←k  
 Repeat 

( ) ;dA e1 1
T

−+−← kk PdP
 

1;k +←k  

Until
ε〈− − 11kP kP

 

                                                      Return kP  
 
Fig. 4 The power iteration method for PageRank 
 
 
the largest eigenvalue and the PageRank vector P is the principal eigenvector. A well 
known mathematical technique called power iteration [27] can be used to find P. 
     However, the problem is that Eq. (14) does not quite suffice because the Web graph 
does not meet the conditions. In fact, Eq. (14) can also be derived based on the Markov 
chain. Then some theoretical results from Markov chains can be applied. After 
augmenting the Web graph to satisfy the conditions, the following PageRank equation is 
produced: 
 

( ) ,dA e1 1
T

−+−= kPdP
                     (15) 

 
where e is a column vector of all 1’s. This gives us the PageRank formula for each page i 
: 
 

( ) ( ) ( ) , Ad 1
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which is equivalent to the formula given in the original PageRank papers [28]: 
 
 

( ) ( ) ( )
( )

. d 1
ij,

∑
∈

+−=
E jo

jPdiP
                (17) 

 
    The parameter d is called the damping factor which can be set to a value between 0 
and 1. d = 0.85 is used in [29]. 
    The computation of PageRank values of the Web pages can be done using the power 
iteration method [27], which produces the principal eigenvector with the eigenvalue of 1. 
The algorithm is simple, and is given in Fig. 1. One can start with any initial assignments 
of PageRank values. The iteration ends when the PageRank values do not change much 
or converge. In Fig. 4, the iteration ends after the 1-norm of the residual vector is less 
than a pre-specified threshold e. 
    Since in Web search, we are only interested in the ranking of the pages, the actual 
convergence may not be necessary. Thus, fewer iterations are needed. In [25], it is 
reported that on a database of 322 million links the algorithm converges to an acceptable 
tolerance in roughly 52 iterations.  
 

C. Further references on PageRank 
Since PageRank was presented in [28], researchers have proposed many enhancements to 
the model, alternative models, improvements for its computation, adding the temporal 
dimension [30], etc. The books by Liu [29] and by Langville and Meyer [31] contain in-
depth analyses of PageRank and several other link-based algorithms. 

 
V. AdaBoost 

 
A. Description of the algorithm 

Ensemble learning [32] deals with methods which employ multiple learners to solve a 
problem. The generalization ability of an ensemble is usually significantly better than that 
of a single learner, so ensemble methods are very attractive. The AdaBoost algorithm 
[33] proposed by Yoav Freund and Robert Schapire is one of the most important 
ensemble methods, since it has solid theoretical foundation, very accurate prediction, 
great simplicity (Schapire said it needs only “just 10 lines of code”), and wide and 
successful applications. 
     Let X denote the instance space and Y the set of class labels. Assume Y = {−1,+1}. 
Given a weak or base learning algorithm and a training set {(x1, y1), (x2, y2), . . . , (xm, 
ym)} where xi∈X and yi∈Y (i = 1, . . . ,m), the AdaBoost algorithm works as follows. 
First, it assigns equal weights to all the training examples (xi , yi )(i ∈ {1, . . . ,m}). 
Denote the distribution of the weights at the t-th learning round as Dt. From the training 
set and Dtthe algorithm generates a weak or base learner ht: X → Y by calling the base 
learning algorithm. Then, it uses the training examples to test ht, and the weights of the 
incorrectly classified examples will be increased. Thus, an updated weight distribution 
Dt+1 is obtained. From the training set and Dt+1 AdaBoost generates another weak 
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learner by calling the base learning algorithm again. Such a process is repeated for T 
rounds, and the final model is derived by weighted majority voting of the T weak 
learners, where the weights of the learners are determined during the training process. In 
practice, the base learning algorithm may be a learning algorithm which can use weighted 
training examples directly; otherwise the weights can be exploited by sampling the 
training examples according to the weight distribution Dt. The pseudo-code of AdaBoost 
is shown in Fig. 5. 
    In order to deal with multi-class problems, Freund and Schapire presented the Ada- 
Boost.M1 algorithm [33] which requires that the weak learners are strong enough even on 
hard distributions generated during the AdaBoost process. Another popular multi-class 
version of AdaBoost is AdaBoost.MH [34] which works by decomposing multi-class task 
to a series of binary tasks. AdaBoost algorithms for dealing with regression problems 
have also been studied. Since many variants of AdaBoost have been developed during the 
past decade, Boosting has become the most important “family” of ensemble methods. 
 

