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Abstract

The article provides an response to problem, which is also called the
Millennium problem — problem of equality of P and NP classes. As a
result, given a complete refutation of equality. For proof of refutation
was used kind of ”reductio ad absurdum” method. We give that kind of
assumptions, the possible existence of which seems difficult to determine.
The concluding part use tensor analysis which is used to define objects,
such considered relatively to the Turing machine computation. The goal
was to give an answer to a problem, that has affected to degree of the proof
calculation’s details. The proof involves a look at the problem of equality
as if from the side while maintaining attitude to the basic problem. The
result as a whole can be obtained relative to the current problems of
equality P and NP classes, but other than that give an opportunity to
explore the computational process from a new perspective.

0 Introduction

The article presents a refutation of equality classes P and NP. Rather to say,
article present a proof of refuting equality P=NP.

In general, the proof built by kind of ”reductio ad absurdum” method. In
some parts of proof we introduce objects, such semantic nature is difficult to
imagine relatively to computation. However, this nature make our proof possi-
ble.

The first chapter ”Definitions and Alphabet” provides in short way the key
problem definition which where given by Stephen Cook in article ”THE P VER-
SUS NP PROBLEM” [1]. Since the task was not to describe the problem again,
mainly they look the same and may be found completely in article [1]. At the
end of the first chapter we introduce some small lemma on which we partly
build whole proof of refuting equality P=NP.

In the chapter 2 we present the general condition of equality and deduce
attribute of equality P and NP classes.

The chapters 3 and 4 are key in proof. These chapters introduce conditions
and methods for researchers equality.

The fifth chapter contains an axiom that is so in the whole proof context.
Finally, in the end of the chapter 5 and the whole proof we made a conclusion,
which refute equality P=NP in our proof.

In that way, chapters 1 to 5 form a context which by meaning equality
P=NP as a given made it possible to research and to make a conclusion about
equality relatively to the problem, such was given in article [1].
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1 Definitions and Alphabet

Let repeat the main definitions from the article [1] in short.
Let Σ be a finite alphabet(that is, a finite nonempty set) with at least two

elements, and let Σ∗ be the set of finite strings over Σ. Then a language over Σ
is a subset L of Σ∗. For each string ω in Σ∗ there is a computation associated
with M with input ω.

The language accepted by Turing machine M , denoted L(M) by

L(M) = {ω ∈ Σ∗ |M accepts ω} (1)

Denote by tm(ω) the number of steps. For n ∈ N we denote by TM (n) the
worst case run time of M ; that is,

TM (n) = max{tM (ω) | ω ∈ Σn} (2)

M runs in polynomial time if there exist k such that for all n, TM (n) ≤ nk+k.
Class languages P is

P = {L | L = L(M) for some Turing machine M that runs

in polynomial time}
(3)

Checking relation R ⊆ Σ∗ × Σ∗
1, with witch associate a language LR over

Σ∗ ∪ Σ∗
1 ∪ {#} defined by

LR = {ω#y | R(ω, y)} (4)

R is polynomial-time iff LR ∈ P. NP class of languages defined by condition
that language L over Σ is in NP iff there is k ∈ N and a polynomial-time
checking relation R such for all ω,

ω ∈ L⇔ ∃y(|y| ≤ |ω|k and R(ω, y)) (5)

where |ω| and |y| denote the lengths of ω and y, respectively.
After repeat main definition introduce a little lemma:

Lemma 1.1. Σ∗ 6= Σ.

Proof. Let Σ∗ = Σ, then language L from Σ∗ will be equal language L from Σ.
That contradict to the definition of L.

2 Classes equality

For equality of classes P and NP must be fulfilled condition of equality,

A = B ⇔ ∀x : (x ∈ A)⇔ (x ∈ B) (6)

which implies that is

P = NP⇔ ∀L(M) : (L(M) ∈ P)⇔ (L(M) ∈ NP) (7)
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That mean, that should be that kind of language Lciv which can be defined as
a strong NP and P at the same time,

Lciv = L(M) for some Turing machine M that runs

in polynomial time ∧ ω ∈ Lciv ⇔ ∃y(|y| ≤ |ω|k and R(ω, y))
(8)

where |ω| and |y| denote the lengths of ω and y, respectively.

3 Determination of computation

To discover equality P=NP, consider the process of Turing machine working
as a process with an already predetermined outcome.

In other words, present the process of calculation in an environment where
all possible languages previously was computed and all true results already
predicted. That can’t contradict with definition of Turing machine or with
any definitions from chapter 1, because working process and machine structure
stay the same. Changed only surroundings of machine for where possible fully
predetermined computation outcome before any computation step, which made
possible for us that considering.

By true result we mean an accepted result of computing ω in the best case
run time for M .

In that case, we can denote a three-dimensional computing coordinate system
and define the language L as a matrix in computing coordinates.

Figure 1: computing coordinate system with calculation basis

Remark. It will be true to note, that for each machine must exist its own
coordinate system and considering the computation language without machine
relativity unacceptable. As noted earlier, for the proof, we consider such condi-
tions of machine environment that allow us to make known the correct for best
case run presets and considered computation regardless of machine particularity.
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The dimension of this system defined by number machine calculation step
— step, point in time — m and the value from the alphabet — ω.

So, now we can denote the language L as a matrix,

L =

step1 step2 · · · stepn
m1 m2 · · · mn

ω1 ω2 · · · ωn

 (9)

When we determine the language matrix, we can denote the computation of
an language L as a valence tensor (m,ω),

Computationi1 ···iω
j1···jm =

3

Σ · · ·
3

Σ
k1,··· ,km
h1,··· ,hω

Si1
h1
· · ·Siω

hω
T k1
j1
· · ·T km

jm

∼
Computationh1···hω

k1 ···km
(10)

Computation of Lciv is equal irrespectively to 7,

(Lciv ∈ P)⇔ (Lciv ∈ NP)→ Pω
mciv = NPω

mciv (11)

4 Computation equality

From equality condition of tensors it follows, that there should be a basis, rel-
ative to which all components of the tensor are equal. That basis for P=NP
equality we named CIV .

It is important to say, that the basis CIV is temporary object which exist as
exist equality of P=NP. CIV ’s analytical definition allows us to use it without
predetermination basis space which can or can’t exist. So, that possible to
suppose that computation space where P=NP is a space which specify by the
basis CIV .

Defining a basis CIV , we can express the calculation of any language L in
space where P=NP by replacing the main calculation basis for CIV ,

L =

stepciv1 stepciv2 · · · stepcivn

mciv
1 mciv

2 · · · mciv
n

ωciv
1 ωciv

2 · · · ωciv
n

c1,1 c2,1 · · · cn,1
c1,2 c2,2 · · · cn,2
c1,3 c2,3 · · · cn,3

 (12)

Replacing matrix of cn,3 have the same temporary nature as basis CIV . That
allow us express the calculation without definition anything about replacing
matrix. Also, we don’t definition of calculation basis for prof P=NP equality.

5 Refutes of equality

Axiom 1. Since the existence of the language L consisting from any ω is possi-
ble, it is possible to chose that language, for such expression ω to space specified
by CIV is

ωciv : (ωciv ∈ Σ∗)⇔ (ωciv ∈ Σ) (13)

As mentioned before, we don’t strictly define the space where P=NP, but
we strictly define ω in chapter 1. That make following outcome possible for us.

Axiom 1 as came from 12 contradict to Lemma 1.1 and fully refutes equality
P=NP Q.E.D.
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