B. Impact of the algorithm 
As mentioned in Sect. 7.1, AdaBoost is one of the most important ensemble methods, so 
it is not strange that its high impact can be observed here and there. In this short article 
we only briefly introduce two issues, one theoretical and the other applied. 
In 1988, Kearns and Valiant posed an interesting question, i.e., whether a weak learning 
algorithm that performs just slightly better than random guess could be “boosted” into an 
arbitrarily accurate strong learning algorithm. In other words, whether two complexity 
classes,weakly learnable and strongly learnable problems, are equal. Schapire [35] found 
that the answer to the question is “yes”, and the proof he gave is a construction, which is 
the first Boosting algorithm. So, it is evident that AdaBoost was born with theoretical 
significance.AdaBoost has given rise to abundant research on theoretical aspects of 
ensemble methods,which can be easily found in machine learning and statistics literature. 
It is worth mentioning that for their AdaBoost paper [33], Schapire and Freund won the 
Godel Prize, which is one of the most prestigious awards in theoretical computer science, 
in the year of 2003. 
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Fig. 5 The AdaBoost algorithm 
 
 
AdaBoost and its variants have been applied to diverse domains with great success. 
Forexample, Viola and Jones [36] combined AdaBoost with a cascade process for face 
detection.They regarded rectangular features as weak learners, and by using AdaBoost to 
weight the weak learners, they got very intuitive features for face detection. In order to 
get high accuracy as well as high efficiency, they used a cascade process (which is 
beyond the scope of this article). As the result, they reported a very strong face detector: 
On a 466MHz machine,face detection on a 384 × 288 image cost only 0.067 seconds, 
which is 15 times faster than state-of-the-art face detectors at that time but with 
comparable accuracy. This face detector has been recognized as one of the most exciting 
breakthroughs in computer vision (in particular,face detection) during the past decade. It 
is not strange that “Boosting” has become buzzword in computer vision and many other 
application areas. 

 
C. Further research 

Many interesting topics worth further studying. Here we only discuss on one theoretical 
topic and one applied topic. 
Many empirical study show that AdaBoost often does not over fit, i.e., the test error of 
AdaBoost often tends to decrease even after the training error is zero. Many researchers 
have studied this and several theoretical explanations have been given, e.g. [37]. Schapire 
et al.[38] presented amargin-based explanation. They argued that AdaBoost is able to 
increase the margins even after the training error is zero, and thus it does not over fit even 
after a large number of rounds. However, Breiman [39] indicated that larger margin does 
not necessarily mean better generalization, which seriously challenged the margin-based 
explanation. Recently,Reyzin and Schapire [40] found that Breiman considered minimum 
margin instead of average or median margin, which suggests that the margin-based 
explanation still has chance to survive. If this explanation succeeds, a strong connection 
between AdaBoost and SVM could be found. It is obvious that this topic is well worth 
studying. 
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Many real-world applications are born with high dimensionality, i.e., with a large amount 
of input features. There are two paradigms that can help us to deal with such kind of data, 
i.e., dimension reduction and feature selection. Dimension reduction methods are usually 
based on mathematical projections, which attempt to transform the original features into 
an appropriate feature space. After dimension reduction, the original meaning of the 
features is usually lost. Feature selection methods directly select some original features to 
use, and therefore they can preserve the original meaning of the features, which is very 
desirable in many applications. However, feature selection methods are usually based on 
heuristics, lacking solid theoretical foundation. Inspired by Viola and Jones’s work [36], 
we think AdaBoost could be very useful in feature selection, especially when considering 
that it has solid theoretical foundation. Current research mainly focus on images, yet we 
think general AdaBoost-based feature selection techniques are well worth studying. 
 

VI. kNN: k-nearest neighbor classification 
 

A. Description of the algorithm 
One of the simplest, and rather trivial classifiers is the Rote classifier, which memorizes 
the entire training data and performs classification only if the attributes of the test object 
match one of the training examples exactly. An obvious drawback of this approach is that 
many test records will not be classified because they do not exactly match any of the 
training records. Amore sophisticated approach, k-nearest neighbor (kNN) classification 
[41], finds a group of k objects in the training set that are closest to the test object, and 
bases the assignment of a label on the predominance of a particular class in this 
neighborhood. There are three key elements of this approach: a set of labeled objects, 
e.g., a set of stored records, a distance or similarity metric to compute distance between 
objects, and the value of k, the number of nearest neighbors. To classify an unlabeled 
object, the distance of this object to the labeled objects is computed, its k-nearest 
neighbors are identified, and the class labels of these nearest neighbors are then used to 
determine the class label of the object. 
Figure 6 provides a high-level summary of the nearest-neighbor classification method. 
Given a training set D and a test object ( ) , , yxx ′′=  the algorithm computes the distance 
(or similarity) between z and all the training objects (x, y) ∈D to determine its nearest-
neighbor list, Dz. (x is the data of a training object, while y is its class. Likewise, x′ is the 
data of the test object and y′  is its class.) 
Once the nearest-neighbor list is obtained, the test object is classified based on the 
majority class of its nearest neighbors: 
 

( )
( ) , yvI  argmaxy : Voting  i

  ,xv i

=∑=′
∈ zi Dy

Majority                     (18) 

 
where v is a class label, yiis the class label for the ith nearest neighbors, and I (·) is an 
indicator function that returns the value 1 if its argument is true and 0 otherwise. 
 
Input: ( )y,x  zobject   test  and , objects  k training ofset   the, ′′=D  
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Process 
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Output: ( ) ( )ii

v
yvI   ,xargmaxy =∈=′ ∑ Dyi  

 
 

Fig. 6The k-nearest neighbor classification algorithm 
 

 
B. Issues 

There are several key issues that affect the performance of kNN. One is the choice of k. If 
k is too small, then the result can be sensitive to noise points. On the other hand, if k is 
too large, then the neighborhood may include too many points from other classes. 
Another issue is the approach to combining the class labels. The simplest method is to 
take majority vote, but this can be a problem if the nearest neighbors vary widely in their 
distance and the closer neighbors more reliably indicate the class of the object. A more 
sophisticated approach, which is usually much less sensitive to the choice of k, weights 
each object’s vote by its distance, where the weight factor is often taken to be the 
reciprocal of the squared distance: ( )2,/1 ii xxdw ′= . This amounts to replacing the last 
step of the kNN algorithm with the following: 
 
 

( )
( ). yvI   w argmaxy : Voting   Weightted- tan ii

  ,xv i

=×∑=′
∈ zi Dy

ceDis                

(19) 
 
The choice of the distance measure is another important consideration. Although various 
measures can be used to compute the distance between two points, the most desirable 
distance measure is one for which a smaller distance between two objects implies a 
greater likelihood of having the same class. Thus, for example, if kNN is being applied to 
classify documents, then it may be better to use the cosine measure rather than Euclidean 
distance. Some distance measures can also be affected by the high dimensionality of the 
data. In particular, it is well known that the Euclidean distance measure become less 
discriminating as the number of attributes increases. Also, attributes may have to be 
scaled to prevent distance measures from being dominated by one of the attributes. For 
example, consider a data set where the height of a person varies from 1.5 to 1.8m, the 
weight of a person varies from 90 to 300 lb, and the income of a person varies from 
$10,000 to $1,000,000. If a distance measure is used without scaling, the income attribute 
will dominate the computation of distance and thus, the assignment of class labels. A 
number of schemes have been developed that try to compute the weights of each 
individual attribute based upon a training set [42]. 
In addition, weights can be assigned to the training objects themselves. This can give 
more weight to highly reliable training objects, while reducing the impact of unreliable 
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objects. The PEBLS system by by Cost and Salzberg [43] is a well known example of 
such an approach. 
KNN classifiers are lazy learners, that is, models are not built explicitly unlike eager 
learners (e.g., decision trees, SVM, etc.). Thus, building the model is cheap, but 
classifying unknown objects is relatively expensive since it requires the computation of 
the k-nearest neighbors of the object to be labeled. This, in general, requires computing 
the distance of the unlabeled object to all the objects in the labeled set, which can be 
expensive particularly for large training sets. A number of techniques have been 
developed for efficient computation of k-nearest neighbor distance that make use of the 
structure in the data to avoid having to compute distance to all objects in the training set. 
These techniques, which are particularly applicable for low dimensional data, can help 
reduce the computational cost without affecting classification accuracy. 
 

C. Impact 
KNN classification is an easy to understand and easy to implement classification 
technique. Despite its simplicity, it can perform well in many situations. In particular, a 
well known result by Cover and Hart [44] shows that the error of the nearest neighbor 
rule is bounded above by twice the Bayes error under certain reasonable assumptions. 
Also, the error of the general kNN method asymptotically approaches that of the Bayes 
error and can be used to approximate it. 
KNN is particularly well suited for multi-modal classes as well as applications in which 
an object can have many class labels. For example, for the assignment of functions to 
genes based on expression profiles, some researchers found that kNN outperformed SVM, 
which is a much more sophisticated classification scheme. 
 

D. Current and future research 
Although the basic kNN algorithm and some of its variations, such as weighted kNN and 
assigning weights to objects, are relatively well known, some of the more advanced 
techniques for kNN are much less known. For example, it is typically possible to 
eliminate many of the stored data objects, but still retain the classification accuracy of the 
kNN classifier. Thesis known as ‘condensing’ and can greatly speed up the classification 
of new objects [46]. In addition, data objects can be removed to improve classification 
accuracy, a process known as “editing” [47]. There has also been a considerable amount 
of work on the application of proximity graphs (nearest neighbor graphs, minimum 
spanning trees, relative neighborhood graphs, Delaunay triangulations, and Gabriel 
graphs) to the kNN problem. Recent papers by Toussaint [48,49], which emphasize a 
proximity graph viewpoint, provide an overview of work addressing these three areas and 
indicate some remaining open problems. Other important resources include the collection 
of papers by Dasarathy [50] and the book by Devroyeet al. [51]. Finally, a fuzzy 
approach to kNN can be found in the work of Bezdek [52]. 
 

 
VII. Naive Bayes 
 

A. Introduction 
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Given a set of objects, each of which belongs to a known class, and each of which has a 
known vector of variables, our aim is to construct a rule which will allow us to assign 
future objects to a class, given only the vectors of variables describing the future objects. 
Problems of this kind, called problems of supervised classification, are ubiquitous, and 
many methods for constructing such rules have been developed. One very important one 
is the naive Bayes method—also called idiot’s Bayes, simple Bayes, and independence 
Bayes. This method is important for several reasons. It is very easy to construct, not 
needing any complicated iterative parameter estimation schemes. This means it may be 
readily applied to huge data sets. It is easy to interpret, so users unskilled in classifier 
technology can understand why it is making the classification it makes. And finally, it 
often does surprisingly well: it may not be the best possible classifier in any particular 
application, but it can usually be relied on to be robust and to do quite well. General 
discussion of the naive Bayes method and its merits are given in [53]. 
 

B. The basic principle 
For convenience of exposition here, we will assume just two classes, labeled i = 0, 1. 
Ouraim is to use the initial set of objects with known class memberships (the training set) 
to construct a score such that larger scores are associated with class 1 objects (say) and 
smaller scores with class 0 objects. Classification is then achieved by comparing this 
score with a threshold, t. If we define P(i |x) to be the probability that an object with 
measurement vectorx = (x1, . . . , xp) belongs to class i , then any monotonic function of 
P(i |x) would make a suitable score. In particular, the ratio P(1|x)/P(0|x) would be 
suitable. Elementary probability tells us that we can decompose P(i |x) as proportional to f 
(x|i )P(i ), where f (x|i ) is the conditional distribution of x for class i objects, and P(i ) is 
the probability that an objectwill belong to class i if we know nothing further about it (the 
‘prior’ probability of class i).This means that the ratio becomes 
 

( )
( )

( ) ( )
( ) ( ) . 

0  0|
1  1|

|0 
|1 

Pxf
Pxf

xP
xP

= (20) 

 
To use this to produce classifications, we need to estimate the f (x|i )and the P(i ). If the 
training set was a random sample from the overall population, the P(i ) can be estimated 
directly from the proportion of class i objects in the training set. To estimate the f (x|i),the 
naive Bayes method assumes that the components of x are 
independent, ( ) ( )∏ =

=
P

j j ixfixf
1

| | , and then estimates each of the univariate 

distributions ( ) ;  ,..., 1, | Pjixf j = i = 0, 1, separately. Thus the p dimensional 
multivariate problem has been reduced to p univariate estimation problems. Univariate 
estimation is familiar, simple, and requires smaller training set sizes to obtain accurate 
estimates. This is one of the particular, indeed unique attractions of the naive Bayes 
methods: estimation is simple, very quick, and does not require complicated iterative 
estimation schemes. 
If the marginal distributions ( )ixf j | are discrete, with each x j taking only a few values, 

then the estimate ( )ixf j | ˆ is a multinomial histogram type estimator (see below)—simply 
counting the proportion of class i objects which fall into each cell. If the ( )ixf j | are 
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continuous, then a common strategy is to segment each of them into a small number of 
intervals and again use multinomial estimator, but more elaborate versions based on 
continuous estimates (e.g. kernel estimates) are also used. 
Given the independence assumption, the ratio in (20) becomes 
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Now, recalling that our aim was merely to produce a score which was monotonically 
related to P(i |x), we can take logs of (21)—log is a monotonic increasing function. This 
gives an alternative score 
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If we define ( ) ( )( )0| / 1|  1 jjj xfxfnw = and a constant ( ) ( )( )0 p / 1 p 1nk = we see that 
(22) takes the form of a simple sum 
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so that the classifier has a particularly simple structure. 
The assumption of independence of the xjwithin each class implicit in the naive Bayes 
model might seem unduly restrictive. In fact, however, various factors may come into 
play which mean that the assumption is not as detrimental as it might seem. Firstly, a 
prior variable selection step has often taken place, in which highly correlated variables 
have been eliminated on the grounds that they are likely to contribute in a similar way to 
the separation between classes. This means that the relationships between the remaining 
variables might well be approximated by independence. Secondly, assuming the 
interactions to be zero provides an implicit regularization step, so reducing the variance 
of the model and leading to more accurate classifications. Thirdly, in some cases when 
the variables are correlated the optimal decision surface coincides with that produced 
under the independence assumption, so that making the assumption is not at all 
detrimental to performance. Fourthly, of course, the decision surface produced by the 
naive Bayes model can in fact have a complicated nonlinear shape: the surface is linear in 
the wjbut highly nonlinear in the original variables xj ,so that it can fit quite elaborate 
surfaces. 
 
 

C. Some extensions 
Despite the above, a large number of authors have proposed modifications to the naive 
Bayes method in an attempt to improve its predictive accuracy. 
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One early proposed modification was to shrink the simplistic multinomial estimate of the 
proportions of objects falling into each category of each discrete predictor variable. So, if 
thej th discrete predictor variable, xj, has crcategories, and if njrof the total of n objects fall 
into the r th category of this variable, the usual multinomial estimator of the probability 

that a future object will fall into this category, njr /n, is replaced by ( ) ( )1n / 1 ++ −
rjr cn . 

This shrinkage also has a direct Bayesian interpretation. It leads to estimates which have 
lower variance. 
Perhaps the obvious way of easing the independence assumption is by introducing extra 
terms in the models of the distributions of x in each class, to allow for interactions. This 
has been attempted in a large number of ways, but we must recognize that doing this 
necessarily introduces complications, and so sacrifices the basic simplicity and elegance 
of the naïve Bayes model. Within either (or any, more generally) class, the joint 
distribution of x is 
 

( ) ( ) ( ) ( ) ( ) , ,...,,|... ,|| 121213121 −= pp xxxxfxxxfxxfxfxf (
24) 
 
and this can be approximated by simplifying the conditional probabilities. The extreme 
arises with ( ) ( )ii xfxxf =1-i1  x, ... , | for all i, and this is the naive Bayes method. 
Obviously, however, models between these two extremes can be used. For example, one 
could use the markov model 
 

( ) ( ) ( ) ( ) ( ). |... || 123121 −= pp xxfxxfxxfxfxf (25) 
 
This is equivalent to using a subset of two way marginal distributions instead of the 
univariate marginal distributions in the naive Bayes model. 
Another extension to the naive Bayes model was developed entirely independently of it. 
This is the logistic regression model. In the above we obtained the decomposition (21) by 
adopting the naive Bayes independence assumption. However, exactly the same structure 
for the ratio results if we 
model ( ) ( ) ( ) ( ) ( ) ( )  , h  by  0|  and  h  by  1| p

1j 0
p

1j 1 ∏∏ == jj xxgxfxxgxf where the function 
g(x) is the same in each model. The ratio is thus 
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Here, the ( )ixih do not even have to be probability density functions—it is sufficient that 

the ( ) ( )∏ =

p

1j ih  ixxg are densities. The model in (26) is just as simple as the naive Bayes 
model, and takes exactly the same form—take logs and we have a sum as in (23)—but it 

http://www.ijcsns.com


          International journal of Computer Science & Network Solutions       Jan.2015-Volume 3.No.1   
              http://www.ijcsns.com                                                                          ISSN 2345-3397 

 

37 
 

is much more flexible because it does not assume independence of the x j in each class. In 
fact, it permits arbitrary dependence structures, via the g(x) function, which can take any 
form. The point is, however, that this dependence is the same in the two classes, so that it 
cancels out in the ratio in (26). Of course, this considerable extra flexibility of the logistic 
regression model is not obtained without cost. Although the resulting model form is 
identical to the naive Bayes model form (with different parameter values, of course), it 
cannot be estimated by looking at the univariate marginals separately: an iterative 
procedure has to be used. 

 
D. Concluding remarks on naive Bayes 

The naive Bayes model is tremendously appealing because of its simplicity, elegance, 
and robustness. It is one of the oldest formal classification algorithms, and yet even in its 
simplest form it is often surprisingly effective. It is widely used in areas such as text 
classification and spam filtering. A large number of modifications have been introduced, 
by the statistical,data mining, machine learning, and pattern recognition communities, in 
an attempt to make it more flexible, but one has to recognize that such modifications are 
necessarily complications, which detract from its basic simplicity. Some such 
modifications are described in [54]. 
 

VIII. Cart 
 
The 1984 monograph, “CART: Classification and Regression Trees,” co-authored by Leo 
Breiman, Jerome Friedman, Richard Olshen, and Charles Stone, [55] represents a major 
milestone in the evolution of Artificial Intelligence, Machine Learning, non-parametric statistics, 
and data mining. The work is important for the comprehensiveness of its study of decision trees, 
the technical innovations it introduces, its sophisticated discussion of tree-structured data 
analysis, and its authoritative treatment of large sample theory for trees. While CART citations 
can be found in almost any domain, far more appear in fields such as electrical engineering, 
biology, medical research and financial topics than, for example, in marketing research or 
sociology where other tree methods are more popular. This section is intended to highlight key 
themes treated in the CART monograph so as to encourage readers to return to the original 
source for more detail. 
 

A. Overview 
The CART decision tree is a binary recursive partitioning procedure capable of 
processing continuous and nominal attributes both as targets and predictors. Data are 
handled in their raw form; no binning is required or recommended. Trees are grown to a 
maximal size without the use of a stopping rule and then pruned back (essentially split by 
split) to the root via cost-complexity pruning. The next split to be pruned is the one 
contributing least to the overall performance of the tree on training data (and more than 
one split may be removed at a time). The procedure produces trees that are invariant 
under any order preserving transformation of the predictor attributes. The CART 
mechanism is intended to produce not one, but a sequence of nested pruned trees, all of 
which are candidate optimal trees. The “right sized” or “honest” tree is identified by 
evaluating the predictive performance of every tree in the pruning sequence. CART 
offers no internal performance measures for tree selection based on the training data as 
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such measures are deemed suspect. Instead, tree performance is always measured on 
independent test data (or via cross validation) and tree selection proceeds only after test-
data-based evaluation. If no test data exist and cross validation has not been performed, 
CART will remain agnostic regarding which tree in the sequence is best. Thesis in sharp 
contrast to methods such as C4.5 that generate preferred models on the basis of training 
data measures. 
 

B. Splitting rules 
CART splitting rules are always couched in the form 
 
An instance goes left if CONDITION, and goes right otherwise, 
where the CONDITION is expressed as “attribute Xi<= C” for continuous attributes. For 
nominal attributes the CONDITION is expressed as membership in an explicit list of 
values. The CART authors argue that binary splits are to be preferred because (1) they 
fragment the data more slowly than multi-way splits, and (2) repeated splits on the same 
attribute are allowed and, if selected, will eventually generate as many partitions for an 
attribute as required. Any loss of ease in reading the tree is expected to be offset by 
improved performance. A third implicit reason is that the large sample theory developed 
by the authors was restricted to binary partitioning. 
The CART monograph focuses most of its discussion on the Gini rule, which is similar to 
the better known entropy or information-gain criterion. For a binary (0/1) target the 
“Ginimeasure of impurity” of a node t is 
 

( ) ( ) ( )( ) ,  t p-1  -t p-1tG 22= (27) 
 
where p(t) is the (possibly weighted) relative frequency of class 1 in the node, and the 
improvement (gain) generated by a split of the parent node P into left and right children 
Land R is 
 

( ) ( ) ( ) ( ) ( ). RG q-1 - LqG -p p I G= (28) 
 
Here, q is the (possibly weighted) fraction of instances going left. The CART authors 
favor the Gini criterion over information gain because the Gini can be readily extended to 
include symmetrized costs (see below) and is computed more rapidly than information 
gain. (Later versions of CART have added information gain as an optional splitting rule.) 
They introduce the modified towing rule, which is based on a direct comparison of the 
target attribute distribution in two child nodes: 
 

( ) ( )( ) ( ) ( ) , |\125.split I
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−−= ∑
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RL

u kpkpqq (29) 

 
where k indexes the target classes, pL( )and pR( )are the probability distributions of the 
target in the left and right child nodes respectively, and the power term u embeds a user-
trollablepenalty on splits generating unequal-sized child nodes. (This splitter is a 
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modified version of Messenger and Mandell [56].) They also introduce a variant of the 
towing split criterion that treats the classes of the target as ordered; ordered towing 
attempts to ensure target classes represented on the left of a split are ranked below those 
represented on the right. In our experience the towing criterion is often a superior 
performer on multi-class targets as well as on inherently difficult-to-predict (e.g. noisy) 
binary targets. For regression (continuous targets), CART offers a choice of Least 
Squares (LS) and Least Absolute Deviation(LAD) criteria as the basis for measuring the 
improvement of a split. Three other splitting rules for cost-sensitive learning and 
probability trees are discussed separately below. 
 

C. Prior probabilities and class balancing 
In its default classification mode CART always calculates class frequencies in any node 
relative to the class frequencies in the root. This is equivalent to automatically 
reweighting the data to balance the classes, and ensures that the tree selected as optimal 
minimizes balanced class error. The reweighting is implicit in the calculation of all 
probabilities and improvements and requires no user intervention; the reported sample 
counts in each node thus reflect the unweighted data. For a binary (0/1) target any node is 
classified as class 1 if, and only if, 
 

( ) ( ) ( ) ( ). N /N    N /N 0011 rootnoderootnode 〉 (30) 
 
This default mode is referred to as “priors equal” in the monograph. It has allowed CART 
users to work readily with any unbalanced data, requiring no special measures regarding 
class rebalancing or the introduction of manually constructed weights. To work 
effectively with unbalanced data it is sufficient to run CART using its default settings. 
Implicit reweighting can be turned off by selecting the “priors data” option, and the 
modeler can also elect to specify an arbitrary set of priors to reflect costs, or potential 
differences between training data and future data target class distributions. 
 

D. Missing value handling 
Missing values appear frequently in real world, and especially business-related databases, 
and the need to deal with them is a vexing challenge for all modelers. One of the major 
contributions of CART was to include a fully automated and highly effective mechanism 
for handling missing values. Decision trees require a missing value-handling mechanism 
at three levels: (a) during splitter evaluation, (b) when moving the training data through a 
node, and (c) when moving test data through a node for final class assignment. (See [57] 
for a clear discussion of these points.) Regarding (a), the first version of CART evaluated 
each splitter strictly on its performance on the subset of data for which the splitter is 
available. Later versions offer a family of penalties that reduce the split improvement 
measure as a function of the degree of amusingness. For (b) and (c), the CART 
mechanism discovers “surrogate "or substitute splitters for every node of the tree, 
whether missing values occur in the training data or not. The surrogates are thus available 
should the tree be applied to new data that does include missing values. This is in contrast 
to machines that can only learn about missing value handling from training data that 
include missing values. Friedman [58] suggested moving instances with missing splitter 
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attributes into both left and right child nodes and making a final class assignment by 
pooling all nodes in which an instance appears. Quinlan[57] opted for a weighted variant 
of Friedman’s approach in his study of alternative missing value-handling methods. Our 
own assessments of the effectiveness of CART surrogate performance in the presence of 
missing data are largely favorable, while Quinlan remains agnostic on the basis of the 
approximate surrogates he implements for test purposes [57].Friedman et al. [59] noted 
that 50% of the CART code was devoted to missing value handling; it is thus unlikely 
that Quinlan’s experimental version properly replicated the entire CART surrogate 
mechanism. 
In CART the missing value handling mechanism is fully automatic and locally adaptive 
at every node. At each node in the tree the chosen splitter induces a binary partition of the 
data (e.g., X1 <= c1 and X1 >c1). A surrogate splitter is a single attribute Z that can 
predict this partition where the surrogate itself is in the form of a binary splitter (e.g., Z 
<= d andZ >d). In other words, every splitter becomes a new target which is to be 
predicted with a single split binary tree. Surrogates are ranked by an association score 
that measures the advantage of the surrogate over the default rule predicting that all cases 
go to the larger child node. To qualify as a surrogate, the variable must outperform this 
default rule (and thus it may not always be possible to find surrogates). When a missing 
value is encountered in a CART tree the instance is moved to the left or the right 
according to the top-ranked surrogate. If this surrogate is also missing then the second 
ranked surrogate is used instead, (and so on). If all surrogates are missing the default rule 
assigns the instance to the larger child node (possibly adjusting node sizes for priors). 
Ties are broken by moving an instance to the left. 
 

E. Attribute importance 
The importance of an attribute is based on the sum of the improvements in all nodes in 
which the attribute appears as a splitter (weighted by the fraction of the training data in 
each node split). Surrogates are also included in the importance calculations, which 
means that even a variable that never splits a node may be assigned a large importance 
score. This allows the variable importance rankings to reveal variable masking and 
nonlinear correlation among the attributes. Importance scores may optionally be confined 
to splitters and comparing the splitters-only and the full importance rankings is a useful 
diagnostic. 
 

F. Dynamic feature construction 
Friedman [58] discussed the automatic construction of new features within each node 
and, for the binary target, recommends adding the single feature 
 

, wx ∗  
 

where x is the original attribute vector and w is a scaled difference of means vector across 
the two classes (the direction of the Fisher linear discriminate). This is similar to running 
a logistic regression on all available attributes in the node and using the estimated logit as 
a predictor. In the CART monograph, the authors discuss the automatic construction of 
linear combinations that include feature selection; this capability has been available from 
the first release of the CART software. BFOS also present a method for constructing 

http://www.ijcsns.com


          International journal of Computer Science & Network Solutions       Jan.2015-Volume 3.No.1   
              http://www.ijcsns.com                                                                          ISSN 2345-3397 

 

41 
 

Boolean combinations of splitters within each node, a capability that has not been 
included in the released software. 
 

G. Cost-sensitive learning 
Costs are central to statistical decision theory but cost-sensitive learning received only 
modest attention before Domingos [60]. Since then, several conferences have been 
devoted exclusively to this topic and a large number of research papers have appeared in 
the subsequent scientific literature. It is therefore useful to note that the CART 
monograph introduced two strategies for cost-sensitive learning and the entire 
mathematical machinery describing CART is cast in terms of the costs of 
misclassification. The cost of misclassifying an instance of class i as class j is 

( ) ji, C and is assumed to be equal to 1 unless specified otherwise; ( ) ji, C = 0 for all i . 
The complete set of costs is represented in the matrix C containing a row and a column 
for each target class. Any classification tree can have a total cost computed for its 
terminal node assignments by summing costs over all misclassifications. The issue in 
cost-sensitive learning is to induce a tree that takes the costs into account during its 
growing and pruning phases. 
The first and most straightforward method for handling costs makes use of weighting: 
instances belonging to classes that are costly to misclassify are weighted upwards, with a 
common weight applying to all instances of a given class, a method recently rediscovered 
by Ting [61]. As implemented in CART. the weighting is accomplished transparently so 
that all node counts are reported in their raw unweighted form. For multi-class problems 
BFOS suggested that the entries in the misclassification cost matrix be summed across 
each row to obtain relative class weights that approximately reflect costs. This technique 
ignores the detail within the matrix but has now been widely adopted due to its 
simplicity. For the Gini splitting rule the CART authors show that it is possible to embed 
the entire cost matrix into the splitting rule, but only after it has been symmetrized. The 
“symGini” splitting rule generates trees sensitive to the difference in costs 

( ) ji, C and ( )k i, C , and is most useful when the symmetrized cost matrix is an 
acceptable representation of the decision maker’s problem. In contrast, the instance 
weighting approach assigns a single cost to all misclassifications of objects of class i . 
BFOS report that pruning the tree using the full cost matrix is essential to successful cost-
sensitive learning. 
 

H. Stopping rules, pruning, tree sequences, and tree selection 
The earliest work on decision trees did not allow for pruning. Instead, trees were grown 
until they encountered some stopping condition and the resulting tree was considered 
final. In the CART monograph the authors argued that no rule intended to stop tree 
growth can guarantee that it will not miss important data structure (e.g., consider the two-
dimensional XOR problem). They therefore elected to grow trees without stopping. The 
resulting overly large tree provides the raw material from which a final optimal model is 
extracted. 
The pruning mechanism is based strictly on the training data and begins with a cost-
complexity measure defined as 
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( ) ( ) , Ta TRTRa += (31) 
 
where R(T ) is the training sample cost of the tree, |T | is the number of terminal nodes in 
the tree and a is a penalty imposed on each node. If a = 0 then the minimum cost-
complexity tree is clearly the largest possible. If a is allowed to progressively increase the 
minimum cost-complexity tree will become smaller since the splits at the bottom of the 
tree that reduce R(T ) the least will be cut away. The parameter is progressively increased 
from 0 to a value sufficient to prune away all splits. BFOS prove that any tree of size Q 
extracted in this way will exhibit a cost R(Q) that is minimum within the class of all trees 
with Q terminal nodes. 
The optimal tree is defined as that tree in the pruned sequence that achieves minimum 
cost on test data. Because test misclassification cost measurement is subject to sampling 
error, uncertainty always remains regarding which tree in the pruning sequence is 
optimal. BFOS recommend selecting the “1 SE” tree that is the smallest tree with an 
estimated cost within 1 standard error of the minimum cost (or “0 SE”) tree. 
 

I. Probability trees 
Probability trees have been recently discussed in a series of insightful articles elucidating 
their properties and seeking to improve their performance (see Provost and Domingos 
2000). The CART monograph includes what appears to be the first detailed discussion of 
probability trees and the CART software offers a dedicated splitting rule for the growing 
of “class probability trees.” A key difference between classification trees and probability 
trees is that the latter want to keep splits that generate terminal node children assigned to 
the same class whereas the former will not (such a split accomplishes nothing so far as 
classification accuracy is concerned). A probability tree will also be pruned differently 
than its counterpart classification tree, therefore, the final structure of the two optimal 
trees can be somewhat different (although the differences are usually modest). The 
primary drawback of probability trees is that the probability estimates based on training 
data in the terminal nodes tend to be biased (e.g., towards 0 or 1 in the case of the binary 
target) with the bias increasing with the depth of the node. In the recent ML literature the 
use of the Laplace adjustment has been recommended to reduce this bias (Provost and 
Domingos 2002). The CART monograph offers a somewhat more complex method to 
adjust the terminal node estimates that has rarely been discussed in the literature. Dubbed 
the “Breiman adjustment”, it adjusts the estimated misclassification rate r*(t) of any 
terminal node upwards by 
 

( ) ( ) ( )( )S++=∗ tq / etrtr (32) 
 
where r(t) is the train sample estimate within the node, q(t) is the fraction of the training 
sample in the node and S and e are parameters that are solved for as a function of the 
difference between the train and test error rates for a given tree. In contrast to the Laplace 
method, the Breiman adjustment does not depend on the raw predicted probability in the 
node and the adjustment can be very small if the test data show that the tree is not over fit. 
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Bloch et al. [62] reported very good performance for the Breiman adjustment in a series 
of empirical experiments. 
 

J. Theoretical foundations 
The earliest work on decision trees was entirely theoretical. Trees were proposed as 
methods that appeared to be useful and conclusions regarding their properties were based 
on observing tree performance on a handful of empirical examples. While this approach 
remains popular in Machine Learning, the recent tendency in the discipline has been to 
reach for stronger theoretical foundations. The CART monograph tackles theory with 
sophistication, offering important technical insights and proofs for several key results. 
For example, the authors derive the expected misclassification rate for the maximal 
(largest possible) tree, showing that it is bounded from above by twice the Bayes rate. 
The authors also discuss the bias variance tradeoff in trees and show how the bias is 
affected by the number of attributes. Based largely on the prior work of CART co-
authors Richard Olshen and Charles Stone, the final three chapters of the monograph 
relate CART to theoretical work on nearest neighbors and show that as the sample size 
tends to infinity the following hold: (1) the estimates of the regression function converge 
to the true function, and (2) the risks of the terminal nodes converge to the risks of the 
corresponding Bayes rules. In other words, speaking informally, with large enough 
samples the CART tree will converge to the true function relating the target to its 
predictors and achieve the smallest cost possible (the Bayes rate). Practically speaking. 
such results may only be realized with sample sizes far larger than in common use today. 
 

K. Selected biographical details 
CART is often thought to have originated from the field of Statistics but this is only 
partially correct. Jerome Friedman completed his PhD in Physics at UC Berkeley and 
became leader of the Numerical Methods Group at the Stanford Linear Accelerator 
Center in 1972, where he focused on problems in computation. One of his most 
influential papers from 1975 presents a state-of-the-art algorithm for high speed searches 
for nearest neighbors in a database. Richard Olshen earned his BA at UC Berkeley and 
PhD in Statistics at Yale and focused his earliest work on large sample theory for 
recursive partitioning. He began his collaboration with Friedman after joining the 
Stanford Linear Accelerator Center in 1974. Leo Breiman earned his BA in Physics at the 
California Institute of Technology, his PhD in Mathematics at UC Berkeley, and made 
notable contributions to pure probability theory (Breiman, 1968) [63] while a Professor at 
UCLA. In 1967 he left academia for 13 years to work as an industrial consultant; during 
this time he encountered the military data analysis problems that inspired his 
contributions to CART. An interview with Leo Breiman discussing his career and 
personal life appears in [64]. 
Charles Stone earned his BA in mathematics at the California Institute of Technology, 
and his PhD in Statistics at Stanford. He pursued probability theory in his early years as 
an academic and is the author of several celebrated papers in probability theory and 
nonparametric regression. He worked with Breiman at UCLA and was drawn by Breiman 
into the research leading to CART in the early 1970s. Breiman and Friedman first met at 
an Interface conference in 1976, which shortly led to collaboration involving all four co-
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authors. The first outline of their book was produced in a memo dated 1978 and the 
completed CART monograph was published in 1984. 
The four co-authors have each been distinguished for their work outside of CART. Stone 
and Breiman were elected to the National Academy of Sciences (in 1993 and 2001, 
respectively) and Friedman was elected to the American Academy of Arts and Sciences 
in 2006.The specific work for which they were honored can be found on the respective 
academy websites. Olshen is a Fellow of the Institute of Mathematical Statistics, a Fellow 
of the IEEE, and Fellow, American Association for the Advancement of Science. 
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IX. Conclusion and Future Work 
 
In this paper, we presented the importance of social networks in e-Learning systems. 
Recommender systems play important roles in e-Learning as they help students to chose among 
different learning objects to study and activities to participate in. Among the different objects 
and activities available, recommender systems can chose between different algorithms. Presented 
algorithms in this paper are: C4.5, K-Means, Support Vector Machine, and Apriori algorithms. 
Each of those algorithms fit into a certain functionality of the recommender system. Future work 
will include comparison between other important machine learning algorithms, and our proposed 
e-Learning model that utilizes different machine learning algorithms for social network 
supported e-Learning. 
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